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learning models of neurological
disease

Christine Lock1, Nicole Si Min Tan1, Ian James Long1 and

Nicole C. Keong1,2*
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Neuroimaging data repositories are data-rich resources comprising brain

imaging with clinical and biomarker data. The potential for such repositories

to transform healthcare is tremendous, especially in their capacity to support

machine learning (ML) and artificial intelligence (AI) tools. Current discussions

about the generalizability of such tools in healthcare provoke concerns of risk

of bias—ML models underperform in women and ethnic and racial minorities.

The use of ML may exacerbate existing healthcare disparities or cause post-

deployment harms. Do neuroimaging data repositories and their capacity to

support ML/AI-driven clinical discoveries, have both the potential to accelerate

innovative medicine and harden the gaps of social inequities in neuroscience-

related healthcare? In this paper, we examined the ethical concerns of ML-

driven modeling of global community neuroscience needs arising from the

use of data amassed within neuroimaging data repositories. We explored this

in two parts; firstly, in a theoretical experiment, we argued for a South East

Asian-based repository to redress global imbalances. Within this context, we

then considered the ethical framework toward the inclusion vs. exclusion of the

migrant worker population, a group subject to healthcare inequities. Secondly,

we created amodel simulating the impact of global variations in the presentation

of anosmia risks in COVID-19 toward altering brain structural findings; we then

performed a mini AI ethics experiment. In this experiment, we interrogated an

actual pilot dataset (n= 17; 8 non-anosmic (47%) vs. 9 anosmic (53%) using anML

clustering model. To create the COVID-19 simulation model, we bootstrapped

to resample and amplify the dataset. This resulted in three hypothetical datasets:

(i) matched (n = 68; 47% anosmic), (ii) predominant non-anosmic (n = 66; 73%

disproportionate), and (iii) predominant anosmic (n = 66; 76% disproportionate).

We found that the di�ering proportions of the same cohorts represented

in each hypothetical dataset altered not only the relative importance of key

features distinguishing between them but even the presence or absence of such

features. The main objective of our mini experiment was to understand if ML/AI

methodologies could be utilized toward modelling disproportionate datasets, in

a manner we term “AI ethics.” Further work is required to expand the approach

proposed here into a reproducible strategy.
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1 Introduction

Research collaborations within the global neurosurgical

community are often hampered by differing socio-political and

legal frameworks regulating the accumulation, utility, and sharing

of clinical datasets. Yet, vast quantities of data are required to

construct robust and meaningful clinical models for interrogation

of scientific hypotheses using innovative technology-based

solutions, such as Artificial Intelligence (AI)-driven tools and

Machine Learning (ML) methods. ML/AI-led modeling in

neurological datasets are subject to common considerations

with these emerging techniques, such as lack of transparency,

generalizability and risk of bias (Chen et al., 2021). In addition to

geographical variations in phenotypes of neurological diseases,

there are increasing challenges for the provision of neuroscience

healthcare services attributed to patients with advanced age, frailty,

and/or concurrent comorbidities. Such concerns provide a rich

substrate for the generation of research questions to advance

clinical care, but it is difficult to navigate such heterogeneity to

deliver the ideals and aspirations of precision medicine. In patient

populations acutely presenting for neurological interventions,

baseline (i.e., previously acquired) imaging of the brain is often

absent. The structural metrics of the brain are unknowable

without neuroimaging. This provokes a significant gap in our

understanding about how best to model patterns of reversible vs.

irreversible brain injury. This capability requires that we develop

neuroimaging-based data resources. Yet, as brain images may be

used to simulate structural pathologies that impact upon cognitive

and behavioral processes, new concerns have arisen about how

these “digital twins” will be utilized within the context of global

healthcare (Keong, 2021). Should the control and access to such

simulated digital extensions be governed by ethical principles, such

as equity and social justice, and how should vulnerable individuals

and groups be represented within these initiatives?

1.1 Imbalances arising from neuroimaging
data repositories

One response to the conundrum of lack of datasets for use

in neuroscience-based healthcare is the use of neuroimaging data

repositories. However, such open-access databases of de-identified

brain images, often linked to anonymized data variables of clinical

measures, must be disproportionately funded by high-income

countries (HICs) in the pursuit of the ideals of Open Science.

This reflects the maturity of such systems to (i) support legal and

regulatory frameworks protecting the rights and expectations of

individuals to data privacy [e.g., Health Insurance Portability and

Accountability Act (HIPAA),1 General Data Protection Regulation

(GDPR)2], whilst (ii) promoting solidarity in accepting personal

risks to contribute to societal needs for scientific discovery.

1 Health Insurance Portability and Accountability Act 1996 (United States)

Pub. L. No. 104-191. Available online at: https://www.govinfo.gov/app/

details/PLAW-104publ191/.

2 Data Protection Act 2018, c. 12 (United Kingdom) s 3(10). Available online

at: https://www.legislation.gov.uk/ukpga/2018/12/contents.

