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Introduction: The move from a reactive model of care which treats conditions

when they arise to a proactive model which intervenes early to prevent adverse

healthcare events will benefit from advances in the predictive capabilities of

Artificial Intelligence and Machine Learning. This paper investigates the ability of a

Deep Learning (DL) approach to predict future disease diagnosis from Electronic

Health Records (EHR) for the purposes of Population Health Management.

Methods: In this study, embeddings were created using a Word2Vec

algorithm from structured vocabulary commonly used in EHRs e.g., Systematized

Nomenclature of Medicine Clinical Terms (SNOMEDCT) codes. This study is based

on longitudinal medical data from ∼50 m patients in the USA. We introduced a

novel method of including binned observation values into an embeddings model.

We also included novel features associated with wider determinants of health.

Patient records comprising these embeddings were then fed to a Bidirectional

Gated Recurrent Unit (GRU) model to predict the likelihood of patients developing

Type 2 Diabetes Mellitus, Chronic Obstructive Pulmonary Disorder (COPD),

Hypertension or experiencing an Acute Myocardial Infarction (MI) in the next 3

years. SHapley Additive exPlanations (SHAP) values were calculated to achieve

model explainability.

Results: Increasing the data scope to include binned observations and wider

determinants of health was found to improve predictive performance. We

achieved an area under the Receiver Operating Characteristic curve value of 0.92

for Diabetes prediction, 0.94 for COPD, 0.92 for Hypertension and 0.94 for MI. The

SHAP values showed that themodels had learned features known to be associated

with these outcomes.

Discussion: The DL approach outlined in this study can identify clinically-relevant

features from large-scale EHR data and use these to predict future disease

outcomes. This study highlights the promise of DL solutions for identifying patients

at future risk of disease and providing clinicians with the means to understand and

evaluate the drivers of those predictions.
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Population Health Management, Electronic Health Records, Deep Learning, chronic
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1 Introduction

Health systems across many advanced economies are facing

increasing pressure due to a combination of aging populations,

increased prevalence of chronic disease, and increasing per capita

costs of medical care. In response to these challenges, health

policymakers are seeking to move from a reactive model of

care which treats illnesses when they arise to a proactive model

which intervenes early to prevent adverse healthcare events.

The Population Health Management model was developed as an

approach to implementing this objective, with the “triple aim”

of improving population health, improving the quality of patient

experience, and reducing per capita healthcare costs (Berwick

et al., 2008). Key to Population Health Management is the use of

data; in particular, the ability to identify those patients at risk of

future adverse outcomes such as a disease diagnosis (World Health

Organization, 2023). Early identification enables health services to

support at-risk patients to remain healthier and thus reduce overall

consumption of healthcare services (Main et al., 2022). Recent

advances in Deep Learning (DL) could be an important contributor

to this process, offering the potential to automatically scan large

healthcare datasets, detect predictors of morbidity, and model the

likely future health outcomes of persons within a population.

An area where DL has the potential to make a dramatic impact

is in the management of chronic conditions within populations

such as Type 2 Diabetes Mellitus and Chronic Obstructive

Pulmonary Disease (COPD). The prevalence of long-term chronic

conditions is rising across many industrialized nations, with more

than one third of EU citizens reporting living with a chronic

condition (Eurostat, 2023). Also rising is the associated cost (Hajat

and Stein, 2018; Holman, 2020). In the EU, for example, up to

80% of health care costs are attributable to chronic disease, and

in the USA the figure is 86%, with spending predicted to increase

further over the coming years (Holman, 2020; Health, 2023). The

etiology of these conditions contains modifiable as well as non-

modifiable risk factors, so timely forewarning of a likely diagnosis

enables persons and healthcare practitioners to take preventative

measures that may delay or mitigate onset, improving outcomes

and reducing costs.

This paper investigates the ability of a Deep Learning (DL)

approach to predict the future diagnosis of long-term chronic

conditions (LTCs) and other key adverse health outcomes from

Electronic Health Records (EHR). EHR data is increasingly

common as frontline digitization efforts have led to increasing

adoption of EHR systems (Parasrampuria and Henry, 2019).

However, this data presents challenges due to its sparsity and high

dimensionality (Zhao et al., 2015). Traditionally, the development

of models for disease prediction have placed a heavy reliance on the

domain knowledge to define and engineer predictive features from

these datasets. This has made predictive disease models expensive

and time-consuming to create. It has also meant that clinicians’

time has become a rate-limiting factor in the development of

new AI solutions, as many countries are experiencing shortages

of qualified clinical experts and pressures on their availability is

growing. DL has the potential to offer an alternative approach

due to its demonstrated ability to learn predictive patterns from

data without the need for extensive data preprocessing or feature

engineering. Where these DL models were once “black boxes”,

advances in algorithms designed to improve their explainability

such as SHapley Additive exPlanations (SHAP) offer the promise

that the learned features could be analyzed and subjected to clinical

validation (Lundberg and Lee, 2017;Markus et al., 2021). This could

support the development of clinical trust in AI models and increase

adoption (Tonekaboni et al., 2019).

Episodes of care are represented in EHR databases as a series

of “concepts”, for example diagnoses, admissions, medications,

procedures and observations. These concepts are represented as

codes within structured clinical vocabularies which encode medical

taxonomies, such as ICD-10, SNOMED, NDC and LOINC. The

analogy between these of clinical signifiers and natural language

has led researchers to adapt and apply techniques from Natural

Language Processing (NLP) to EHR databases, particularly the

use of embeddings to represent clinical concepts and the use of

Recurrent Neural Networks (RNNs) such as a Gated Recurrent

Unit (GRU) or Long Short Term Memory (LSTM) to model

the patient history as a sequence of events (Hochreiter and

Schmidhuber, 1997; Bahdanau et al., 2014; Pham et al., 2016).

Popular methodologies for creating embeddings such as the

Word2Vec and Glove have been successfully applied and adapted

to this context (Mikolov et al., 2013; Pennington et al., 2014).

These methodologies are grounded in the insight from linguistics

that the semantic meaning of words may be inferred by the

company they keep (Harris, 1954). Thus, the popular Skip-Gram

implementation of Word2Vec optimizes vectors for the task of

predicting neighboring words given the target word. This has also

been demonstrated to be effective in EHR data when “texts” are

constructed by placing the codes representing the interactions of

individual patients in sequential order. The cosine similarity of

medical concept embeddings constructed in this way has been

found to cohere with expert opinion in terms of the relatedness of

those concepts (Beam et al., 2019).

