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Topological data analysis (TDA) provide tools that are becoming increasingly

popular for analyzing multivariate time series data. One key aspect in analyzing

multivariate time series is dependence between components. One application

is on brain signal analysis. In particular, various dependence patterns in brain

networks may be linked to specific tasks and cognitive processes. These

dependence patterns may be altered by various neurological and cognitive

impairments such as Alzheimer’s and Parkinson’s diseases, as well as attention

deficit hyperactivity disorder (ADHD). Because there is no ground-truth with

known dependence patterns in real brain signals, testing new TDA methods

on multivariate time series is still a challenge. Our goal here is to develop

novel statistical inference procedures via simulations. Simulations are useful for

generating some null distributions of a test statistic (for hypothesis testing),

forming confidence regions, and for evaluating the performance of proposed

TDA methods. To the best of our knowledge, there are no methods that simulate

multivariate time series data with potentially complex user-specified connectivity

patterns. In this paper we present a novel approach to simulate multivariate

time series with specific number of cycles/holes in its dependence network.

Furthermore, we also provide a procedure for generating higher dimensional

topological features.

KEYWORDS

topological data analysis, time series analysis, simulating topological dependence

patterns, spectral analysis, simulation-based inference

1 Introduction

Topological data analysis (TDA) has witnessed many important advances over the last

twenty years that aim to unravel and provide insight to the “shape” of the data (Edelsbrunner

et al., 2002; Edelsbrunner and Harer, 2008; Wasserman, 2018; Chazal and Michel, 2021).

The development of TDA tools such as barcodes and persistence diagrams (Ghrist, 2008;

Bubenik, 2015; Adams et al., 2017) have opened many new perspectives for analyzing

various types of data (Umeda, 2017; Gholizadeh and Zadrozny, 2018; Motta, 2018; Xu

et al., 2021; Leykam and Angelakis, 2023). These tools enable practitioners to grasp the

topological characteristics inherent in high-dimensional data, which often remain beyond

the reach of classical data analysis methods. However, a primary constraint of TDA tools is

the absence of robust statistical inference techniques. Our goal in this paper is to introduce

a simulation-based inference approach to address this limitation.

Many data sets exhibit a temporal structure (e.g., brain signals, economic data,

climate data). In recent years, there has been a noticeable transition from primarily

utilizing TDA techniques on clouds of to increasingly applying them on dependence
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networks of multivariate time series data, particularly for

multivariate brain signals such as electroencephalograms (EEG)

and local field potentials (LFP) (El-Yaagoubi et al., 2023). Rather

than using TDA techniques on a cloud of points via a time delay

embedding transformation, it is suggested that the multivariate

time series be transformed to its dependence network where

the nodes correspond to the time series components and the

weight on the edges depend on the intensity of the statistical

dependency between any given pair of time series in a network.

There is currently no systematic method nor statistical model for

conducting simulations (for the purpose of statistical inference or

evaluating TDA methods) on networks with complex dependence

structure. This is a serious limitation because simulations can

form a basis for inference as well as evaluation of TDA methods

for sensitivity, specificity, predictive ability. In this paper, we will

develop an easily implementable method for simulating data with

complex dependence patterns. Thus, the main contributions of the

proposed simulation method are the following: (a) they enable a

rigorous evaluation and comparison of data analytic methods and

(b) provide tools for conducting proper statistical inference (in

particular, hypothesis testing).

In the literature, the topology of the brain network (structural

and functional) is believed to be organized according to principles

that maximize the flow of information and minimize the energy

expenditure for maintaining the entire network, such as small

world networks (Sporns, 2013; Pessoa, 2014; Muldoon et al., 2016;

Henry et al., 2020; Fathian et al., 2022). This topological structure

of the brain network can be altered by various conditions such

as attention deficit hyperactivity disorder (ADHD), Alzheimer’s

and Parkinson’s diseases. Topological tools have been developed

FIGURE 1

Example of a multivariate time series with P=6 channels (Top Left). Dependence network of the multivariate time series (Top Right). Considering this

weighted network with P nodes (brain regions) with corresponding time series X1(t), . . . ,XP(t), we define the distance between two time series

components as a decreasing function of the strength of dependence. Thus, a pair of channels with weak dependence has a large value of the

distance measure. For every threshold ǫ, a network with edges with weights not exceeding ǫ is constructed leading to an increasing sequence also

known as Vietoris-Rips filtration (Bottom). As the threshold ǫ grows, there’s birth and death of various topological features.

to assess and analyze the topological patterns of different groups’

brain networks (e.g., healthy control vs. pathological), as well as

quantifying the impact of these disorders on brain organization.

The goal of topological data analysis for time series is to

provide computational tools that can assess the topological features

present in the dependence network of a multivariate time series.

Through the use of persistent homology theory, TDA provides a

framework for analyzing the topological features, such as connected

components, holes, cavities, etc. that are present in the network

(Wasserman, 2018; Chazal and Michel, 2021).

In order to analyze the topological features present in the

various dependence networks, we consider the homology of the

filtration (increasing sequence of thresholded networks) obtained

from these dependence networks, also known as Vietoris-Rips

filtration. Let X(t) = [X1(t), . . . ,XP(t)]
T be the observed brain

signals at P different locations at time t ∈ {1, ...T}. One can

define the dependence network to be a weighted graph with weights

between nodes p and q to be some dependence measure between

the observed time series components Xp(t) and Xq(t) as seen in

Figure 1.