Accordingly, examples of brain repositories and data sharing

initiatives [ADNI (Petersen et al., 2010), HBCD (Bakhireva et al.,

2020; Morris et al., 2020), HBP (Amunts et al., 2019), CBRS (Illes

et al., 2019), CONP (Poline et al., 2023), UK Biobank (Sudlow

et al., 2015), etc.] are mainly from North America, Europe, and

the United Kingdom (UK). A consequence of this is that HICs

may be expected to reap far larger rewards from the technological

advancements associated with these initiatives (such as capacity

to host them, cloud computing tools for processing/analysis and

tech industry-related collaborations). Gross imbalances, such as

in socioeconomic factors, patient demographics and other social

determinants of health, are therefore commonly found in open-

access neuroimaging datasets. For example, ABIDE for autism

spectrum disorder (ASD) and PHENOM for schizophrenia have

13% and 37.4% female participants, respectively (Di Martino et al.,

2014; Chand et al., 2020; Wang et al., 2023). Patient groups such

as those with comorbidity risk burden, as well as Asian and South-

East Asian ethnicities, have been poorly represented in the cohorts

of large-scale neuroimaging programs. The iSTAGING consortium

dataset for Alzheimer’s disease is comprised of 70.6% European

Americans, 8.8% African Americans and 1.5% Asian Americans

(Habes et al., 2021; Wang et al., 2023).

1.2 Balance between access,
representation and bias when harnessing
global neuroimaging data repositories for
machine learning- and AI-driven discovery

1.2.1 Harms
Underrepresentation of specific cohorts is a well-known

problem within clinical studies and trials. It is therefore

unsurprising that the same concerns regarding representation

would arise in neuroimaging data repositories. The concurrent

explosion of ML/AI technologies using such data-rich resources

have also produced other concerns. Most repositories are funded

via study or disease-specific intentions and may not have been

designed to be held up as perfect mirrors of their whole

communities. Even repositories built with community-based large

scale needs in mind are recruited from voluntary participants.

Wider societal differences in participating in initiatives may

contribute to imbalances in repositories. These imbalances may

reflect both inequities in access to healthcare innovations as well

as reluctance by minority communities to bear societal costs of

participation, e.g., potential inconveniences of time, cost, risk to

personal data, or mistrust regarding the lack of benefit sharing. It

is well-known that more needs to be done to ensure repositories

demonstrate more proportionate representation of the spectrum of

diseases and populations served by such initiatives. These efforts

should be made more transparent.

The rapid rise of ML/AI methodologies leveraging on

repositories have compounded concerns already present regarding

such imbalances. Yet, the potential for ML/AI technologies to

accelerate healthcare knowledge is undeniable. Imaging data—

large, unwieldy, and not as easily processed as other forms of

clinical data—are highly suited to advancements made in this

field. However, the incorporation of such technologies also has the
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potential to increase risks of medical or clinical bias if current

ML/AI methodologies are trained on incomplete datasets. These

risks are 2-fold, both for the (i) consequences of incorporating

ML/AI methodologies in the clinical translation of knowledge

gained from neuroimaging data repositories and (ii) potential new

knowledge harvest and innovations arising from the usage of these

resources toward training new ML/AI technologies. Whilst it is

possible, via the use of advanced ML/AI methodologies, to mitigate

bias by careful training and correcting for age, sex, and ethnicity

(Wang et al., 2023), nevertheless, it is still impossible to correct for

the exclusion of representative cohorts or rare manifestations of

disease risks (Chen et al., 2021). Known shortcomings in ML/AI

techniques relate to implications in data imbalances in sex and

racial disparities. There is also arguably a blind spot in healthcare,

where studies have demonstrated significant variations in clinical

outcomes of interventions experienced by patient cohorts of

different ethnicities (Creanga et al., 2014). Concerns also arise

from the implications of future utility of ML/AI methodologies

being implemented in healthcare protocols with such inbuilt flaws

and biases that may have potential to influence medical decision-

making and outcomes (Chen et al., 2021).

1.2.2 Benefits
Current patient outcomes are heavily influenced by evidence

produced by clinical studies, whose non-ML methodologies are

equally subject to inbuilt shortcomings. These are predicated upon

the heterogeneity and inherent messiness of clinical datasets, that

often contain multiple, incomplete variables with differing impact

as determinants of health outcomes. There are already implicit

knowledge gaps in the practice of medicine that repositories may

help to address, such as geographical variations in the presentation

of diseases or patient cohorts. ML/AI methodologies may better

handle the problem of big datasets, such as by concurrently

interrogating differing cohorts and imputing trends or plugging

gaps of missing data. Whilst these shortcomings can be addressed

in clinical trials via stringent inclusion and exclusion criteria, such

methods only promote highly specific cohorts for research studies.

If a trial is successful, it is standard practice for results to be then

applied in a widespread fashion to a much broader patient group,

without the threshold of previously applied criteria. This outcome

may be expensive for healthcare organizations and unresponsive to

specific needs of patient groups. ML/AI methodologies could create

digital twin “surrogates” that could be used as disease platforms to

test hypotheses or model the burden of illnesses and their potential

clinical trajectories. Testing pre-clinical interventions on digital

twins to improve the efficacy and cost of treatments could shorten

the time needed from knowledge harvest to translatable therapies

and innovative medicine. Should the questions surroundingML/AI

methodologies be solely about how they are trained and harms

that could arise if their training is improperly performed? Or

should more be done about rebalancing data repositories to address

potential pitfalls from their utilization instead? It is clear that

the ideal framework for repositories would need to balance both

equitable representation within them and scientific access to such

datasets, whilst considering how to mitigate potential downstream

effects of bias from lack of the same. How can we approach

the framework of building repositories via the lens of AI ethics

to properly prepare global neuroimaging data repositories for

machine learning-led innovations?