Multiple methodologies for creating embedding

representations of clinical codes have been proposed and tested,

and have achieved remarkable success on prediction tasks when

compared to baselines. Choi et al. (2016b) built upon the Skip-

Gram implementation of word2vec for a clinical context, proposing

Med2Vec which they use to learn embedding representations of

clinical codes such as diagnoses, medications and procedures

(Choi et al., 2016a). They then applied these to predictive modeling

tasks, for example the prediction of heart failure, with positive

results . Beam et al developed Cui2vec, applying both Word2Vec

and Glove to a massive multimodal medical dataset including

structured records as well as unstructured notes and journal

articles (Beam et al., 2019). Cai et al. (2018) developed a time-aware

attention mechanism to augment their Continuous Bag Of Words

(CBOW) Word2Vec model in order to capture the differences in

the length of time that medical conditions last. Xiang et al. (2019)

compared three popular methods of creating embeddings and

foundWord2Vec to bemost effective for predictive modeling tasks.

More recently, following the success of transformer

architectures in NLP tasks, researchers have applied these too

to the clinical domain. G-BERT combined a medical ontology

embedding learned with a graph neural network with a BERT

model to predict medical codes in subsequent visits (Shang et al.,
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2019). Med-BERT also applied the popular BERT architecture

which was evaluated on the prediction of diabetic heart failure

(Rasmy et al., 2021). BEHRT used an adapted BERT model to

create a multilabel classifier able to predict diagnoses in the

next 6–12 months from previous diagnosis history (Li et al.,

2020). Hi-BEHRT offered an updated version of BEHRT with an

improved pre-training strategy capable of modeling longer patient

histories, and increased the data scope to include medications,

procedures, GP tests, drinking and smoking status as well as

binned measurements for BMI and blood pressure (Li et al.,

2022). ExBEHRT also extended the feature scope of BEHRT,

similarly including observation values for BMI and smoking

status as well as procedures, laboratory types, age, race, and

gender (Li et al., 2022; Rupp et al., 2023). Wornow et al. (2023)

have pointed out however that more needs to be done to prove

the practical utility of these foundation models for electronic

medical records (FEMRs) to health systems. They emphasize

the importance of articulating how such models could fit into

clinical workflows, demonstrating their ability to improve

predictive performance in contexts where less labeled data is

available, and suggesting ways in which they could simplify model

deployment.

This paper builds upon this previous research and proposes

a simple and scalable methodology by which an FEMR could be

implemented for the purposes of Population Health Management.

PHM has several features which distinguish it from other areas

of clinical practice. Firstly, a key concern of PHM practitioners,

in line with the triple aim, is to prevent persons from becoming

high users of healthcare services (Stone et al., 2014). This places

emphasis on reducing the prevalence of LTCs such as type 2

diabetes, COPD and hypertension as well as acute conditions

such as heart attacks that can be mitigated or prevented through

lifestyle interventions. Secondly, PHM practitioners are typically

engaged with a broader range of determinants of health than

other areas of clinical practice; for example, race, gender, economic

deprivation, mental health, unmet social care needs and housing

status (Buck et al., 2018). These determinants may be captured

by many organizations including social and community care

providers, local government and third sector organizations, but

these may not be standardized in the same way as medical

vocabularies and there is likely to be considerable local variation.

Developing methodologies that allow models to be developed

or easily customized locally within organizations without the

financial or human resource to train large domain-general models

may therefore be advantageous at least in the short to medium

term. Finally, lack of model transparency has been identified

as one of the key barriers to the practical implementation of

AI solutions for PHM (He et al., 2019). In common with

other clinical use cases, PHM requires models to be explainable

to clinicians.

The main contributions of this research can be summarized

as follows:

1. Developing a simple and effective approach to incorporating

an increased data scope, including introducing a novel (to our

knowledge) methodology for incorporating complete sets of lab

test values into an FEMR and the addition of novel features

associated with wider determinants of health.

2. Demonstrating the effectiveness of pre-trained code embeddings

to enhance predictive performance for key PHM outcomes

where limited data is available, both within and across sub-

populations.

3. Investigating whether SHAP could be deployed to improve the

explainability of FEMRs to enable clinicians to interrogate the

features contributing to the prediction of future outcomes for

patients and cohorts.

2 Methodology

2.1 Data

Retrospective data were obtained from Accenture’s AHA

platform, which provides structured electronic medical record

(EMR) data for ∼18% of the US population. This database

contains longitudinal medical data from 39 major integrated

delivery networks. It represents a broad mix of patients enrolled in

privately insured and government-sponsored healthcare programs

from a geographically-diverse section of the US population. The

database includes information on patient clinical and demographic

characteristics, insurance status, healthcare encounters, diagnoses,

procedure codes, and associated laboratory values and surgeries, for

∼0 million patients. This database has been used as the basis for

previous studies, for example (Wertenteil et al., 2019; Sullivan et al.,

2021).

2.2 Cohort selection

We divided our dataset into an observation window and a

prediction window. The observation window was 9 years from 01-

01-2010 to 31-12-2018. The prediction windowwas the final 3 years

for which we had data, beginning on 01-01-2018 and ending 31-

12-2020. Patients who received a first diagnosis for a given disease

after that date were assigned a label of 1; patients who did not were

assigned the label 0. Patients who were under the age of 18 at the

beginning of the prediction window were excluded from this study,

as their risk of the outcomes of interest is extremely low. Patients

with very little medical history in the observation window were

excluded from the model. This was defined as a record length <20

total items within the observation window.

On clinical advice, the following additional exclusions were

applied on a disease-specific basis:

1. For diabetes:

(a) Patients with a diagnosis for type 1 diabetes

(b) Patients with a diagnosis for type 2 diabetes prior to 01-01-

2018 (pre-existing condition)

(c) Patients with a diagnosis for Hypoglycemia but no diabetes

diagnosis

(d) Patients with a prescription for anti-diabetic medication or

lab values diagnostic of diabetes but no diabetes diagnosis.

2. For hypertension:

(a) Patients with a hypertension diagnosis prior to 01-01-2018

(pre-existing condition)
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(b) Patients with a prescription for anti-hypertensive

medications but no hypertension diagnosis.

3. For COPD:

(a) Patients with a COPD diagnosis prior to 01-01-2018 (pre-

existing condition)

(b) Patients with a prescription for medications commonly used

to treat COPD but no COPD diagnosis.

In assessing the risk of Myocardial Infarction (MI), individuals

with prior diagnoses or on heart disease medications were retained

in the dataset. This is becauseMI is an acute condition and repeated

heart attacks are possible. The disease and medication codes used

for cohort definition are provided in Table 1. The definitions

included all descendants of these codes.