Since the Vietoris-Rips filtration relies on the notion of

distance, we then define distance between brain channels at

locations p and q to be a decreasing function of the strength of

a dependence metric between this pair of channels. For example,

using coherence or correlation as dependence measures, one can

use the transform g(x) = 1 − |x| (where x is correlation or

coherence). A comprehensive discussion on dependence in the

spectral domain (e.g., coherence) is given in Ombao and Pinto

(2022). Therefore, using this measure of distance, the Vietoris-Rips

filtration (see Hausmann, 2016) is constructed by connecting nodes
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FIGURE 2

Example of a persistence diagram corresponding to the previous

Vietoris-Rips filtration. The various dots correspond to di�erent

birth-death pairs (bℓ,dℓ) with birth time in the x-axis and death time

in the y-axis.

that have a distance less or equal to some given threshold ǫ, which

results in the following filtration:

Xǫ1 ⊂ Xǫ2 ⊂ · · · ⊂ Xǫn , (1)

where X ǫ represents the simplicial complex at the threshold

level ǫ. This complex is defined to be the combination of all k-

simplices (nodes, edges, triangles etc.) of brain channels that are

within a maximum distance of ǫ from each other. The thresholds

for distance are defined as 0 < ǫ1 < ǫ2 < · · · < ǫn−1 <

ǫn. For a visual illustration, refer to Figure 1. The objective of

this approach is to assess the scales at which topological features

(connected components, cycles, holes, and so on) appear (birth

time) and then vanish (death time) (Wasserman, 2018; Chazal and

Michel, 2021). The Vietoris-Rips filtration can be a complex object.

Therefore, the most common topological summary being utilized

is the persistence diagram (PD) which is a diagram that represents

the times of births and deaths of the topological features in the VR

filtration (see Figure 2). Every birth-death pair is represented by a

point in the diagram, e.g., (b1, d1), (b2, d2), . . ., where bℓ is the

birth time of the ℓ-th feature and dℓ is the death time of the ℓ-th

feature. The points in the PD are colored based on the dimension

of the feature they correspond to (e.g., one color for the connected

components, another color for the cycles etc.).

There are multiple approaches that are available for modeling

and generating multivariate time series data, each offering distinct

advantages and limitations. For instance:

• Parametric VARMA models: Parametric Vector

Autoregressive Moving Average (VARMA) models exhibit

flexibility by accommodating dependencies on lagged

values of each variable and interactions between terms

or variables. This versatility enables the representation of

contemporaneous and lagged dependencies, providing a

comprehensive modeling framework (Shumway and Stoffer,

2017, Gorrostieta et al., 2018).

• Gaussian process-based models: GP provide a flexible

framework for capturing complex and non-linear

relationships. These models accommodate non-stationary

processes, allowing changes inmean and covariance structures

over time. Moreover, they allow the incorporation of prior

knowledge through the selection of covariance functions

(kernels) (Mohammadi et al., 2019).

• Copula-based models: These model are effective in modeling

tail dependence, particularly in extreme events where variables

exhibit dependencies in the tails of their distributions.

This capability is crucial for understanding rare and

extreme events and enables the modeling of non-Gaussian

marginal distributions, addressing real-world scenarios where

individual time series do not follow Gaussian distributions

(Brechmann and Czado, 2014).

• Machine learning models: These data-driven models, such as

Generative Adversarial Networks (GANs) offer innovative and

powerful methods for generating synthetic multivariate time

series, showcasing high flexibility and versatility. They excel

in learning complex patterns and dependencies, including

non-linearities and temporal dynamics (Snow, 2020).

However, a notable limitation shared by these existing models

is their inability to generate multivariate time series data with

predetermined patterns in the dependence network, such as a

specific number of cycles. Cycles represent situations where nearby

channels exhibit correlations or dependencies, while channels

further apart may not have direct connections but are linked

through intermediary channels in a cyclic manner. The number of

cycles can vary, ranging from none to multiple cycles. Driven by

the challenges at hand, this paper introduces an innovative method

for simulating multivariate time series data with predetermined

dependence patterns. The dual purpose is to enable formal

statistical tests on complex topological networks and to evaluate

the effectiveness of Topological Data Analysis (TDA) methods

in the realm of multivariate time series data. Table 1 provides

a comprehensive overview, summarizing both the strengths and

limitations of existing approaches alongside our proposed method.

In this paper, we introduce an innovative method that

leverages mixtures of latent second-order autoregressive processes

to generate multivariate time series data showcasing diverse

connectivity patterns within the dependence network. In Section

2, we provide a concise overview of AR(2) processes, detailing the

generation of various dependence patterns by mixing these AR(2)

processes using carefully selected weights. We also demonstrate

how the resulting persistence diagram effectively identifies such

patterns. In Section 3, we explain how to generate multivariate

time series data with more general patterns, and investigate the

sensitivity of this approach at various signal-to-noise ratios. Finally,

in Section 4, we use our approach to carry out simulation-based

inference based on the notion of total persistence.

2 Modeling dependence patterns in
multivariate time series

In neuroscience, the concept of the nervous system as a

(structural and functional) network of interconnected neurons is
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TABLE 1 Comparison between our approach and existing approaches in multivariate time series modeling.