2 Methods

In this paper, we performed two experiments to test ethical

considerations regarding the use of ML/AI-driven methodologies

based on neuroimaging data repositories. In the first experiment,

we considered the theoretical scenario of rebalancing repositories

to mitigate risk of bias based on ethnicity-derived data. We

considered whether inclusion or exclusion of the migrant

worker population within a local repository best served the

ethical principles that could be applied toward its governance.

For this section, we incorporated the use of ChatGPT x

MindNode to generate two illustrations. To do so, we performed

multiple iterations of questions regarding ethical considerations

surrounding the use of neuroimaging data repositories and

combined the best answers generated from our ideas of topics of

interest. We then edited the resulting mind maps for accuracy and

clarity and added our own proposed solutions to the questions

posed (Figures 1, 2).

In the second part of the paper, we performed a mini-AI

ethics experiment using pilot data from an ongoing study on

long COVID. Variations in COVID-19 genotype and phenotype

of disease presentation have contributed to vast differences of

healthcare outcomes across global populations. We examined

whether or not, by perturbing the proportions of cohorts within

the pilot dataset, we were able to alter findings of structural brain

metrics and interpretation of brain injury patterns resulting from

such analyses. We have previously published our methodologies

for 3D structural segmentation and DTI profiles (Lock et al.,

2019; Soon et al., 2021). For the mini AI Ethics experiment,

imaging datasets were anonymized at source, then subject to

further checks and deidentification, defacing and processing prior

to usage, according to our lab and institutional protocols. We

then performed anatomical preprocessing of the anonymized

and deidentified T1-weighted (T1w) images using the fsl_anat

functionality (brainlife.app.273) of the FMRIB Software Library

(FSL) (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al.,

2012). The anatomical T1w images were cropped and reoriented

to match the MNI152 template, then subject to linear and non-

linear alignment using the FLIRT tool (Jenkinson and Smith, 2001;

Jenkinson et al., 2002; Greve and Fischl, 2009). We used the linearly

aligned images as the acpc aligned T1w images for further post-

processing using Freesurfer release 7.1.1 (brainlife.app.462) (Dale

and Sereno, 1993; Sled et al., 1998; Dale et al., 1999; Fischl et al.,

1999a,b, 2001, 2002, 2004a,b; Fischl and Dale, 2000; Rosas et al.,

2002; Kuperberg et al., 2003; Salat et al., 2004; Ségonne et al., 2004,

2007; Desikan et al., 2006; Han et al., 2006; Jovicich et al., 2006;

Reuter et al., 2010, 2012; Reuter and Fischl, 2011). The recon_all

function was used to generate pial/cortical and white matter

surfaces and perform brain parcellations according to known

neuroanatomical atlases. We chose the Destrieux (aparc.a20090s)

atlas for subsequent segmentation of white matter and mapping of

diffusion metrics to the relevant cortical and subcortical structures.
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FIGURE 1

Ethical considerations arising from the use of neuroimaging data repositories.

Supplementary and further processing of the anonymized and

deidentified images were performed using processing pipelines

via the brainlife.io secure cloud processing platform, as per

methodology described by Caron et al. (2021). In brief, following

manual inspection of the images, additional FSL and Freesurfer

steps via their equivalent brainlife apps were repeated as necessary

to achieve satisfactory brain segmentation. Preprocessing of dMRI

data was performed using MRTrix3, with alignment of the

dMRI images to the acpc aligned T1w dataset (brainlife.app.68).

MRTrix3—Anatomically-constrained probabilistic tractography

(ACT) (brainlife.app.319) was used to generate white matter

tractography (Smith et al., 2012; Takemura et al., 2016; Ades-

Aron et al., 2018; Avesani et al., 2019; Tournier et al., 2019).

Following this, cortex tissue mapping (brainlife.app.381) was

performed as per Fukutomi et al. (2018) using dwi, freesurfer

and tensor output from the processing steps above. Summary

measures for the processing pipeline were then generated using

the Freesurfer Statistics (brainlife.app.272) compute summary

statistics of diffusion measures from subcortical (brainlife.app.389)

and cortical segmentation (brainlife.app.483) brainlife apps for

further analyses (Dale et al., 1999; Fukutomi et al., 2018; Avesani

et al., 2019). At each stage of the pipeline, visual inspection

was performed and manual reprocessing of individual images

undertaken as needed for suboptimal output. All steps and

links to open-source code for each app used are linked in

Supplementary Table 1.

For the mini experiment, all brain metrics were examined

qualitatively and no statistical comparisons were performed. This

was due to the theoretical nature of the experiment and the

hypothetical nature of the modeling. The modeling approach and

ML/AI methodologies used are described in full within the section

of the mini AI ethics experiment.

3 The theoretical experiment

In this section, we consider the provision of a technological

platform that benefits low- (LIC) to middle-income (MIC)

countries by proposing a thought experiment regarding the

development of a South East Asian (SEA)-based neuroimaging

data repository. What ethical concerns arise from this initiative to

redress the balance of participants of global repositories?
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FIGURE 2

Negative e�ects of innovations driven by neuroimaging data repositories.