Our dataset undoubtedly contained patients whose medical

history was truncated due to having dropped out of the dataset,

either by switching insurer or by leaving the area. This could be

expected to impact the performance of our models, as there would

be some patients who did experience the adverse outcomes of

interest who were labeled as class 0 instead of class 1 because,

for example, they moved away and received their diagnosis in

another area. However, in contrast to other studies (Li et al.,

2020), the decision was made not to attempt to remove these

patients from our dataset for several reasons. Firstly, there was no

reliable way to distinguish patients who had no medical history

because they had dropped out of our dataset from patients who

had no medical history simply because they had not visited a

doctor during the prediction window. This is due to the nature

of medical records—they are only created when patients interact

with clinicians, and this is often prompted by illness. Gaps in

a patient’s medical history could indicate missing data, lack of

insurance, or simply good health. Secondly, including only patients

who had complete records spanning multiple years would bias

the dataset in favor of those more likely to interact regularly

with clinicians, who would tend to be wealthier and privately

insured. This would have the effect of reducing the number of

samples in the dataset from other demographics and therefore

potentially reducing the fairness of the model. Thirdly, even a few

items of medical history could be enough to indicate a relatively

increased risk of disease. For example, a patient with limited

items in their medical history that are strongly associated with

a predicted disease outcome would be expected to be given an

elevated risk by the model, even if it would be difficult to correctly

classify them. For our PHM use case, we considered the ability

of a model to stratify the population according to relative risk

to be more important than correct prediction of class labels at a

given threshold.

2.3 Preprocessing records

The clinical concepts included in our model were diagnoses,

procedures, medications and observations. For diagnoses and

procedures, we used the SNOMED clinical vocabulary codes

(Donnelly, 2006). The majority of previous studies have used

International Classification of Diseases (ICD) codes (Choi et al.,

2016a; Li et al., 2020; Rasmy et al., 2021). The decision to use

SNOMED was motivated by several factors related to our PHM

use case:

1. Detail and granularity: SNOMED CT offers a more detailed,

granular system, which allows for greater specificity and detail

in medical records. It’s particularly useful for recording clinical

details about diseases, findings, procedures, etc., that might not

be adequately captured by ICD.

2. Clinical care: SNOMED CT was specifically designed for use in

clinical care, making it more effective for EHR systems, clinical

decision support systems, and other healthcare IT applications.

It can help enhance the quality and effectiveness of care by

enabling more precise communication and decision-making.

3. Interoperability: SNOMED CT facilitates interoperability

between different health information systems and services,

making it easier to share, exchange, and understand

clinical information.

4. Research and data analysis: The greater detail and precision

of SNOMED CT can enhance research and data analysis

capabilities, contributing to more meaningful health outcomes

research and improving public health surveillance.

5. Comprehensive coverage: SNOMED CT is known for its

comprehensive coverage of clinical content, from diseases

and symptoms to diagnostics, therapeutics, and preventive

measures. This coverage spans multiple medical specialties

and disciplines.

For medications, we used the National Drug Code (NDC)

Directory codes. For observations, we used the Logical Observation

Identifiers Names and Codes (LOINC) codes. Where a test

was associated with a categorical outcome such as “positive” or

“negative”, the code for the test was concatenated with the code

for the outcome (e.g., 10331-6_negative). In order to capture the

values associated with observations measured on a numerical scale,

we normalized the values associated with each observation between

0 and 1 using min-max scaling. We then divided these normalized

values into 10 bins at:

≥ 0.0 < 0.1,≥ 0.1 < 0.2, . . . ,≥ 0.9 ≤ 1

Prior to scaling, we winsorized the values for each observation

at the 1st and the 99th percentile to remove extreme outliers caused

by data entry error. This methodology was chosen ahead of binning

according to quantiles because it better maintains the shape of

the population distribution. It could allow, for example, rare but

significant observation values to be preserved as separate tokens,

with the majority of the population falling into bins representing

“normal" values.

The binned values were then concatenated with the LOINC

codes to give a token which represented a code-value combination.

For example, the LOINC code for systolic blood pressure (8480-

6) was represented by 10 tokens (8480-6_0 through 8480-6_9)

which represented a blood pressure reading in the corresponding

bin within the population distribution. To ensure that values

were binned consistently, we saved the min and max values

for each observation code from the train set and used these

to normalize the corresponding values in the transfer learn and

test datasets. We did not winsorize the transfer learn and test

datasets, but instead set outliers to the saved min or max values.
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TABLE 1 Codes used for defining disease cohorts.

Disease Cohort definition (SNOMED-CT) Medications (ATC)

Type 2 diabetes mellitus 44054006 A10 (drugs used in diabetes)

Essential hypertension 59621000

C02 (antihypertensives)

C03 (diuretics)

C07 (beta blocking agents)

C08 (calcium channel blockers)

C09 (agents acting on the renin-angiotensin system)

Chronic obstructive

pulmonary disease (COPD) 13645005
R03 (drugs for obstructive airway diseases)

Acute myocardial infarction

(MI)

57054005 N/A—we predicted any Acute MI rather than a first Acute MI. Patients with previous

heart attacks or prescriptions for heart disease medications were not excluded

This ensured that all datapoints remained between 0 and 1. For

the purposes of explainability, these thresholds were then de-

normalized after SHAP analysis so clinicians could see the range

of values represented by each observation token.

We also created a series of age tokens for each patient (age_0,

age_1, age_2,... age_n). For each year during the period covered by

the dataset, a single age token was added representing the age of

the patient during that year. These fulfilled a dual purpose in our

data. The first was to allow a GRU capture the age of the patient

at each encounter and enable observations to be associated with

an age. For example, an observation for high blood pressure at age

55 may be associated with a higher risk of a myocardial infraction

than a similar reading at the age of 25. Secondly, these age tokens

captured the elapsed time in years between entries in the sequence.

For example, if there was a period of time between diagnoses in

the record, this time period would be represented by successive

age tokens. During pre-training, the Skip-Gram algorithm would

associate these diagnoses with ages at or close to onset of the

condition. Other methodologies have been shown to be effective for

creating time-aware embeddings, for example by concatenating age

and other demographic information with code or visit embeddings

(Choi et al., 2016a). However, in the interest of explainability,

we wanted to ensure that each of our embeddings represented a

clearly delineated clinical or demographic concept that would be

recognizable to PHM practitioners.

For admissions, the type of admission was used described

in natural language (e.g., emergency_admission). Our dataset

also included information on patient smoking and alcohol

consumption taken at intervals throughout their lives. This

information was consistently encoded in natural language, for

example “smoking_yes”. These tokens were then added to the

patient records. In order to add embeddings for gender and race

to the model, a token representing each of these concepts was

added at the end of the patient record [e.g., (..., race_caucasian,

gender_female)]. Our dataset also included information on the type

of insurance each patient had. This changed throughout the course

of a patient’s life, so natural language tokens representing this (e.g.,

“insurance_private” or “insurance_medicaid”) were added to the

patient record with the timestamp when they were updated. In

the USA, insurance type is related to a range of socioeconomic,

demographic and employment factors which are also determinants

of health outcomes (Ross and Mirowsky, 2000; Bittoni et al.,

2015; Su et al., 2019; Keisler-Starkey and Bunch, 2020). Insurance

informationwas therefore includedwith the intention that it should

serve as a proxy for these wider determinants. These patient records

were ordered sequentially and an array was created for each patient.

