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This paper introduces a novel approach to Item Response Theory (IRT) by

incorporating deep learning to analyze student facial expressions to enhance the

prediction and understanding of student responses to test items. This research

is based on the assertion that students’ facial expressions o�er crucial insights

into their cognitive and a�ective states during testing, subsequently influencing

their item responses. The proposed State-Aware Deep Item Response Theory

(SAD-IRT) model introduces a new parameter, the student state parameter, which

can be viewed as a relative subjective di�culty parameter. It is latent-regressed

from students’ facial features while solving test items using state-of-the-art

deep learning techniques. In an experiment with 20 students, SAD-IRT boosted

prediction performance in students’ responses compared to prior models

without the student state parameter, including standard IRT and its deep neural

network implementation, while maintaining consistent predictions of student

ability and item di�culty parameters. The research further illustrates the model’s

early prediction ability in predicting the student’s response result before the

student answered. This study holds substantial implications for educational

assessment, laying the groundwork for more personalized and e�ective learning

and assessment strategies that consider students’ emotional and cognitive states.

KEYWORDS

a�ective computing, multimodal learning, facial expression recognition, intelligent
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1 Introduction

E-learning has become widely used in classrooms and has played a crucial role in today’s

learning, particularly with the rise of Massive Open Online Courses (MOOCs) and on-

demand learning (Aboagye et al., 2021; Maatuk et al., 2022), especially in response to the

COVID-19 pandemic. One prominent type of e-learning is Intelligent Tutoring Systems

(ITS), which aims to provide learners with immediate and personalized instruction or

feedback.

ITS uses an approach from the Vygotskian, i.e., Zone of Proximal Development

theory (Reber, 1995), to provide each student with tasks that are of appropriate difficulty.

According to this theory, students develop their skills and knowledge in situations

where tasks cannot be solved by the student alone but can be solved with the help

of an expert, known as scaffolding. Inappropriate task difficulty can lead to minimal

progress and result in negative affect such as boredom or frustration (Fenza et al.,

2017). Literature on ITS has repeatedly reported the complex relationship between a

student’s ability and affect. Pekrun (2011) discussed the reciprocal causation between

affect and learning development and acknowledged the importance of affect for learning.

Therefore, the student model should predict student performance by modeling both student
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affective states and abilities, as they are reciprocally complementary

in understanding students.

Regarding ability modeling, Item Response Theory (IRT)

has primarily been used to estimate students’ abilities and item

difficulties based on their answer responses. IRT is based on the

local independence assumption that the probability of a person

correctly answering a target item does not depend on its response

to any other items. In recent years, there have been attempts to

combine deep neural networks with IRT to improve prediction

performance on responses (Cheng et al., 2019; Uto and Uchida,

2020; Tsutsumi et al., 2021; Zhou et al., 2021). The Deep Item

Response Theory (Deep-IRT) model (Tsutsumi et al., 2021) has

shown better response prediction performance than standard IRT

models. However, IRT assumes that student and item parameters

are static and do not account for student state changes.

A number of emerging studies predicted students learning

performance by estimating learning engagement and examining

its relationship with student performance. Due to the affect-rich

nature of facial expressions, emotion recognition methods have

often been used for predicting learning engagement (Joshi et al.,

2019; Abedi and Khan, 2021; Ruiz et al., 2021). Positive emotions

were referred to as emotional engagement in some studies (Liu S.

et al., 2022). Facial-video-based learning engagement recognition

studies also have the potential to predict student performance. For

example, Joshi et al. (2019) predicted learning engagement from

facial videos in different classes, such as success on the first attempt

and giving up, indicating whether the student correctly answered

the question.

To handle student ability and states simultaneously for more

accurate student performance prediction, we propose a novel deep

learning-based student state-aware IRT model that uses students’

answers and facial videos. The student state parameter, the key

parameter of our model, is estimated using facial videos taken

while the student is solving problems. The estimated student

state parameter is then incorporated into the logistic function

of Deep-IRT model to explain a remaining factor that (Deep-

)IRT models do not handle. A human experiment was conducted

to collect response logs and facial videos, and cross-validation

was performed to evaluate the proposed model. The proposed

model achieved the best student response prediction performance

compared to previous methods that ignored student ability or

student state. Additionally, the proposed model demonstrated

its interpretability of student response prediction by accurately

estimating IRT parameters, including student ability and item

difficulty, and interpreting the student state as a relative subjective

difficulty parameter. The good interpretability of the proposed

model can be used as feedback to students and other stakeholders,

and it is also important for ITS to provide prompt intervention in

learning.