Approach Strengths and advantages Limitations and challenges

Parametric VARMA • Captures lead-lag dependencies

• Easily interpretable

• Assumes stationarity

• Limited to linear dependencies

Gaussian processes • Captures non-linear dependencies

• Allows incorporation of prior knowledge

• Difficulty in imposing arbitrary dependence patterns

• Limited scalability

Copula-based • Models tail dependence

• Captures non-linear dependencies

• Accommodates a wide range of marginal distributions

• Difficulty in imposing arbitrary dependence patterns

• Handling time dependence can be challenging

Machine learning • Captures complex and non-linear dependencies

• Captures lead-lag dependencies

• No stationarity assumption

• Requires training data

• Prone to overfitting

• Limited interpretability

Our approach • Captures any dependence pattern

• Easily interpretable

• Requires definition of a dependence graph

• Choice of weight decay function

now well established (Friston, 2011; Sporns, 2013; Nakagawa and

Deco, 2015; Fan et al., 2016). Many brain investigations have

led to countless discoveries concerning the brain’s anatomical

and functional organization. The ongoing scientific endeavor in

neuroscience to map the complicated networks of the human

brain with increasing accuracy has been primarily due to the

technological advances in brain imaging techniques that have

resulted in new statistical techniques that aim to study and analyze

various patterns in these complex networks. Such methods not

only help neuroscientists understand the segregation of brain

functions but also the integration of information processing. As

a result, the validity of such novel techniques must be evaluated

in terms of various metrics such as false positive or false negative

rates, type I and type II errors, power of the test (ability of the

test to detect differences in patterns between groups when they

truly exist). It is impossible to evaluate/assess such approaches

without a proper method for generating multivariate time series

data with ground truth patterns in its dependence network. This

is readily accomplished via extensive computer simulations under

various settings of the truth (user-specified ground truth for the

dependence networks).

Given the intrinsic complexity of brain signals, which are

considered to be a superposition of random oscillations at specific

frequencies or frequency bands, it can be challenging to discover

and analyze the interrelationships between distinct time series

components. As a result, this paper will adopt a frequency-specific

strategy to generate meaningful simulations. We will develop a

method where the multivariate time series data with dependency

connections that are allowed to vary across frequency bands [again,

we refer the reader to Ombao and Pinto (2022) for a discussion on

spectral metrics for dependence]. For this reason, we will consider

coherence as our frequency-specific dependence measure, since it

can capture specific oscillations that are common to components

in a network of signals. The typical spectral approach for analyzing

brain data is to first estimate the spectral matrix, then construct

the connectivity network using a spectral dependence measure,

usually, coherence or partial coherence (Bowyer, 2016; Hu et al.,

2019).

In the following subsections, we will generate multivariate time

series data with specific dependence patterns. While numerous

methods exist for generating multivariate time series as mixtures of

random oscillations, our primary focus will be on utilizing second-

order autoregressive processes that are concentrated around a

specific frequency band.

2.1 Autoregressive processes of order 2

Electrophysiological signals are modeled as mixtures of many

random oscillations. Here, each random oscillation with a desired

power spectrum will be modeled as a second-order autoregressive

process [AR(2)]. One advantage of using AR(2) processes as

building blocks for a time series is their ability to represent

oscillations at precise frequency bands. See Prado et al. (2001) and

Granados-Garcia et al. (2021).

A linear mixture of second order autoregressive processes

[AR(2) processes] can be used to simulate the brain oscillatory

activity at specific frequency bands. An AR(2) process with a

spectral peak at pre-specified frequency and bandwidth can be used

to describe a latent process as follows:

Z(t) = φ1Z(t − 1)+ φ2Z(t − 2)+W(t) (2)

where W(t) is white noise process with E
(
W(t)

)
= 0 and

V
(
W(t)

)
= σ 2; the relationship between the AR(2) model

parameters φ1 and φ2 and the spectral properties, namely the

frequency peak and bandwidth, will be derived as follows. Note that

Equation 2 can be rewritten asW(t) = (1−φ1B1−φ2B2)Z(t) where
the back backshift operator B is defined as BkZ(t) = Z(t − k) for

k = 1, 2. The AR(2) characteristic polynomial function is:

8(r) = 1− φ1r1 − φ2r2. (3)

Denote the roots of the 8(r) to be r1 and r2. To fulfill the

conditions of stationarity and casuality, the roots should lie outside
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of the unit circle on the complex plane, i.e., |r1| > 1 and |r2| > 1.

Consider the case when r1 and r2 are (non-real) complex-valued.

Hence these can be expressed as r1 = M exp(i2πψ) and r2 =
M exp(−i2πψ) where the phase ψ ∈ (0, 0.5) and the magnitude

M > 1 to satisfy causality (Shumway and Stoffer, 2017). For this

latent process Z(t), suppose that the sampling rate is denoted by

SR and the peak frequency is f ∈(fmin;fmax). Then the roots of the

AR(2) latent process must have the phase ψ = f /SR. In practice, if

the sampling rate SR is 100 Hz and we wish to simulate an alpha-

band latent process where the peak is at 10 Hz, then it is necessary

to set ψ = 10/100 and the root magnitude M to some number

greater than 1 but “close” to 1 so that the spectrum of Z(t) is mostly

concentrated on the frequency band f -Hz. The corresponding

AR(2) coefficients are derived to be φ1 = 2
M cos(2πψ) and φ2 =

− 1
M2 . Some examples of such stationary AR(2) processes as well as

their corresponding spectrum is given in Figure 3.

2.2 Mixtures of AR(2) processes

In TDA applications, Rips-Vietoris filtrations are often applied

to multivariate time series data (Umeda, 2017; Gholizadeh and

Zadrozny, 2018; El-Yaagoubi et al., 2023). These filtrations are often

constructed from clouds of points, or from a weighted network.