Figure 1 shows how the patient timelines were constructed.

In EHR data, the sequence of codes within visits is typically

not preserved in the data. In line with the recommendations

of previous studies, codes were ordered sequentially by date

with within-date codes ordered randomly (Choi et al., 2016c).

The data was then divided into train, validate and test sets,

with 90% of the patients used for training/validation and

5% for testing. The final 5% were held back in order to

investigate the value of transfer learning. This ensured no

data leakage between the training dataset and the transfer

learning data. For training and validation, class 0 patients were

down sampled to give a 60:40 ratio of patients who would

not develop the disease vs. patients who would. For testing,

the model was evaluated on the full test set with the real

population distribution.

2.4 Feature selection

In order to assess the benefit of the inclusion of novel

features and determine the best feature scope for subsequent

modeling, a feature selection experiment conducted prior to disease

modeling. This study used a combination of three categories

of features:

1. Features which have been commonly used in previous studies

(a) Diagnoses

(b) Medications

(c) Procedures

(d) Observations (history of Laboratory Tests that have been

conducted)

2. Features which have been previously used which we included

using a different methodology

(a) Age

(b) Gender

(c) Race
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FIGURE 1

Patient timeline.

(d) Observation Values (including vital signs and laboratory

results)

3. Features we have included for the first time (to our knowledge)

(a) Admissions

(b) Insurance type

For details of features included in previous studies, see Table 2.

For feature selection, a simple model was created for each disease

using a randomly-initialized embedding layer, a global max pooling

layer, and a sigmoid output. A baseline model was then trained

using a feature set that has been commonly included in previous

studies (diagnoses, procedures, medications, and observations).

For the baseline model, Observations were represented by LOINC

codes without concatenated values. Two experiments were then

conducted. The first assessed the performance of each additional

feature individually against the baseline model by training a model

which included the baseline feature scope plus that feature. The

second assessed the cumulative performance by adding the features

one by one and retraining each time. The order in which features

were added was determined by their novelty, with features for

which we have used a different methodology added first, followed

by features not previously included. Ten percentage of the training

dataset was set aside as a holdout set to evaluate the feature

selection experiment. Models were trained using the remainder of

the training dataset with a 90:10 train validation split. The results

for all four diseases were averaged for each feature set, and the

feature set with the highest average performance was chosen for

subsequent experiments.

2.5 Predictive modeling

We pre-trained a set of embeddings using the full train

dataset of 30 m patients. To avoid data leakage, no patient

history after the 2018-01-01 cutoff date was included in the

pre-training. For the pre-training task, we used the Word2Vec

algorithm which was implemented using the Spark MLib library

with an embedding dimension of 128 and a window size of 5.

In line with the findings of previous research, we used the Skip-

Gram implementation (Xiang et al., 2019). Word2Vec was chosen

because it has been demonstrated to be effective when pre-training

for disease prediction tasks, it is straightforward to implement and

was designed with efficiency and scalability in mind (Mikolov et al.,

2013). Word2Vec also makes the expansion of data scope easier

relative to more sophisticated architectures. For example, BERT

can process texts with a maximum length of 512 tokens and scales

quadratically with sequence length (Devlin et al., 2018). With all

features added added, our patient records had an average length

of 511 and we used a max sequence length of 3,000. In real-world

contexts, more features relating to wider determinants of health

could be available which may further elongate patient records.

We then used these pre-trained embeddings to create a

predictive model for each disease. In line with the majority of

other similar studies (Si et al., 2021), a Bidirectional GRU was

chosen for the prediction head.We also added a global max pooling

layer and a sigmoid output. We evaluated both frozen and fine-

tuned embeddings and compared the performance to a model

trained from randomly-initialized embeddings. The Keras library

was used for modeling. The final model architecture is represented

in Figure 2.

In order to evaluate the effectiveness of transfer learning

when limited training samples are available, two experiments were

conducted. The first evaluated the within-population benefit of

transfer learning using a random sample of 5% of the population

set aside for this purpose (the transfer learn dataset). The second

experiment evaluated the benefit of transfer learning to a different

regional subset of the population. The state of Maryland was

selected as the target population for this experiment. Maryland was

chosen for several reasons:

1. Maryland contains roughly 5% of the total patients in the dataset

(2,358,928).

2. Our dataset has a slight Midwestern bias, and Maryland is

geographically separated from the Midwest.

3. Maryland varies demographically from the dataset overall,

with a higher African American population and a lower

white population.

4. In our dataset, there is less data available per patient inMaryland

(average record length 287) than in the rest of the population

(average record length 521), making patients more difficult

to classify.
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TABLE 2 Summary of features and methodologies used in medical concept representation learning.

Paper References Clinical Demographic /
socioeconomic

Methodology notes

Choi et al. (2016a) Med2Vec Diagnoses, procedures,

medications, visit embeddings

Age, gender, race Age, gender, and race represented as

demographic vector which was

concatenated with visit representation.

Li et al. (2020) BEHRT Diagnoses, visit embeddings Age Summed concept, age, visit and position

embeddings.

Rasmy et al. (2021) Med-BERT Diagnoses, visit embeddings None Summed concept, visit and position

embeddings.

Pang et al. (2021) CEHR-BERT Diagnoses, Procedures, and

Medications, Visit

Embeddings

Age Created temporal context embeddings

by concatenating age and time

embeddings with concept embeddings.

Meng et al. (2021) BRLTM Diagnoses, procedures,

medications, visit embeddings

Age, gender Summed age and gender embeddings

with concept, visit, and position

embeddings.

Li et al. (2022) Hi-BEHRT Diagnoses, medications,

procedures, laboratory tests,

drinking status, smoking

status, blood pressure, BMI,

visit embeddings

Age Binned BMI and blood pressure

according to defined ranges. Summed

age embeddings with concept, visit, and

position embeddings.

Rupp et al. (2023) ExBEHRT Diagnosis, Mmdications,

procedures, laboratory tests,

drinking status, smoking

status, BMI

Age, gender Stacked all concept and demographic

embeddings vertically and summed

before passing through the network.

Datta et al. (2022) Randomly-initialized

embeddings with LSTM plus

Static Layer

Diagnoses, Medications,

Procedures, Vital Signs,

Laboratory Results

Age, gender, race Vital Signs and Lab Results binned

according to quantiles (High, Medium

High, Medium Low, Low). Age, Gender

and Race fed in separately via a static

layer.

Grout et al. (2023) (this paper) Word2Vec (Skip-Gram)

embeddings with BiGRU and

MaxPooling layer

Diagnoses, medications,

procedures, observations

(including vital signs and

laboratory results), drinking

status, smoking status,

admissions

Age, gender, race,

insurance type

observation values binned according to

the described methodology. Age tokens

inserted into patient history to represent

age at event and time between events.