2 Related works

In this section, we first introduce recent developments in facial-

video-based methods for learning engagement prediction. We

then discuss recent works of log-based methods on response data

mining, including IRT and Knowledge Tracing, and how previous

works handled student states. Finally, we propose a unified model

using facial-video-based and log-basedmethods to improve student

response prediction performance.

There are primarily two trends in recent studies to improve

the accuracy of the learning engagement prediction task. One is

to use a more accurate pre-trained facial expression recognition

model to extract robust facial features against face occlusion and

variation. The other is to use a sequential modeling method, such

as RNN, to learn temporal features among frames. Among the

facial features used, action units belong to an encoding system

(Ekman and Friesen, 1978) that comprehensively and anatomically

describes the actions of individual muscles or groups of muscles

for facial movements, such as upper lip raiser and chin raiser.

Action units have been widely used for high-order facial analysis

processes, such as facial expression recognition. Joshi et al. (2019)

utilized OpenFace to extract action units, head pose, and eye

gaze features from videos and then employed a two-linear layer-

based neural network model to predict learning engagement. The

model was trained on the summary statistic features of action

units, which are commonly used and easy to implement in

learning engagement prediction, although the summary statistics

of OpenFace facial features lost much information. Following

the work of Ruiz et al. (2021) utilized a deep recurrent model

(LSTM) to learn intermediate facial features from a convolutional

neural network-based facial expression recognition model in the

engagement prediction task. Similarly, Abedi and Khan (2021)

employed another deep learning model, Temporal Convolutional

Network (TCN, Bai et al., 2018), to learn facial video features

extracted by a pre-trained CNN-based facial expression recognition

model.

However, the relationship between facial features and learning

engagement is usually complex and context-dependent (Barrett

et al., 2019; Durán and Fernández-Dols, 2021; Witkower et al.,

2023). Consequently, the internal state of students cannot be wholly

predicted from facial features alone. Exploring other emotion

measures used in learning domain studies could be intriguing. For

instance, hand-over-face gestures (Behera et al., 2020), head and eye

movements (Zhan et al., 2016; Behera et al., 2020) as indicators of

increasing (subjective) item difficulties, and electrodermal activity

(EDA) as an indicator of children’s learning engagement (Park

et al., 2019), could provide valuable insights. Discussion text data

from MOOCs were also used to understand learning engagement

and its relationship with student performance: Liu Z. et al. (2022)

investigated how cognitive presence, related to critical thinking

and high-order knowledge acquisition and application, changes

according to different course discussion pacing and discussed their

relationships on student performance; Liu S. et al. (2022) developed

a text classification model to analyze the course discussion so it

can recognize emotional and cognitive engagement and then jointly

predict student performance. However, these considerations are

beyond the scope of this paper.

In addition to IRT for estimating student ability from student

response logs, another paradigm for mining log data is Knowledge

Tracing (KT), which interprets the responses from a learning

perspective. KT assumes that new skills are acquired while solving

a sequence of questions. In KT, the probability of a correct

response depends on a latent variable, the student’s knowledge

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2023.1324279
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhou et al. 10.3389/frai.2023.1324279

state, which is learned by a Hidden Markov Model using students’

answers. The knowledge state changes with each question solved,

indicating whether or not the skill has been mastered, simulating

the knowledge acquisition process. The probability of a correct

response depends on the knowledge states. Unlike IRT, KT

usually does not assume inter-differences among students or

question items, i.e., the ability and the difficulty. Some works

have synthesized these two model paradigms to complement each

other’s limitations and improve the accuracy of predicting student

performance, such as Khajah et al. (2014) and Corrigan et al. (2015).

In some instances, the combination of these models has resulted

in enhanced student performance prediction. Ghosh et al. (2020)

used attention-based deep neural network models for KT and

integrated IRT to capture individual differences. It reached a state-

of-the-art response prediction performance compared to previous

KT models. However, since the model does not have interpretable

parameters, it is hard to know how the student’s ability changes

during the learning and thus is limited to further applications

in education. For model interpretability, we did not use such an

attention-based method; instead, we imposed restrictions on the

neural network model to ensure parameter interpretability.