3.1 The dilemma of underrepresented
communities—Should repositories recruit
participants from the local migrant worker
population?

Migrant workers of varying employment categories and earning

levels are governed by the sociopolitical policies of their host

nations. Whilst the ethical concerns we discuss in this paper

may be applicable to the broad group, workers performing low-

skilled work for low wages are especially vulnerable from their

participation in repository initiatives. We restrict our discussion

of the issues arising to this latter group of participants, here and

in the sections to follow. Migrant workers have access to the

local healthcare systems in communities in which they work but

may be disadvantaged through their participation. Aside from

risks to their data, should any unanticipated findings arise, they

may experience harms. If their voluntary participation results in

brain imaging that reveals incidental findings, such as a medium-

sized meningioma or an unruptured aneurysm that only confer a

small risk of neurological decline, they may not require immediate

clinical treatment but may benefit from longer-term surveillance

imaging. Who should bear the cost of these incidentalomas?

In Singapore, healthcare financing for citizens and permanent

residents is provided via a universal health coverage (UHC)

framework (Rajaraman et al., 2020). Subsidized care via this

framework is not available to migrant workers and costs must

be borne by their employers via mandatory private insurance.

However, by this nature, such insurance only provides for basic

healthcare costs at levels mandated by governmental policies

(Rajaraman et al., 2020). Employers are therefore obliged to cover

the costs of acute medical care for their employees. They are

not obliged to make provisions for longer term or optional costs,

such as surveillance imaging. Conversely, even if migrant workers

found to have incidentalomas may themselves opt, following

medical counseling, not to have surveillance imaging, knowledge

of such seemingly innocuous findings may be disadvantageous

to them. Participation in neuroimaging data repositories may

therefore provoke unintended economic consequences for migrant

workers. If there is a perceived risk to their ability to fully carry

out their jobs to the extent they would have been expected to,
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they may find themselves unable to extend or renew their work

passes. Rajaraman et al. (2020) have discussed their vulnerability

to termination and repatriation. Work passes are obtained via the

sponsorship of individual employers; they are not transferable.

Moreover, migrant workers most often fund their own up-front

costs (such as agency fees for recruitment, relocation costs and/or

travel/interim accommodation). Whilst they would usually recoup

such initial outgoings in the medium-term period, an unexpected

termination could incur immediate threat of debt. For example,

Au (2016), Fillinger et al. (2017), and Rajaraman et al. (2020) have

reported that Bangladeshi migrant workers pay between SGD 5,000

and 15,000 in recruitment costs and earn salaries of between SGD

350–800 per month, with SGD 726 per month being the average

salary for all migrant workers in Singapore. Thus, a period of

employment of more than 1 year is required for migrant workers to

begin to fully realize the potential earning power of their contracts.

What are the alternatives? Repositories typically do not have

resources to fund follow-up imaging for incidentalomas found on

research scans. Lack of provision of surveillance imaging aside,

some ethicists have proposed that repositories should necessarily

be asked to set aside a portion of their funding as a form of harm

mitigation and compensation in the case of unfortunate events

(Prainsack and Buyx, 2013). The net result of a migrant worker’s

participation in a repository may extend to consequences beyond

the termination of their livelihood in their host countries. Even after

a return to their home countries, implications may follow, such as

an inability to obtain personal healthcare insurance to cover the

costs of a newfound “known” medical condition.

Which ethical principles should apply here so that the

knowledge harvest from a local technological platform would

most benefit provision of neuroscience-related healthcare needs in

regional LICs andMICs? Do the use of ML/AI methodologies favor

the application of one ethical framework over another? Should

there be no satisfactory way to address the challenges of including

SEA-basedmigrant workers within a SEA-based neuroimaging data

repository, where would they best be represented?

3.1.1 Equity and justice
A key facet of hosting a repository based in SEA would be

to provide equitable access in the region to such an innovation

and technological advancements that are generated from its use.

This would comprise both the (i) increased local capacities

from infrastructural improvements, e.g., secure data storage,

cloud computing tools and (ii) healthcare innovations based on

repository data, e.g., a ML-based neuroimaging triage system for

acute brain injury trained on local data. Should the decision for the

inclusion or exclusion of migrant workers in local repositories be

governed by equity? As per Chadwick and Berg’s (2001) definition

for genetic databases, equity in repositories refers to “sharing the

benefits of research”. By extension, sharing in a neuroimaging-

based technical platform requires that equity encompass fair

access for LIC and MIC researchers to utilize the repository and

also, for migrant workers to participate in the repository for

such data to represent the needs of their communities. Yet, as

discussed above, migrant workers experience healthcare inequities

that participation in the repository may exacerbate. Our example of

incidentalomas illustrates that applying equity via the initiative of a

repository may cause harms to befall individual participants if the

application of equity to wider societal frameworks (e.g., universal

healthcare systems) has yet to have been attained. Do we need more

than equity?

Here, justice may be a useful additional principle to apply.