Race and Gender added as tokens at the

end of the patient history. Insurance

type for each claim inserted into the

patient record.

FIGURE 2

Model architecture.

5. Disease prevalence is higher in our Maryland sample than in the

general population, making proactive intervention desirable.

The differences between the populations are described in

Table 3. These figures refer to the patients in our dataset rather

than the US population in general. The context (higher disease

prevalence but fewer datapoints per patient) was chosen to

represent a real-world situation where transfer learning from one

population to another could be advantageous.

For the transfer learning prediction task, diabetes and

hypertension were chosen because there were sufficient numbers

of disease-positive patients (6000) in the transfer learning samples

once cohort selection criteria had been applied. For the first
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TABLE 3 Comparison of data dimensions between Maryland (MD) and general population.

Data dimension Maryland General population (excl. MD)

Race White 28.6% 49.2%

Black or African American 20.4% 8.3%

Unknown/null 46.2% 36.9%

Other 4.8% 5.6%

Disease prevalence (onset in prediction window) Diabetes 0.9% 0.41%

Hypertension 2.22% 1.54%

COPD 0.64% 0.32%

MI 0.32% 0.25%

Medical history Average patient record length 287 521

experiment assessing the within-population benefits of transfer

learning, the following steps were followed:

1. Random samples were taken from the transfer learn dataset for

each disease. These contained between 500 and 6,000 disease-

positive patients with a 60:40 ratio between negative and positive

patients. The overall training sample sizes therefore ranged from

1,250 to 15,000.

2. Models were trained on each sample using randomly-initialized

embeddings and embeddings that had been pre-trained on the

train set. An 80:20 train validation split was used.

3. Models were evaluated on the test set which maintained the

real-world disease distribution.

4. The process was repeated for a total of three times using different

random seeds for sampling. The results were then averaged. This

is in line with similar experiments in previous research (Li et al.,

2022)

For the second experiment, the following steps were followed:

1. The train and transfer learn datasets were recombined and a

new train dataset was created with all patients from the state of

Maryland excluded. A new set of embeddings was trained using

this dataset.

2. All patients from the state of Maryland were split 70:30 to create

new transfer learn and test datasets.

3. The same steps as the first experiment (1–4 above) were repeated

using the new embeddings and the Maryland transfer learn and

test datasets.

2.6 Explainability

To interpret our model, we opted to use SHapley Additive

exPlanations (SHAP) (Lundberg and Lee, 2017). SHAP uses a

game-theoretic approach to estimate importance values for each

model feature. These SHAP values represent the extent to which a

particular feature contributes to the model’s final prediction. More

specifically in our case they correspond to how the prediction

would change if we were to remove a particular term from

the medical record. This allows us to look at which associated

symptoms, procedures, diagnoses and habits were more influential

in the patients predicted diagnosis—if a term is particularly

important there will be a large change in model prediction when it

is removed. Our intention was to develop an approach that would

ultimately enable the model’s predictions to be interrogated by

clinicians to understand the drivers of predictions at an individual

or cohort level. SHAP was chosen because it has been the most

widely used explainable AI (XAI) technique for similar use cases

(Loh et al., 2022).

We implemented the SHAP analysis using the open-source

python package according to the documentation (Lundberg

and Lee, 2021). For clinical validation, we analyzed 5,000

patients from the validation data for each model. In order to

understand which features had the greatest influence on disease

prediction at the population level, we summed the SHAP scores

and examined the top clinical features (diagnoses, procedures,

observations/values, medications). We chose this measure because

it accounts for the magnitude of the effect of a feature as well

as its prevalence in the population. SHAP values are additive,

so this metric represents the overall contribution of a feature

to the prediction of disease within the population. We then

validated these features with a clinical expert (Lundberg and Lee,

2017). Features for each model were presented to a clinician who

provided feedback on the clinical relevance of each feature and

suggested changes to the training process where necessary. These

changes were then implemented, the model was retrained, and

the SHAP analysis was re-run. Once the clinician was satisfied

with the feature importances, a final SHAP analysis was run

in order to report the results. This used a sample of 5,000

patients for each disease from the test set, with the same ratio

of positive and negative patients as the train/validation sets

(40:60).

3 Results

After restrictions were applied, we were left with

104,236 patients in our diabetic cohort, 77,027 for

COPD, 289,964 for hypertension and 76,032 for MI.

Figure 3 shows the patient attrition tables. The flow

diagrams in Figure 3 show the patient attrition for each

exclusion.
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FIGURE 3

Patient attrition.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1287541
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Grout et al. 10.3389/frai.2023.1287541

FIGURE 4

Percentage improvement in ROC AUC score for individual features vs. baseline. Min, max, and average across four diseases.

FIGURE 5

Average ROC AUC score across four diseases with cumulative additional features.

3.1 Feature selection

In the feature selection experiment, it was found that

performance increased as more features were added to the dataset.

All features were found to improve average performance when

added individually and cumulatively. When added individually,

addition of age tokens gave the largest average benefit (1.3%)

followed by observation values (1.2%), admissions (0.6%), and
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insurance type (0.5%). The benefit of different features was found

to vary by disease. For example, habits (drinking / smoking status)

made relatively little impact on the ROC AUC for diabetes (0.1%),

but made a larger difference for COPD (0.8%). This is consistent

with the connection between COPD and tobacco use. Observation

values made the largest impact with the diabetes model (2.2%)

and the least with COPD (0.1%). The min, max and average

improvements for each feature are shown in Figure 4.

When features were added cumulatively, the average ROC

AUC increased from 0.888 to 0.920 (3.6%) relative to the baseline

models across diabetes, COPD, hypertension and MI. Age (1.1%)

and observation values (0.9%) also gave the largest average

benefit. The results are shown in Figure 5. Since all features

showed an improvement to performance, they were all included in

subsequent experiments.

3.2 Pre-training

In line with previous findings, our Word2Vec algorithm was

successful at learning the similarity of related medical concepts.

Our vocabulary size (157,145) was the largest of any similar study to

our knowledge, due to the increased data scope and the separation

of observations into multiple binned code-value combinations.

We did not conduct a comprehensive analysis of clinical code

groupings learned via Word2Vec as this has been conducted in

other studies (Choi et al., 2016c). However, we did conduct spot

checks on key diseases relevant to our use case. Table 4 shows

the most closely related concepts to the diseases we predicted by

cosine similarity.

The Word2Vec algorithm was able to categorize the

demographic and socioeconomic features successfully as related

concepts and map the increasing distance between ages. Race

tokens were effectively classified, with the most similar tokens for

“Race Caucasian” comprising the other racial groups in our dataset.

Gender male and female tokens were also most closely related, with

a similarity of 0.96. Interestingly, the tokens for insurance type and

race were classified as closely related, which may reflect the real-life

correlation between these features (Keisler-Starkey and Bunch,

2020). These are shown in Table 5.