Traditionally, due to their stochastic nature brain signals have often

been modeled using their underlying dependence networks. For

instance in Bullmore and Sporns (2009), Henry et al. (2020), and

Fathian et al. (2022), the authors use graph theoretical methods on

complex brain networks.

To replicate a specific dependency pattern in the dependence

network of a multivariate time series, it is necessary to emulate the

decay in the dependence structure as time series components get

farther away from each other. First sample a graph G = (N,E)

with the desired structure (i.e., cycles or holes etc.), second define

the observed time series components as mixtures of the latent

processes, such that components near to each other in the graph

share more latent processes, which makes them more dependent

on one another, while components far away in the graph will share

fewer latent components, resulting in lower interdependence. Let

Zp(t) be the latent iid AR(2) processes centered around a specific

frequency band. Therefore, to generatemultivariate time series with

a desired dependence patterns (as defined by the graph G) the

following model is suggested:

Yp(t) =
P∑

q=1

Wp,qZq(t)+ ǫp(t) (4)

Wp,q =

{
1

1+dG(p,q)
, if dG(p, q) ≤ K,

0, if dG(p, q) > K
(5)

We generate a P-dimensional vector of observations Y(t) =
[Y1(t), ...,YP(t)]

T ∈ R
P that is a linear mixture of P latent iid

AR(2) processes Z1(t), ...,ZP(t) according to Equation 4, whith

E
(
Zp(t)

)
= 0, and V

(
Zp(t)

)
= 1. The mixing weightsWp,q contain

the information about the importance of the q-th latent AR(2)

process Zq(t) in the p-th observed component Yp(t), and as defined

by Equation 5, the weights are chosen to be inversely proportional

to the distance dG(p, q) between the nodes in the graph, andK being

the maximum distance threshold that is considered, in practice we

take K = 2 or K = 3. Theoretically, any distance-decreasing

function might be used. However, selecting a faster decay (such

as exponential decay) could result in a too-sharp decrease in the

dependence based distance, making it more challenging to identify

the topological features in the filtration.

It is essential to consider that the complexity of the dependence

pattern directly impacts the required size of the sampled graph

(denoted by P). This necessity arises from the need to attain

higher resolution, ensuring that the sampled nodes adequately

cover the entire manifold. Consequently, our approach may

encounter limitations when generating intricate patterns within

the dependence network of multivariate time series with small

dimensions. Moreover, depending on the specific characteristics of

the sampled graph and the number of nodes, alternative decaying

functions, such as 1
1+

√
x
, 1
1+x2

, exp(−x), need to be tested as they

may yield improved results. These functions exhibit varying decay

rates for the mixture weights, offering flexibility and adaptability in

different scenarios.

Let the P-dimensional observed vector Y(t) =
[Y1(t), . . . ,YP(t)]

T . Then we have the following Cramer

representation:

Y(t) =
∫ 1/2

−1/2
exp(i2πωt)dX(ω), (6)

where the X(ω) is a P-variate random process whose mean is

zero with orthogonal increments having the following covariance:

Cov(dX(ω), dX(λ)) =

{
f (ω)dωdλ if ω = λ+ 2πk, k an integer,

0, otherwise.

(7)

and f (ω) is the spectral density matrix. If we define the filtered

components at band� to be:

Y1,�(t) =
∑

ℓ

9ℓY1(t − ℓ), (8)

...

YP,�(t) =
∑

ℓ

9ℓYP(t − ℓ), (9)

where the filter 9 is the band pass filter centered around

frequency band �. In Ombao and Van Bellegem (2008), coherence

between Y1(.) and Y2(.) at frequency band � is derived to

be the squared correlation between the phase-adjusted Y1,�(t)

and Y2,�(t). Coherence will then be used (via a decreasing

transformation) to define frequency-specific distance between time

series components Yp(.) and Yq(.).

Consider the observed data {Y(t), t = 1, . . . ,T}. The

spectral matrix f (ω) can be estimated parametrically (e.g., by

fitting a VARMA model), non-parametrically (by smoothing the

periodogram) or semi-parametrically. In our case we will be using
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FIGURE 3

(Left) AR(2) processes for di�erent frequency bands. (Right) Corresponding spectra. From top to bottom we have: delta-band with peak frequency at

2 Hz, theta-band with peak frequency at 5 Hz, alpha-band with peak frequency at 10 Hz, alpha-band with peak frequency at 2Hz and beta-band with

peak frequency at 19.5 Hz with sampling rate (SR) of 100Hz.

the smoothed periodogram approach. The Fourier P-dimensional

coefficient at frequency ωk are defined as:

d(ωk) =
1

√
T

T∑

t=1

Y(t) exp (−iωkt), (10)

then the Fourier periodogram is defined to be:

I(ωk) = d(ωk)d(ωk)
∗, (11)

where the ∗ operator in represents the conjugate transpose.

Consequently, I(ωk) is a P × P matrix. It can be shown that the

periodogram I(ωk) is asymptotically unbiased. However, it is not

a consistent estimator of the spectral matrix as the asymptotic

variance does not decrease to zero even whenwe getmore andmore

observations (i.e., T → ∞). Hence, we construct a mean-squared

consistent estimator to be:

f̂ (ωk) =
∑

ω

kh(ω − ωk)I(ω) (12)

where kh(ω− ωk) is a non-negative smoothing kernel centered

aroundωk and h is the bandwidth parameter. In order to derive our

distance function, first we define coherence as follows:

C

(
Yp(.),Yq(.),ω

)
=

|̂fp,q(ω)|2

f̂p,p(ω)̂fq,q(ω)
∈ [0, 1], (13)

then we define the dependence-based frequency-specific

distance function to be a decreasing function, for example, G(x) =
1− x:

D

(
Yp(.),Yq(.),ω

)
= G

(
C(Yp(.),Yq(.),ω)

)
. (14)

In the following, using the ideas explained previously we

start by generating multivariate time series data with specified

dependence patterns. We explain how dependence information

contained in the graphG can be encoded in the homology structure

of connectivity network, using a first example with one main cycle

then a second example with two main cycles in the dependence

network.