Justice attends to the dimension of fair distribution of both benefits

and burdens of data activities (such as collection, use, and sharing)

and also to the issues of equity (Xafis et al., 2019). Its principles

of treating individuals and groups fairly, and with respect, clearly

favor the inclusion of the migrant worker population. By the

application of justice, migrant workers should be included in their

host communities as a significant group and be able to participate in

society-wide innovations. An example of this view was vaccinations

for COVID-19, which were provided at no cost to individuals living

in Singapore, regardless of their immigration status. Yet, it can

also be argued that, by the use of social justice, migrant worker

populations ought to be excluded from local repositories to avoid

potential harms arising from their participation. As a population

made vulnerable by their immigration status, they may be unduly

influenced by fear of reprisals for not participating (as per the above

example, in COVID-19) or conversely, enticed by the attractiveness

of incentives provided (such as monetary compensation). Equity

and justice alone appear to be insufficient as the ethical principles

to be applied in the theoretical scenario of a SEA-based repository.

In considering both its harms and benefits, what other organizing

principle may prove useful?

3.1.2 Solidarity
If neuroimaging data repositories are to meaningfully

contribute to the pursuit of Open Science and the benefit of human

healthcare, it could be argued that the needs of global communities

should necessarily be prioritized over the needs of the individual.

In this way, solidarity provides a way of reconciling the ethical

responsibilities of repositories to both its sponsors and participants.

As per Prainsack and Buyx’s (2011, 2013) formulation, solidarity

requires that there is willingness on the part of the individual

to bear some costs for the benefit of the whole. Whilst societal

benefits of neuroimaging data repositories include the potential of

ML/AI powered methodologies to transform the delivery of acute

neurosurgical care, the standard of care for any one repository

participant may not necessarily improve. Neither can there be any

expectation of reciprocity. Due to the transitory nature of migrant

worker populations, they may not reap the rewards of participation

via future healthcare initiatives developed from their datasets.

Does the notion of “solidarity” require that some individuals

accept they may bear more costs than others? Rather, it can be

argued that the willingness to bear “costs” is the key feature that

distinguishes this principle from others that might equally apply

to repositories, such as equity and altruism. It is implicit that the

costs borne may be disproportionate. In a strike, not all protesters

would be at risk of violence or arrest; in a data breach, some

might suffer more devastating loss of personal information than

others. Would there be a way to better formulate solidarity as the

organizing principle for neuroimaging data repositories to include
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representation from the migrant worker community but without

the risk of disproportionate costs to this vulnerable population?

In this regard, it may be helpful to return to Prainsack and

Buyx’s (2011) definition of solidarity comprising three distinct

tiers. The first is distinguished by interpersonal relationships, in

which groups of people are willing to bear costs to assist others

because they recognize in them a “similarity in a relevant respect”.

By this token, it may be plausible to suggest that a SEA-based

repository may be more successful at recruiting participants if the

sponsors of the said initiative funded mini repositories to be hosted

across all partner LIC and MICs instead. To extend the idea of

solidarity, it would therefore require that upper MICs and HICs

bear disproportionate costs to include participation of LICs and

MICs in a SEA-based neuroimaging data repository that would be

truly representative of local communities. However, this concept,

requiring researchers to concurrently navigate rules, regulations

and differing socio-political climates across the region, would likely

be both exorbitant in cost and impractical in delivery. A single

SEA-based host country, with clear policies regarding the position

of its migrant worker population as potential participants, would

be far more achievable. Yet, if the relevant ethical principles, such

as equity and justice, could be equally employed in the arguments

for and against the inclusion/exclusion of migrant workers, what

would be deemed a sufficient guiding policy for the governance of

local repositories? Is solidarity enough as the dominant principle

to determine whether or not migrant workers should be allowed to

participate or are the ethical principles in conflict with one another?

3.1.3 Citizenry and universality
Rather than one or two guiding principles, it is possible to

resolve such conflicts in the execution of data repositories by the

construction of ethical frameworks relevant for the use of big

datasets. Indeed, Xafis et al. (2019) have suggested that the use of

equity and justice is relevant to this particular application, along

with other desirable principles of approach. For the governance

framework of the UK Biobank (2007) and Laurie (2017) proposed

a more reflexive approach, allowing for the guiding ethical

framework of the repository to respond to changes in thinking,

e.g., in its handling of incidentalomas, by involving its base of

stakeholders, from its sponsors and early participants to members

of the public.

Other ethical principles that could apply to a SEA-based

repository include citizenry, universality and veracity. Veracity

would be most usefully applied to the taking of broad consent

to allow for use of data for future purposes such as ML/AI

innovations (Lunshof et al., 2008). Citizenry and universality may

be used to more strongly argue for the inclusion of migrant

workers in this theoretical initiative. In their discussion of genetic

databases, Knoppers and Chadwick (2005) suggest two important

facets of the utilization of citizenry. The first includes public

understanding and consultation about the value of the proposed

model toward the advancement of science. This includes promoting

the societal viewpoint that migrant workers are a critical group

to be represented in the healthcare affairs of the community.