Similar laboratory values were also grouped together. For

example, the most similar codes to “8480-6_3”, which represented

systolic blood pressure between 178.3 and 189, contained

other codes representing systolic and diastolic blood pressure

observations. Tokens representing different BMI values were also

related, as shown in Table 6.

Where we have innovated in creating tokens, therefore, it

seems that Word2Vec pre-training has succeeded in representing

their meaning in relation to other concepts, although further

investigation would be needed to fully establish this.

3.3 Predictive modeling

Embeddings pre-trained using Word2Vec were found to

outperform models training from scratch for all diseases when

the embedding layer was fine-tuned. When the embedding layer

TABLE 4 Predicted diseases: related concepts by cosine similarity.

Disease Rank Similarity Description

Diabetes

1 0.91 Type II diabetes mellitus

uncontrolled

2 0.82 Hyperlipidemia

3 0.82 Polyneuropathy due to diabetes

mellitus

4 0.80 Chronic kidney disease stage 2

5 0.80 Type 1 diabetes mellitus

6 0.80 Disorder of nervous system due to

diabetes mellitus

7 0.79 Disorder of nervous system due to

type 2 diabetes mellitus

8 0.78 Disorder due to type 2 diabetes

mellitus

COPD

1 0.88 Emphysematous bronchitis

2 0.86 H/O: asbestos exposure

3 0.86 Dependence on enabling machine

or device

4 0.84 H/O: pneumonia

5 0.84 Bronchiectasis

6 0.81 Acute exacerbation of chronic

obstructive airways disease

7 0.81 Chronic asthmatic bronchitis

8 0.79 Extreme obesity with alveolar

hypoventilation

Hypertension

1 0.92 Dyslipidemia

2 0.71 Ezetimibe 10 MG oral tablet [Zetia]

3 0.70 Valsartan 320 MG oral tablet

[Diovan]

4 0.70 Irregular heart beat

5 0.68 Restless legs

6 0.67 Hypertriglyceridemia

7 0.67 Benicar

8 0.66 Patient counseling education

Acute

myocardial

infarction

1 0.93 Acute myocardial infarction of

anterior wall

2 0.86 Acute myocardial infarction of

lateral wall

3 0.86 Acute myocardial infarction of

anterolateral wall

4 0.85 Acute myocardial infarction of

inferolateral wall

5 0.85 Coronary arteriosclerosis

6 0.84 Acute myocardial infarction of

inferior wall

7 0.84 Preinfarction syndrome

8 0.84 Acute subendocardial infarction

was frozen, training from scratch from randomly-initialized

embeddings was more successful for 3 out of 4 diseases, with COPD

being the exception. The results are shown in Table 7:
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TABLE 5 Wider determinants: related concepts by cosine similarity.

Concept Rank Similarity Description

Age—45

1 0.90 Age 44

2 0.89 Age 46

3 0.86 Age 47

4 0.86 Age 43

5 0.81 Age 42

6 0.80 Age 48

7 0.73 Age 41

8 0.72 Age 49

9 0.67 Age 50

10 0.65 Age 40

Race—Caucasian

1 0.98 Asian

2 0.98 Other

3 0.98 African American

4 0.98 Unknown

5 0.97 Hispanic/Latino

Insurance

type—Medicaid

1 0.86 Other public insurance

2 0.81 Private insurance

3 0.80 Selfpay

4 0.77 Race: African American

5 0.76 Race: Hispanic/Latino

6 0.76 Race: other

7 0.74 Race: null

8 0.74 Race: unknown

Table 8 shows the recall and precision for the

top 1, 5, and 10% highest risk cohorts identified by

each model.

For transfer learning to sampled datasets containing less

labeled data, the Word2Vec embeddings also performed better.

The benefit of transfer learning was larger where the pre-

training and transfer learning datasets came from the same

population (1.2%). Where embeddings trained on data from

the rest of the United States were used to predict disease

in Maryland, there was also an average benefit to using

the pre-trained embeddings but the average benefit across all

sample sizes was smaller (0.1%). The results are displayed in

Figure 6:

3.4 Explainability

The top 10 predictors for each disease according

to the sum of the SHAP values are displayed below

in Figure 7.

TABLE 6 Observation values: related concepts by cosine similarity.

Observation/
Value

Rank Similarity Description

Systolic blood

pressure, 178.30–189

1 0.94 Systolic blood pressure,

167.60–178.30

2 0.89 Systolic blood pressure,

156.90–167.60

3 0.86 Systolic blood pressure,

146.20–156.90

4 0.78 Diastolic blood pressure,

101.20–108.00

5 0.73 Systolic blood pressure,

135.50–146.20

6 0.70 Diastolic blood pressure,

94.40–101.20

7 0.61 Diastolic blood pressure,

87.60–94.40

8 0.59 Systolic blood pressure,

124.80–135.50

Body mass index BMI

(Ratio), 27.26–30.98

1 0.69 Body mass index BMI

(Ratio), 30.98–34.70

2 0.66 Body mass index BMI

(Ratio), 23.54–27.26

3 0.62 Body mass index BMI

(Ratio), 34.70–38.41

4 0.58 Body weight,

87.82–98.89

5 0.58 Body mass index BMI

(Ratio), 38.41–42.13

6 0.56 Body weight,

76.75–87.82

7 0.54 Body mass index BMI

(Ratio), 19.82–23.54

8 0.54 Body weight,

65.68–76.75

4 Discussion

4.1 Feature selection

Our study showed that increasing the scope of data included

in patient histories to include both lab values and information

on wider determinants of health has the potential to improve the

performance of disease prediction models. The methodology of

binning the values of clinical observations was found to be an

effective method of capturing these values for predictive modeling.

Across all conditions tested, the addition of these binned values was

found to increase the performance of the model. In this study, 10

bins were chosen because they offered superior performance over

five bins when tested. The approach we used has the advantage

of being straightforward to implement across a large feature set

without expert clinical knowledge. If a similar process was put into

real-world use, there would be the option to allow clinicians to set

the thresholds for binning rather than relying on the population

minimum and maximum. This could potentially help reduce the
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TABLE 7 Model performance metrics (ROC AUC score).

Disease Embedding
method

Randomized
embeddings

Word2Vec
embeddings

Diabetes Frozen N/A 0.9084

COPD Frozen N/A 0.9323

Hypertension Frozen N/A 0.9122

MI Frozen N/A 0.9411

Diabetes Fine-Tuned 0.9137 0.9166

COPD Fine-Tuned 0.9314 0.9359

Hypertension Fine-Tuned 0.9173 0.9203

MI Fine-Tuned 0.9415 0.9437

number of tokens for embeddings training if, for example, if it were

determined on clinical advice that any values within a given range

could simply be grouped into an “expected” or “normal” category.