2.3 Multivariate time series with cyclic
patterns

Our aim is to simulate multivariate time series data with

predefined patterns in the dependence network. These simulations

serve multiple purposes: (1) conducting a statistical test by

obtaining the distribution of a predefined test statistic under

the null hypothesis through simulations, and (2) evaluating the

performance of TDA methods, including mean-squared error of

the estimator and the test’s power for group comparisons as sample

size increases or the discrepancy between group parameters widens.
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FIGURE 4

Cyclic dependence graph - Circular Ladder model (Left). Generated time series with P = 30. The following components are plotted from top to

bottom: Y1(t),Y2(t),Y3(t),Y4(t),Y5(t) (Right).

The topology of the brain network is known to be organized

according to principles that maximize the flow of information

and minimize the energy cost for maintaining the entire network

(Sporns, 2013; Pessoa, 2014; Hilgetag and Goulas, 2015; Muldoon

et al., 2016). However, neurological or mental diseases may affect

that organization by degrading the structural and functional

connectivity of the brain (e.g., Alzheimer’s disease, ADHD etc.)

(Bassett and Bullmore, 2009; Henry et al., 2020; Fathian et al.,

2022). Therefore, it is important to model these alterations in

functional connectivity using time series models that can capture

dependencies beyond pairwise nodes in a brain network. Here, we

will develop a procedure for simulating multivariate time series

with a given number of cycles that may reflect complexity in the

brain functional network.

2.3.1 One main cycle pattern
In this first example we generate a multivariate time series

with one cycle in the dependence structure. In this setting, we will

impose the time series components that are relatively close to each

other to be more strongly dependent than components that are

farther apart.

Given the previous network definition of the circular ladder

model, as displayed in Figure 4, we write the expression for

K = 2, using Equation 4 for the observed time series Y(t) =
[Y1(t), . . . ,Y30(t)]

T and latent process Z(t) = [Z1(t), . . . ,Z30(t)]
T

as follows:

Y(t) = WZ(t)+ ǫ(t), (15)

where Wp,q is the contribution of the latent process Zq(t)

in the observed process Yp(t) and is equal to 1
1+dG(p,q)

if the

distance dG(p, q) between nodes p and q is less than or equal to

2 and 0 otherwise. Thus, the weight matrix W has dimension

30 × 30; the latent process vector Z(t) 30 × 1; and ǫ(t) is a

30 × 1 noise vector. Using this circular ladder model we can

generate and visualize the multivariate time series data as follows in

Figure 4. Given the model described above, we calculate pair-wise

correlations for the following pairs: Y1(t) − Y2(t), Y5(t) − Y6(t),

and Y1(t) − Y6(t). This calculation results in Corr
(
Y1(t),Y2(t)

)
=

Corr
(
Y5(t),Y6(t)

)
, which simplifies to 10/6

76/36 ∼ 0.76. Furthermore,

Corr
(
Y1(t),Y6(t)

)
= 0. Therefore, the correlation-distance

between pairs 1-2 and 5-6 is the same 1 − 0.76, this is due

to symmetry in the graph in Figure 4 and correlation-distance

between component 1 and 6 is 1 because they do not share any

latent components. Therefore, the time series components 1 and

24 are farther apart (based on the dependence distance) than 1 and

2 or 5 and 6, which is exactly the desired property.

Having developed intuition behind the mechanism that

generates the time series components, we now directly compute

the coherence matrices for various frequency bands and analyze

the topological patterns present in the resulting network. After

computing, at each frequency band, the coherence matrix, we

also consequently compute the distance matrix, we now build the

Rips-Vietoris filtration and visualize the results in the persistence

diagram as can be seen in Figure 5.

The orange point in the middle frequency persistence diagram,

far from the diagonal, represents the main cycle in the dependence

structure. Whereas the orange dots near the diagonal represent the

secondary cycles that are present all around the network, see in

Figure 5.

2.3.2 Two main cycles pattern
We now develop a model for generating multivariate time

series with two cycles in the dependence structure. Similarly, from

Equation 4, one can generate the multivariate time series with the

double circular ladder model as defined in Figure 6. Using this
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FIGURE 5

Coherence estimates for a one-cycle model. Leftmost: middle-frequency band. Second from the left: high-frequency band. Persistence diagrams for

the same one-cycle model, with the middle-frequency band shown as the third from the left and the high-frequency band as the fourth from the left.

FIGURE 6

Cyclic dependence graph with two main cycles—double circular ladder model. Every node corresponds to a time series component (Left).

Generated time series with P = 30. The following components are plotted from top to bottom: Y1(t),Y2(t),Y3(t),Y4(t),Y5(t), derived from the double

circular ladder model (Right).

mechanism we can generate and visualize the multivariate time

series as follows (see Figure 6).