Repositories should have a responsibility to ensure the curation of

proportionate, ethnicity-based data that is representative of their

communities. If the composition and healthcare needs of the local

population are reflected, ML/AI-powered healthcare technologies

trained on these datasets would be truly transformative. If this is

not the case, applications of such technologies in a clinical setting

may attract harms, particularly in situations of AI-led triage or

decision-making algorithms (Knoppers and Chadwick, 2005). The

second, and potentially more critical aspect, is the promotion of a

collective identity and engaging the migrant population to partake

in efforts toward this from within the communities in which they

reside and work in. The notion would be to encourage, within the

migrant worker population, the viewpoint that they belong to the

community group and should participate in local efforts of their

host countries. In this regard, it would be crucial to include migrant

workers that represent communities in the region, especially LICs

and MICs in a SEA-based neuroimaging data repository. The risk

that, should they not be represented in regional initiatives, they

would not be included anywhere in global projects would surely

outweigh the benefit to individuals of avoiding potential harms.

Knoppers and Chadwick (2005) also expand upon the concept

of universality that includes characterization of human data as a

shared resource, from which a wide range of applications toward

benefit-sharing would be possible. Participants in the repository

will receive no part of the profits from technologies created based

on this shared knowledge. Universality promotes the viewpoint that

efforts to amass representative local datasets are important toward

influencing the production of global goods of greater value to the

world community at large.

However, even the transparency and thoughtfulness of an

ethical framework comprising the principles above may not be

sufficient to mitigate harms to migrant workers arising from a SEA-

based neuroimaging data repository. Instead of excluding them

entirely, one approach to address such shortcomings would be the

establishment of funds to compensate migrant workers for any

harms (e.g., potential fallout form incidentalomas) that occur via

their participation in repositories. Another approach would be to

consider promoting ethical usage and development of technological

tools leveraging on the data amassed via neuroimaging data

repositories. This is consistent with strategies toward “Responsible

AI”, which we discuss further below.

4 The mini AI ethics experiment

The need for the concept of “Responsible AI” has arisen due to

the rapid growth of ML/AI technologies and their transformative

translational potential. In healthcare applications, misapplied

utility of data and the development of biased algorithms is an

emerging area of concern. The issue of disproportionate datasets

(such as over- or under-representation of cohorts, inadequate

sample variables or data points, or biased selection of disease

or outcome markers), lies at one end of the spectrum. At the

other is the risk of exploitation of sensitive data and the unethical

use of brain metrics derived from the repository to promote

scientific racism. Using standard statistical tools, variations in

brain structures have been previously used to imply significant

racial differences in intelligence (Evans, 2018). ML/AI-based

methodologies may incorporate such rhetoric found in published

literature (e.g., the use of large language models such as ChatGPT
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to analyze imaging reporting data) or may accelerate bias, racism,

or sexism (Vallance et al., 2023) if contextual data for variations

in brain structures are not collected. Environmental threats may

trigger brain responses, resulting in changes in structural metrics

over time. The brain and its functions may be remodeled by the

effects of endemic stressors, such as infectious diseases (Eppig et al.,

2010), but these effects may appear correlated to characteristics

of ethnicity or race, and these factors falsely linked to causality

or inherent genetic differences. Similarly, the burden of chronic

illnesses may be shaped by healthcare inequities, such as access to

subspecialist care or lack thereof, producing differing outcomes,

both within the local community and across global populations.

Such variations require proper training, using strategies to mitigate

bias, to avoid inappropriate interpretations of differences inherent

across ethnicity-specific datasets that may be impacted by socio- or

geo-political determinants of health and disease.

“Responsible AI” has emerged as a movement in response

to such critique. The concept has been shaped both by will

from within the ML/AI developers’ community and without it,

driven by political pressure to regulate potential harms from

tech innovations (McCabe, 2023). For example, Microsoft, which

has heavily invested in the generative AI technologies behind

ChatGPT (Metz andWeise, 2023), has stated its commitment to the

advancement of AI driven by ethical principles. Yet, the power to

develop “Responsible AI” tools has largely been left in the purview

of commercial tech giants and interested developers. There is a

hidden aspect to ethical AI practices to which others hold the key.

The curation of high quality, representative datasets upon which

lie the foundation of ML/AI algorithms is possibly of far greater

importance in influencing the outcome of such work. There is little

understanding in the scientific andmedical communities about best

practices in data curation to prepare for ML/AI methodologies.

What if the gap between AI and clinical researchers could be tested

to understand concerns of mis-utility of data? Would it be possible

to use ML/AI methodologies to interrogate its own gaps and

shortcomings in the interpretation of clinically disproportionate or

under-representative datasets? Here, we present a mini-experiment

to illustrate a strategy we term “AI Ethics”.

As a case example of an under-representative dataset, we

used a pilot sample from an ongoing study of long COVID. Our

hypothesis for the study was that the initial presentation of COVID-

19 with or without anosmia conferred differing implications for the

longer-term development of neurological risks. In analyzing the

pilot study, we found some promising results. However, there are

two current ways in which our under-representative dataset may

contribute to scientific misinterpretation:

(i) there is a vast variation in the incidence of anosmia across the

global populations—are our results generalizable? and

(ii) our sample is small and subject to the usual considerations

in the analysis of modest datasets. How can we be sure our

findings are robust?