A similar approach of including LOINC codes concatenated with

indicators of normality or abnormality has been tested previously

and shown to be effective (Rossi et al., 2019). It would be an

interesting avenue for future research to assess whether utilizing

clinical thresholds of normality vs. abnormality would outperform

binning according to the population distribution. It also remains

to be tested how well this approach would work when fine-tuning

across national populations; for example, whether embeddings

trained on a US population would be effective when transfer

learning to a European population.

The use of tokens created to represent age at different

stages of the patient record was found to improve performance.

Similarly, the addition of race and gender tokens at the end of

the patient record were a simple but effective way of adding

demographic information. A Skip-Gram pre-training task was

able to successfully map these related concepts as similar vectors.

Other methodologies for adding this information have been

proposed. For example, Choi et al. (2016a) concatenated a vector

containing demographic information with each visit embedding

in their Med2Vec model. Our methodology has two potential

advantages. Firstly, it is very straightforward to implement whilst

improving the predictive performance of models. It does not

require modification of the Spark MLib Word2Vec class, which

would simplify the productionization andmaintenance of solutions

for healthcare providers. Secondly, it maintains the delineation

of medical and demographic concepts which may have benefits

for the explainability of the algorithm. One single embedding

vector represents a single diagnosis, procedure, lab value, age,

gender etc. which means, for example, that a SHAP force plot of

a patient record could be more straightforward for clinical experts

to understand and evaluate (Lundberg and Lee, 2023).

Out of the demographic factors included, age was the most

beneficial to model performance. This may be because static

demographic features may be inferred from the medical history

of the patient. For example, using our methodology we found it

possible to “predict" the gender from their constructed history

with an accuracy of 98% and a ROC AUC of 0.997 due to the

prevalence of sex-specific information in medical records. Race

was found to be less predictable although still better than chance.

The Mean Absolute Error for “predicting” the current age of a

patient given their medical history was 4 years, so it is possible that

the performance benefit derived from associating ages with events

throughout the medical history. The inclusion of insurance type as

a feature was motivated by the hope that this would act as a proxy

for social-economic determinants of health. Whilst this is specific

to a US context, in other geographies this information could be

substituted for other sources of information. For example, indices

of deprivation, education, employment status, and housing status

may be included.

The predictive influence of the additional feature set was found

to vary across diseases in line with medical expectations. For

example, the binned observation values were found to provide

a greater benefit to diabetes models than age or habits, where

measurements such as blood glucose and BMI are key predictors.

Conversely for COPD where smoking status over prolonged

timescales is a key predictor, habits and age were found to have

a larger impact on performance and the addition of laboratory

values was less beneficial. We assessed whether the results of

this experiment aligned with the findings of the SHAP analysis,

and found more observation tokens amongst the top predictors

for diabetes, and a greater influence of age and smoking-related

features on the model predictions for COPD.

The results of the initial feature selection experiment suggest

that the expansion of data scope for the purposes of Population

Health Management to include wider determinants of health has

the potential to be beneficial. This paper has shown that it is

possible to customize and extend clinical vocabularies to encode

more predictive information and encompass wider determinants of

health outcomes. Our ontology included clinical concepts such as

diagnoses and procedures represented by the SNOMED vocabulary

but also custom concepts such as age, gender and insurance type

which was included for its association with wider socio-economic

determinants of health. To our knowledge, this is the first study

to combine clinical codes with customized tokens in this way to

create embedding representations. In this study, the number of

factors we were able to include was limited by the scope of our

dataset. However, in real-world implementation more information

could be added where this is available to health systems. In several

geographies, efforts are underway to create linked datasets which

connect medical information to, for example, data from mental

health, social and community care, local government and third

sector organizations (Tang et al., 2023). The ability to construct

more complete histories of the person in context is intended to

provide a richer dataset from which to infer the likelihood of

health outcomes. The approach outlined in this paper has the

potential to provide a flexible, scalable and adaptable methodology

for modeling these patient histories in the future.

4.2 Predictive modeling

The overall performance of predictive models trained using our

methodology was good and comparable to the findings of similar

studies. For example, our ROC AUC for predicting the 3-year risk
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TABLE 8 Summary of precision and recall by risk population.

Disease Incidence rate Risk population Precision (%) Recall (%)

Diabetes 0.43%

1% 9.9% 22.9%

5% 4.7% 54.6%

10% 3.0% 70.7%

COPD 0.33%

1% 8.7% 26.5%

5% 4.2% 63.5%

10% 2.7% 80.5%

Hypertension 1.56%

1% 32.5% 20.8%

5% 16.5% 52.9%

10% 11.1% 71.2%

MI 0.25%

1% 9.4% 38.2%

5% 3.3% 67.9%

10% 2.0% 81.5%

of diabetes (0.92) was in-between that achieved by BEHRT (0.88)

and Hi-BEHRT (0.93) in Li et al., although the predictive task

was not exactly the same. The Hi-BEHRT authors included type

1 diabetes in their cohort and used a 5 year prediction window

(Li et al., 2022). The ROC AUC for predicting the 3-year risk

of hypertension (0.92) is comparable to that achieved by Datta

et al. (2022) predicting 2-year risk of hypertension with a similar

model architecture (0.90). Further research would be required to

systematically evaluate the relative performance of our approach to

others. It is worth noting that the ideal model for a PHM use case

would likely over-predict the number of disease cases. We would

hope, for example, that a person who would develop diabetes in 4 or

5 years would be among the at-risk patients even though they would

be assigned a 0 label in the training/evaluation data. Likewise, we

would want a high risk to be given to a person who would in fact

develop diabetes in the next 3 years but whose diabetes would go

undiagnosed. It is currently estimated that around 10% of diabetes

cases in the USA are undiagnosed (Fang et al., 2022).

In line with previous research, the use of the Skip-Gram

implementation of Word2Vec has been found to be an effective

pre-training task for learning vector representations of medical

concepts (Choi et al., 2016c). When a large training dataset was

used, this produced a small average performance increase when

compared to training a model from scratch (0.34%). This is

in line with the findings of similar research on similarly-sized

datasets. For example, Xiang et al. (2019) found embeddings

trained via an unmodified Skip-Gram implementation to give a

performance increase of 0.49% to the ROC AUC on a predictive

task relative to randomly-initialized embeddings when the Skip-

Gram embeddings were fine-tuned.We also replicated their finding

that Skip-Gram embeddings performed worse than randomly-

initialized embeddings without fine-tuning.