Without delving into the computational details of the

coherence expression, it’s important to note that in this new

example, the coherence between any pair of channels within a

subnetwork (one of the main cycles) will not reach zero, given the

smaller diameter of the subcycles. Intuitively, components that are

farther apart tend to exhibit weaker dependence. Therefore, having

more connections shortens the path between nodes, resulting in

increased dependence, which makes sense since more connections

also mean more latent processes are being shared. On the other

hand, components that are closer will exhibit stronger dependence

as they share more latent processes. We can directly compute

the coherence matrices for middle and high frequency bands and

analyze the topological patterns present in the resulting network.

After estimating the coherence matrices and therefore the distance

matrices, the next step is to apply the tools of TDA, i.e., building the

Rips-Vietoris filtration and visualize the results in the persistence

diagram, as can be seen in Figure 7.

The x-axis represents the birth time (denoted di), while

the y-axis represents the death time (denoted bi), all the point

representing valid features in the diagram have to lay above the

diagonal line since the death time is larger than the birth time, i.e.,

di > bi. The orange points far from the diagonal represent the two

main cycles in the dependence structure. Whereas the orange dots

near the diagonal represent the secondary cycles that are present all

around the network, as can be seen in Figure 6.

Irrespective of the specific pattern of interest, the approach

detailed in Section 2.2, which leverages mixtures of AR(2)

processes, proves to be versatile. It allows for the generation of

multivariate time series data exhibiting diverse patterns within the

dependence network, as long as the pattern can be represented by

a graph. The following flowchart (Figure 8) provides an insightful

summary of the procedural steps involved, contributing to a more

accessible and intuitive understanding of our approach.

3 Generating multivariate time series
with general patterns in its
dependence network

Depending on the application of interest, the simulated patterns

presented abovemay not be sufficient. However, themethodology is

general and can be used to define many patterns in the dependence

network of a multivariate time series. The goal in this section is

to develop a novel robust procedure for simulating multivariate

time series with complex dependence structures. Suppose that the

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1293504
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


El-Yaagoubi et al. 10.3389/frai.2023.1293504

FIGURE 7

Coherence estimates for a two-cycle model. Leftmost: middle-frequency band. Second from the left: high-frequency band. Persistence diagrams for

the same one-cycle model, with the middle-frequency band shown as the third from the left and the high-frequency band as the fourth from the left.

FIGURE 8

A visual guide demonstrating the simulation steps for multivariate

time series, detailed in Section 2.2, along with the subsequent

evaluation of the topological method of interest.

interest is on a specific connectivity pattern, such as a torus or a

double torus, see left hand side of Figure 9.

3.1 Defining the graph structure

After defining the shape of the manifold of reference M for

the dependence structure, we need to define a graph GM =
(NM,EM) by sampling points xi from such a topological structure

(i.e., xi ∈ NM ⊂ M), as can be seen in red dots in right

hand side of Figure 9. It is necessary to properly define this graph,

because it is needed to compute the mixing weights in Equation

5, which are a (decaying) function of the graph distance between

nodes. The right hand side of Figure 9 display a Voronoi tessellation

(green lines) over the manifold. For every pair of nodes (region

centers) that share a common border, we add an edge in the set

of edges EM in the graph GM. Once the graph is properly defined,

as demonstrated in Figure 12, our next step involves generating a

latent AR(2) process for each node within the graph. Subsequently,

as shown in Figure 11, we create a new multivariate time series by

employing the weighted approach described in Equation 4.

3.2 Sampling points from a manifold

In order to define the graph structure, it is necessary to

have a mechanism to sample points uniformly from a manifold.

Multiple sampling procedures have been proposed in the literature,

for example (Diaconis et al., 2013; Soize and Ghanem, 2016;

Baggenstoss, 2017; Prado and Ritto, 2021). It may be relatively

straightforward to sample from simple manifolds, such as circles or

spheres, because it is simple to parameterize the entire manifold, for

instance using polar or spherical coordinates. However, generally

286 speaking, sampling frommore intricatemanifolds can be rather

difficult. Uniformly sampling from manifolds extends beyond

synthetic data generation and has broader implications in various

domains. For instance, in the context of physical simulations, many

systems have state spaces represented as manifolds. Achieving

uniform sampling from these manifolds is critical for the effective

study of system dynamics. Moreover, the relevance of uniform

manifold sampling is apparent in biological and medical data

analysis. Manifold representations are commonly used for complex

data, including DNA structures, protein conformations, and brain

functional connectivity. In these scenarios, non-uniform sampling

can introduce biases into the analysis, impacting the quality and

accuracy of results.

Our paper primarily focuses on two-dimensional surfaces,

offering an novel approach based on quotient group representation

for graph sampling with predefined patterns. This methodology

contributes to solving the broader challenge of uniformly graph
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FIGURE 9

(Top Left) Simple torus dependence pattern; (Top Right) Sampled simple torus dependence pattern; (Bottom Left) Double torus dependence

pattern; (Bottom Right) Sampled double torus dependence pattern.

sampling from manifolds, which finds relevance in fields beyond

synthetic data generation. The sampling problem (from a given

manifold) is closely related to Bertrand’s Paradox and the principle

of indifference. Indeed, for such problem to display a unique

solution one has to properly define the problem at hand and what

is meant by sampling in a non-ambiguous way (Jaynes, 1973;

Marinoff, 1994). For instance, considering the one dimensional

circle embedded in R
2, every point p1 ∈ M1 of the manifold M1

can be represented by an angle θ :

M1 = {(x, y)|x2 + y2 = r2}, (16)

p1 =
(
r cos(θ), r sin(θ)

)
, θ ∈ [0, 2π]. (17)

Similarly, considering the two dimensional sphere embedded

in R
3, every point p2 ∈ M2 can be represented by a pair of

coordinates:

M2 = {(x, y, z)|x2 + y2 + z2 = r2}, (18)

p2 =
(
r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)

)
,φ ∈ [0, 2π],

θ ∈ [−π/2,π/2]. (19)

For instance, the parameterizations in Equation 17 correctly

characterizes the circle. Hence, it is possible to sample points pi
from the manifoldM1 using the following procedure:

θ1 ∼ U(0, 2π), (20)

p1 =
(
r cos(θ1), r sin(θ1)

)
. (21)

Similarly, the parameterization in Equation 19 correctly

characterizes the two dimensional sphere of radius r. Hence, to

sample points pi fromM2 we can use the following procedure:

θ2 ∼ U(0, 2π), (22)

φ2 ∼ U(−π/2,π/2), (23)

p2 =
(
r sin(θ2) cos(φ2), r sin(θ2) sin(φ2), r cos(θ2)

)
. (24)

Both examples presented above rely on parameterized

immersions. When the chosen parameterization f : S → M is

not volume-preserving, the resulting sample will not be uniform.

Indeed, this approach will lead to compressed regions being

oversampled. Moreover, expanded regions can be undersampled,

i.e., based on uniform sampling in the parameter space S

the sampled points in M are denser in regions where the

parameterization f has higher curvature (Diaconis et al., 2013).

For example, in the first example the sample is uniform, however,

in the second example the sample will not be uniform as there

are compressed regions around the poles and expanded regions

farther away from the poles. To remedy this issue, one potential

approach is to generate a large sample using the previous approach

then discarding some of the samples to correct for the compressed

and expanded regions (see Diaconis et al., 2013). The rejection rate

is chosen as a function of the determinant of the Jacobian of the

parameterization f : S → M. Other interesting approaches have

been proposed in the literature, such as Soize and Ghanem (2016)

and Prado and Ritto (2021). However, these approaches provides

tools for sampling only for simple manifolds.

When the manifold of interest is not very simple, such as

a double torus in Figure 9 or even more complicated surfaces,

it can be quite challenging to generate a sample using the

above mentioned approach, since in some cases there may not

be a global parameterization. Indeed, for smooth manifolds the

parameterization is only guaranteed locally, to parameterize the

entire manifold it is necessary to look at what is known as an Atlas

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1293504
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


El-Yaagoubi et al. 10.3389/frai.2023.1293504

FIGURE 10

(Left) Polygonal quotient group representation for a cylinder, sphere, torus and a double torus. (Right) Corresponding 3D visualization.

representation of the manifold, refer to Tu (2008), for more details

regarding the parameterization of manifolds.

For these reasons, we propose the following method to sample

from a certain set of two-dimensional manifolds (surfaces), such

as the sphere, torus, and double torus, which is based on the

representation of these manifolds using quotient space of polygons

(see Figure 10).

The advantage behind this proposed representation lies in the

simplicity with which we can sample from the corresponding

manifold. Indeed, given a polygonal representation, one can sample

uniformly from the flat polygons, then identify the nodes present

on equivalent edges. In Figure 12, we illustrate the process of

constructing the graph representing a Torus manifold from the

initial sample, taken from a rectangle, to the graph after node

identification.

Using the same approach as described in Equation 4, we

generate the torus multivariate time series, as seen in Figure 11.

After estimating the coherence matrix for this multivariate

time series at middle and high frequency bands we compute

the persistence diagrams and hence produce the following

results, as displayed in Figure 12. This figure clearly shows the

topological features of the targeted torus structure. Indeed, the

two off-diagonal orange dots represent the two one dimensional

wholes in a torus (circles surrounding each of the wholes) and

one off-diagonal green dot representing the two-dimensional

whole (or cavity inside of the torus), indeed it is known

that the first three Betti numbers of a torus are β0 = 1,

β1 = 2, β2 = 1.

The number of points to sample from the manifold depends on

the target topological feature that is being investigated. Generally

speaking, in order to detect features in the persistence diagram, the

diameter of every subgraph surrounding the topological feature of

interest needs to be at least of the same magnitude or larger than

twice the constant K in the mixing equation. This is an important

point to keep in mind. In Section 2.3.1, to detect the main cycle

we need the diameter (P/4) to be larger than 2K, if K = 2 then

we need to chose P ≥ 16, if K = 3 then we need to chose

P ≥ 24 etc. In Figure 2.3.2, to detect the main cycles we need the

diameter of the smallest subgraph surrounding one of the main

cycles (roughly P/8 if both cycles are of comparable size) to be

larger than 2K, i.e., if K = 2 then we need to chose at least

P ∼ 32. For this reason, we can detect only the main cycles and

the secondary cycles appear like noise in the persistence diagrams

(see Figures 5, 7).
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FIGURE 11

First ten time series components from a multivariate time series model generated using a torus structure with an initial grid of 9 by 17 nodes (i.e.,

P = 153).

FIGURE 12

Torus graph pattern based on polygonal quotient group representation. Left most: Regular sample from a rectangle. Second from the left: Torus

graph after node identification. Persistence diagram based on a multivariate time series generated using a torus structure with an initial grid of 9 by

17 nodes,i.e., P = 153, and K = 3, with the middle-frequency band shown as the third from the left and the high-frequency band as the fourth from

the left.