4.1 Methodology of mini experiment

We have previously published on global variations in the

presentation of anosmia, ageusia and neurological risks in COVID-

19 (Kumar et al., 2021). In our previous work and in the earlier

methods section above, we have described our methodologies

for the derivation of brain metrics, in particular, the use of 3D

structural segmentation for brain volumes and diffusion tensor

imaging (DTI), for the examination of brain injury signatures

(Lock et al., 2019; Soon et al., 2021). For the purposes of this

mini experiment in AI ethics, we used ML/AI to model and

extrapolate the pilot dataset to look for potential areas where

findings converged or diverged based on the proportionality of

cohorts represented.

Firstly, we interrogated the actual pilot dataset [n = 17;

eight non-anosmic (47%), nine anosmic (53%)], using a clustering

model of ML generated in-house to discover the principal

components that best distinguished non-anosmic vs. anosmic

COVID recoverers. After classification, the fourteen best features

were chosen (Figure 3). Next, we used bootstrapping tomodel three

hypothetical datasets. We randomly resampled from the original

pilot dataset to created multiple new samples that amplified the

dataset to produce a sample three to four times the original,

whilst attempting to represent differing proportions of non-

anosmic vs. anosmic cohorts found across global populations.

The final hypothetical datasets (3.8 to 4.0-fold amplified from the

original) were:

(1) The matched dataset (n = 68; 32 non-anosmic, 36 anosmic)

47/53% proportions of non-anosmic/anosmic as per pilot.

This dataset was somewhat artificially balanced, as per

standard scientific practice, to simulate our pilot COVID-

19 dataset; this allowed us to compare our pilot COVID-19

dataset, to compare equivalent numbers of different groups but

is not necessarily reflective of actual incidence of groups in the

local population.

(2) The predominant non-anosmic dataset (n = 66; 48 non-

anosmic, 18 anosmic).

This dataset is 73% disproportionate in favor of non-anosmic

cohorts but may be representative of the SEA populations, e.g.,

the lower incidence of anosmia in Singapore.

(3) The predominant anosmic dataset (n = 66; 16 non-

anosmic, 50 anosmic).

This dataset is 76% disproportionate in favor of anosmic

cohorts but may be more representative of worldwide

populations (Lechien et al., 2020; von Bartheld et al., 2020;

Kumar et al., 2021).

We then performed ML using Microsoft’s Azure Machine

Learning Studio, a commercially available cloud computing tool

with the capacity to build, train and deploy models for a variety

of applications.3 Following training using the original pilot dataset,

we tested the three hypothetical COVID-19 datasets to generate the

best classificationmodels for each.We then extracted the top fifteen

features by their importance and compared these amongst both the

hypothetical and actual pilot samples (Figure 4).

5 Results

In summary, we found that the proportions of the cohorts

represented in each dataset altered not only the relative importance

3 Available online at: https://azure.microsoft.com/en-gb/products/

machine-learning/#overview (last accessed November 1, 2023).
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FIGURE 3

Fourteen features, from DTI metrics and structural volumes, that best distinguished between non-anosmic and anosmic COVID recoverers in the

pilot dataset. L, left; R, right; FA, fractional anisotropy; MD, mean di�usivity; AD, axial di�usivity; RD, radial di�usivity; CC, corpus callosum; Cerebral

WM, cerebral white matter; CST, corticospinal tract; ILV, inferior lateral ventricle; MdLF-Ang, middle longitudinal fasciculus–superior angular gyrus

component.

of top key features distinguishing between them but the presence

or absence of even predominant key features. For example, 3D-

segmented structural volumes were only relevant as key features

in the pilot and matched hypothetical dataset, that represented a

similar cohort that had been derived by randomly resampling the

pilot dataset in the closest proportions to the original experiment

by four-fold. The key volumes of interest were left vessel volume

(pilot) (Figure 3) and right and left cerebellar cortex volumes

(matched dataset) (Figure 4A). For the remainder of the features

for the pilot and matched datasets, as well as all the key features

for both of the other hypothetical datasets, DTI measures were

best at correctly classifying the non-anosmic vs. anomic cohorts.

DTI metrics of the amygdala (right and/or left axial diffusivity)

were a key feature in classifying cohorts in the pilot (Figure 3)

and both disproportionate datasets (predominant non-anosmic or

anosmic; Figures 4B, C, respectively). This feature was strongest

for the predominant anosmic cohort. In addition, DTI metrics for

structures related to CSF and the ventricles (including the corpus

callosum white matter tract) were key features in common between

the pilot and all three hypothetical datasets (Figures 3, 4A–C).