When only a limited number of training datapoints were

used, the benefit of pre-training was larger, with an average 1.2%

increase across all diseases and sample sizes tested. Where the

transfer learning sample came from a different sub-population,

the benefit was only 0.1%. However, this was affected by the

fact that performance on the smallest sample size (500 disease

positive patients) had a large negative impact on performance

(−6%). For the rest of the sample sizes (1,000–6,000 disease

positive patients), the average improvement from pre-training

was 1% for the Maryland population, compared to 1.3% for the

general population. Although part of the same national population,

Maryland was sufficiently distinct demographically to provide a

meaningful deviation in model performance. As an additional test

to verify this, a model was trained to predict diabetes on the

training data from the rest of the US (excluding Maryland). This

achieved a ROC AUC of 0.92. When the same model was used to

predict diabetes in the unseen Maryland population, the ROC AUC

was only 0.83. The potential benefits of transfer learning across

populations via pre-trained embeddings are therefore encouraging,

especially given the limited research availability of large-scale EHR

datasets globally.

Wornow et al. (2023) have suggested that clinical EMR models

should be evaluated on tasks which provide more meaningful

insight into their utility to health systems. In line with this

recommendation, we evaluated the ability of our model to correctly

identify at-risk individuals within a large population who could be

targeted for preventative interventions. One study with a similar

objective used a large dataset (2 m patients) of Administrative

Health Data (AHR) in Canada to predict 3-year risk of type 2

diabetes (Ravaut et al., 2021). AHR include some of the same

datapoints as EHR (diagnosis history along with some medication

and observation history) but are less rich than EHR. The Canadian

study chose the recall curve as a key metric for population

surveillance—they found that over 40% of the actual diabetes cases

were captured within the top 10% of at-risk patients identified by

the model, with an overall incidence rate of 0.2%. Our diabetes

model offered a substantial improvement on this. Our model was

able to capture 55% of actual diabetes cases in the top 5% of at-

risk patients and 71% of cases in the top 10% of at-risk patients.

The 3-year incidence rate for diabetes in our dataset was 0.4%. Our

best-performing model (MI) captured 38% of the actual cases in

the top 1% of highest-risk patients identified by the model. This

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2023.1287541
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Grout et al. 10.3389/frai.2023.1287541

FIGURE 6

Transfer learning: average ROC AUC score for di�erent sample sizes (diabetes and hypertension).

improvement can be explained by the difference in data type and

data scope (EHR vs. AHR) as well as modeling approach (Deep

Learning vs. XGBoost). It is likely that clinical EMRmodels trained

using similar methodologies to ours would also achieve comparable

results. The ability to target healthcare funding efficiently to avert

adverse health outcomes is key to PHM. Our models have the

potential to support this process by identifying cohorts of high-risk

patients who could be supported with proactive care.

4.3 Explainability

Our study confirmed that SHAP analysis has the potential to

improve the explainability of disease prediction models trained

using embedded EHR data. In line with similar research (Datta

et al., 2022), our analysis found a combination of established disease

predictors and novel features identified by the model. For example,

our COPD predictors included tobacco dependence and expected
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FIGURE 7

Disease top contributors by summed SHAP values.
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comorbidities (e.g., hypertension) but also features such as chest

x-rays which may correlate with likelihood of a COPD diagnosis.

The top MI predictors included a fall risk assessment procedure

which it is possible was used as a proxy for old age and frailty. This

highlights an important limitation of SHAP values; they cannot be

used to infer the causes of the outcome itself, only the contribution

of the features toward the prediction (Lundberg and Lee, 2017).

Our initial SHAP results for hypertension included some blood

pressure medications with high SHAP values that may indicate

patients missing a diagnosis code in our dataset. These should

have been filtered out by the cohort selection process but had

been missed due to data quality issues (e.g., alternative spellings,

coding errors, or missing links to medication categories). After

consultation with clinicians, these patients were removed from the

dataset and the model was retrained. This reduced the validation

performance of the model slightly (from 0.924 to 0.922 ROC AUC)

as these patients had evidently been easier to classify. Explainability

analysis conducted during model development may therefore

prevent data quality issues in EHR data from leading to overly

optimistic estimates of model performance. Shah et al. (2023) argue

that clinical LLMs (including those trained on structured EHR

codes) need to be tested in real world deployment and shaped

and evaluated by clinicians. This study shows the potential of

SHAP analysis to support to this process by enabling clinicians

to interrogate the features contributing to model predictions. If

this were put into real-world deployment, it is possible SHAP

could also be used to allow clinicians to understand the drives of

predictions for individual patients and enable clinically-informed

judgements about whether a patient predicted as high-risk of a

negative outcome would benefit from a preventative intervention.

4.4 Limitations

The results of our study highlighted the promise of DL solutions

for identifying patients at future risk of disease and providing

clinicians with the means to understand and evaluate the drivers

of those predictions. However, our study has certain limitations.

Firstly, individuals with infrequent interactions with healthcare

systems or whosemedical histories were unavailable due to attrition

would be excluded. Our models were also trained to predict first

diagnosis rather than disease onset, which requires patients to

come forward for medical assessment with the appearance of

symptoms. This may have the combined effect of biasing the

performance our models in favor of those who have greater access

to medical care. Further work would be required to assess and

ensure the fairness of models developed using this methodology

across all demographic groups. Secondly, our dataset included

only one country, and the generalizability of these results to other

geographies was not assessed. It would be valuable to understand

whether clinical embeddings pre-trained in one geography could

be used to train models in another, and follow-up research is

planned to investigate this. Thirdly, our SHAP analysis was run

on samples of data with balanced classes to replicate our training

methodology. This enables clinical validation of model features, but

the distribution of disease onset in real-world populations is highly

imbalanced. Recent research found that extreme class imbalance

had an adverse effect on the interpretative performance of SHAP

when predicting credit defaults using an XGBoost model (Chen

et al., 2023). Further research is needed to assess the stability

of EHR model explanations on imbalanced datasets before this

method could be deployed to enable clinicians on the ground to

understand the risk scores for individual patients. Finally, in real-

world deployment the prediction window used for training would

necessarily be from a period prior to the prediction window for

implementation, and there would be a time gap to the training

observation window. Multiple factors may have changed including

aspects of clinical practice. To assess the real-world performance of

these models, a longer-term study would need to be conducted to

verify predictions over a future 3-year period.

4.5 Conclusions

The DL approach outlined in this study can identify clinically-

relevant features from large-scale EHR data and use these

to predict future disease outcomes. Expanding the data scope

to include binned laboratory values, demographic and lifestyle

features was shown to improve performance. Once patient histories

and embeddings have been created, it is possible to create

multiple disease models quickly using the same methodology,

reducing the burden on clinician time required for development.

Transfer learning from pre-trained embeddings can also improve

performance, especially where limited data is available. The

calculation of SHAP values can provide clinicians with a means

of evaluating the features that are contributing to the models’

predictions. This approach was developed using common python

packages and cloud services—technologies which are within the

reach of healthcare systems today. The approach presented here

is a promising methodology for increasing the precision with

which PHM practitioners can identify at-risk patients and take

preventative steps to improve their health outcomes.
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