3.3 A robustness study: navigating noise
e�ects

Our aim here is to study the sensitivity of our approach

to noise. The observed signal, denoted as Y(t), is composed of

two components: the underlying signal or stochastic process, S(t),

and additive noise, N(t). While Y(t) is what we directly observe,

S(t) remains hidden from our measurements, characterized by

a variance of σ 2
S . In contrast, N(t) is independent of S(t) and

introduces noise with a variance of σ 2
N . To assess this sensitivity,

we utilize the signal-to-noise ratio (SNR), defined as SNR = σ 2S
σ 2N

,

which quantifies the relative strength of the underlying signal to the
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FIGURE 13

Example of a spherical dependence pattern known as a Dodecahedron.

FIGURE 14

Total persistence as a function of the signal to noise ratio. (Left) 0-dimensional homology; (Middle) 1-dimensional homology; (Right) 2-dimensional

homology. Total persistence in the y-axis and signal to noise ratio SNR in the x-axis. The plots are based on the average total persistence for 1,000

replicates.

additive noise. To assess the effect of the noise on the topological

features of the dependence pattern in the underlying signal, we

generate multivariate times series data from a structure that has

two dimensional feature. i.e., a spherical structure (see Figure 13).

Define the total persistence to be the norm of the persistence

diagram’ features as follows:

Pk =
∑

i∈PDk

(dki − bki ) (25)

where bki and dki represent, respectively, the birth and death

of the i-th k-dimensional topological feature in the persistence

diagram. For every dimension k, the total persistence Pk is defined

to be the sum of the persistence of all k-dimensional features in the

persistence diagram. In what follows, we study the behavior of the

total persistence Pk as a function of the signal to noise ratio (see

Figure 14).

The persistence P0 of the 0-dimensional features decreases

as the signal to noise ratio grows, which is to be expected

because at low SNR, the time series components are mostly

independent, resulting in large mutual distances and many

unconnected components and at high SNR, the time series

components are mostly dependent, resulting in smaller

mutual distances, i.e., fewer connected components. On the

other hand, the persistence Pk of the 1- and 2-dimensional

features increases as the signal to noise ratio grows, which

makes sense. At low SNR, the time series components are

independent, and the connectivity pattern is not visible,

but at high SNR, the time series components are mostly

dependent according to the spherical structure, i.e., more 1-

and 2-dimensional features.

4 Statistical inference in TDA—A
simulation approach

There are many disorders that can alter the connectivity

of the brain such as Alzheimer’s disease, Parkinson’s disease,

ADHD. These conditions are known to alter the topology of

the brain’s connectivity structure by creating holes, cavities or

other patterns in the connectivity network. We will develop

a statistical inference method, via simulations of multivariate

time series, for differentiating between two topological patterns

that differ in their one dimensional homology structure. Based

on the idea developed in Sections 2.3.1 and 2.3.2, we generate

N = 50 samples from one model M1 with one main

cycle in its dependence pattern, and N = 50 samples from

another model M2 with two main cycles in its dependence
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FIGURE 15

Boxplot of the one (Left) and two (Right) homology groups topological summaries for both group simple main cycle (blue) and double main cycle

(orange) based on B = 1, 000 bootstrap samples.

pattern:

Y(1,i)(t) = W(1)Z1,i(t)+ ǫ1,i(t), i = 1, . . . ,N (26)

Y(2,i)(t) = W(2)Z1,i(t)+ ǫ2,i(t), i = 1, . . . ,N (27)

where W(1) and W(2) are respectively the mixing weights for

model one and two as defined in Sections 2.3.1 and 2.3.2, Z1,i(t) and

Z2,i(t) are the iid latent processes, ǫ1,i(t) and ǫ2,i(t) are the additive

Gaussian noise.

After generating the time series for both groups, we compute

the corresponding persistence diagrams then we compute a

topological summary, total persistence as described in the previous

section, i.e., T1
i and T2

i for i = 1, . . . ,N. In order to compare the

topologies of both groups we compute the group mean of these

summaries for the one/two dimensional homology etc., and then

assess the variability using a bootstrap approach:

1. Draw T1∗
1 , . . . ,T1∗

N and T2∗
1 , . . . ,T2∗

N from the empirical

distribution based on T1
1 , . . . ,T

1
N and T2

1 , . . . ,T
2
N

2. Compute the group mean T̂
(1∗)
b

= 1
N

∑N
i=1 T

1∗
i and T̂

(2∗)
b

=
1
N

∑N
i=1 T

2∗
i for the one and two homology groups.

3. Repeat B times the previous two steps.

4. Visualize the boxplot of the bootstrap samples.

The results of the procedure above is displayed in Figure 15.

It can be seen that the two groups differ mainly in their cyclic

structure (1-dimensional homology), high orange boxplot means

more persistence of such features but not in their connected

components structure (0-dimensional homology). In conclusion,

based on the simulated data sets generated from models M1 and

M2, it is possible to generate multivariate time series data with

varying cyclic behavior in its dependence patterns.

5 Conclusion

This article presents an innovative approach for simulating

multivariate time series data with predetermined cyclic dependency

structures, which is crucial for evaluating the effectiveness of

proposed Topological Data Analysis (TDA) techniques. To the

best of our knowledge, our proposed method is the first to

utilize mixtures of AR(2) processes to create frequency-specific

dependency structures. Since our method is fairly general, it may

be applied in a wide variety of situations. It can also be utilized

to produce higher dimensional topological features. The proposed

ideas were illustrated on examples with different cycle counts.

A novel procedure based on the quotient group representation

to create even more complex dependency patterns such as a

torus is presented. To investigate the effect of the variance of the

additive noise on the topological features, we conducted a thorough

sensitivity analysis. Finally, we gave a demonstration of how our

method can be applied to make simulation-based inference.
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