6 Discussion

In this mini AI ethics experiment, we sought to use ML/AI

tools to predict their behavior when presented with both balanced

and disproportionate datasets. In so doing, we were able to

model the hypothetical effects of proportional representation of

differing patient cohorts on brain structural and microstructural

findings in a projected dataset of larger numbers. We found

that structural volumes were only helpful in classifying cohorts

that were well-balanced and matched. In general, volumes for

the cerebellar cortex were lower for the predominantly non-

anosmic cohort, approaching the range of a non-COVID cohort

of older individuals (Figure 5). The most consistent group of

key features that distinguished the predominantly non-anosmic

from the predominantly anosmic cohort comprised structures

related to CSF and the ventricles. DTI metrics for the latter

(in the matched dataset; tissue signatures consistent with that

expected of periventricular white matter) and the corpus callosum

demonstrated higher fractional anisotropy (FA), driven by higher

axial diffusivity (AD), in COVID-19 recoverers vs. older non-

COVID subjects (Figure 6). In our previous work, this DTI profile

was suggestive of white matter distortion by stretch/compression

(Keong et al., 2022). Confirmation of this pattern here would

require the examination of a larger, actual dataset, rather than via

hypothetical modeling. However, unlike our work in the condition

of Normal Pressure Hydrocephalus (NPH), which is characterized

by ventriculomegaly, the white matter injury in COVID-19

recoverers is not known to be associated with an abnormal increase

in ventricular volumes. Indeed, in the predominantly non-anosmic

cohort, where this DTI profile was strongest, we found that

lateral ventricular volumes were the smallest compared to the

predominantly anosmic cohort and older non-COVID subjects

(Figure 5). This suggests that another mechanism occurring in

the interstitial spaces surrounding the periventricular/adjacent

white matter may be contributing to tissue distortion in this

specific region.
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FIGURE 4

Fifteen features, from DTI metrics and structural volumes, that best distinguished between non-anosmic and anosmic cohorts in the bootstrapped

(A) matched dataset, (B) predominant non-anosmic dataset, and (C) predominant anosmic dataset. L, left; R, right; FA, fractional anisotropy; MD,

mean di�usivity; AD, axial di�usivity; RD, radial di�usivity; Arc, arcuate fasciculus; CC, corpus callosum; CSF, cerebrospinal fluid; MdLF-Ang, middle

longitudinal fasciculus–superior angular gyrus component; MdLF-SPL, middle longitudinal fasciculus-superior parietal lobule component; pArc,

posterior arcuate fasciculus; SLF, superior longitudinal fasciculus; TPC, temporo-ponto-cerebellar; Ventral DC, ventral diencephalon.

Another key feature of interest was the amygdala, where we

found alterations in DTI metrics, particularly in axial diffusivity

(AD). In general, there were higher axial diffusivities in both

COVID-19 cohorts compared to older controls. Here, age may be a

factor, but the consistency of the representation of the amygdala

as a key feature across both disproportionate datasets and the

pilot sample suggests a more meaningful link to COVID-19. The

effect is lost in the well-balanced, matched dataset. However, in
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FIGURE 5

Structural volumes (voxels) in non-anosmic and anosmic COVID-19 recoverers, compared to older non-COVID cohorts; for the (A) right cerebellum

cortex and (B) right lateral ventricle.

FIGURE 6

DTI metrics for the right lateral ventricle in non-anosmic and anosmic COVID-19 recoverers, compared to older non-COVID subjects.
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this cohort, other gray matter structures, such as the hippocampus

and pallidum, still feature. The top feature in the predominantly

non-anosmic dataset was the left accumbens radial diffusivity. In

general, the COVID-19 cohorts had increased axial, mean and

radial diffusivities (AD, MD, and RD, respectively) and a trend

toward lower structural volumes compared to older controls.

These findings cannot be easily attributable to age. Conversely,

in the predominantly anosmic cohort, the effect of the axial

diffusivity metric of the amygdala was so strong that the structure

was represented bilaterally as the top two key features in the

classification of this cohort. Taken together, the findings above

suggest two areas of exploratory interpretation:’

(i) That the amygdala axial diffusivity metric may be relevant as a

comparator for global COVID-19 cohorts, due to its relevance

to both extremes of the spectrum of rates of non-anosmia vs.

anosmia known in the presentation of the disease.

(ii) In the context of COVID-19, the biological response to the

allostatic load of stress could plausibly involve remodeling

of the amygdala. Pathophysiological changes in the amygdala

have been shown in other chronic diseases (Hu et al., 2022).

The mechanism for these changes is thought to be neuro-

inflammation; inflammation is also postulated to be the trigger

for long COVID across multiple organ systems. This suggests

that the hypothetical datasets may provide directions that

may be useful to examine further via an actual, larger dataset

of recoverers.

6.1 Limitations

The mini experiment explored a pilot sample and three

hypothetical samples, amplified by three to four-fold the original

dataset. This approach is clearly inferior to amassing a real dataset

of the same magnitude and interrogating its trends. As the pilot

sample is small and the other datasets hypothetical, we did not

perform statistical comparisons but rather, examined the data

qualitatively. The controls provided were older and from a pre-

COVID cohort. None of these methods are ideal and we intend

to correct such shortcomings with future work on larger datasets.

Nevertheless, the main thrust of the mini experiment was to

understand if ML/AI methodologies could be utilized toward

modeling disproportionate datasets to understand risk of bias,

generalizability and applicability of such models. More work is

needed toward honing this new strategy.

7 Conclusion

In this paper, we examined the concept of neuroimaging

data repositories as a resource for a global tech platform, whose

innovations are driven by ML/AI methodologies. Firstly, we

approached a theoretical experiment of the creation of a SEA-

based repository to consider ethical concerns arising from such an

innovation. Secondly, we utilized ML/AI methodologies to develop

an approach to AI ethics for the purposes of examining how the

projected findings are influenced by the levels of proportionate

representation in disease datasets. Further work is required to

expand the questions and directions raised here into a reproducible

strategy toward AI ethics.
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