Studies have used additional features to estimate latent

variables in IRT or KT, resulting in improved student learning

performance prediction. Usually, these additional features include

items’ content information or facial features related to student

forgetting behaviors. For example, Zhou et al. (2021) used images

as items and trained a Convolutional Neural Network regressor

to estimate the item parameter β . This approach demonstrated

improved prediction performance compared to methods that used

conventional latent regressors to estimate item parameters from

handcrafted facial features. González-Brenes et al. (2014) proposed

the Feature Aware Student Knowledge Tracing Model, a general

framework for using additional features to estimate knowledge

state variables or response probability directly. Large Language

Models (LLMs) are potential tools for analyzing item texts. Many

studies have used LLMs such as ChatGPT in the education scenario,

including generalizing questions and hints (Bohacek, 2023), playing

as a learning tutor chatbot (Yadav et al., 2023), and even scoring

essays (Caines et al., 2023). With item texts, it is possible to use

LLMs to estimate item characteristics and cluster items for different

skills, which can save expert annotations and accelerate large-

scale applications in the future. However, in this study, we focus

on modeling student states using facial features, and thus, the

extension of using LLMs in student performance prediction is out

of scope.

Unlike facial-video-based methods, log-based methods

typically do not assume that the student’s affective state influences

the response. However, the prediction performance may decrease

in some situations, such as when high-level students fail due

to boredom or anxiety. Some works have regarded it as the

affect or engagement factor in log-based methods. Johns and

Woolf (2006) was the first to consider the student affective state

by combining IRT and KT. Using a Hidden Markov Model to

recognize engagement/disengagement using response time, they

integrated the recognition result with IRT. The engagement factor

was similar to the knowledge state variable in KT. If the student

was engaged, the response was predicted using IRT. Otherwise,

the correct response probability would be considered as guessing

behavior, resulting in a low probability. However, they did not find

significant improvement, but they proposed a feasible approach to

handle disengaged responses in IRT by excluding them from the

ability estimation process. Subsequently, another study (Corrigan

et al., 2015) continued this work and incorporated a Hidden

Markov Model to learn the student affective state into the Bayesian

Knowledge Tracing model. The results did not show overall

improvement, but it outperformed in cases of guessing and slip

(i.e., failure of a task despite possessing the necessary knowledge),

with higher probabilities observed in low engagement. After the

initial development of the engagement-aware IRT model, several

subsequent studies utilized response time to detect engagement in

various IRT models, primarily in computer adaptive testing (Wang

and Xu, 2015; Nagy and Ulitzsch, 2022). The combination of IRT

and KT is promising to handle inter-differences among students,

question items, and dynamic changes in student state. However, in

this study, unlike the process of knowledge acquisition by solving

a sequence of questions, the student’s affective state changes more

frequently, and the student may experience a series of different

affect within solving one question.

Integrating facial-video-based methods with Deep-IRT can

potentially improve student response prediction performance.

Although response logs are easy to collect, they may have little

information about the student’s state compared to facial videos.

Sharma and Giannakos (2020) suggested that ubiquitous and

noninvasive data such as facial videos and logs should be used

together for future multimodal data learning analytics. D’Mello

et al. (2007) highlighted the need for a multimodal fusion model

to detect student affect, as the limitations of any single modality

can be overcome by using multiple modalities to complement

each other and improve overall prediction performance. On the

other hand, some works have already used facial-video-based

and log-based methods in ITS to model student performance

by estimating student affect and ability. For example, Park et al.

(2019) developed a robot to assist children’s language learning.

The robot estimates learning engagement by using the child’s facial

expression and electrodermal activity. It also estimates literacy

skills by analyzing the child’s historical answers. Based on the

estimations of engagement and literacy skills, the robot provides

suitable learning content by updating the agent’s policy instead of

predicting student performance.

However, few studies considered using facial features and

response data together to understand learning engagement and

predict student performance. The response data are useful as

they reflect idiosyncratic characteristics of participants and items,

e.g., abilities and difficulties, making the student performance

prediction more accurate. In this study, we propose a unified

method to model student ability and state for higher student

response prediction performance. By introducing a student state

latent variable into IRT and estimating it using facial features, we

can leverage the advantages of both facial-video-based methods

and log-based methods to improve prediction performance. Even

though there exist many studies that tackled emotion/engagement

recognition in the education domain, the proposed method is

the first unified method to use facial features and response data.

We believe our study can contribute to the current discussions
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on learning engagement estimation and student performance

prediction.

3 Proposed method

To enhance the performance of student response prediction,

we incorporate a facial-video-based deep student state regressor

into Deep-IRT model. Our approach utilizes facial videos to

latently regress the student state parameter, designed to explain the

residuals unaccounted by static person ability and item difficulty

parameters in conventional item-response theory. This section will

first introduce the standard IRT and Deep-IRT models. Then, we

will explain how to integrate the facial-video-based deep student

state regressor into Deep-IRT model to estimate the student state

using facial videos.

3.1 Item Response Theory and its
implementation in deep learning

We will introduce the One-Parameter Logistic (1PL) Model,

the simplest form of Item Response Theory (IRT). In this model,

the response of student j to item i is denoted as yij ∈ {0, 1},

where 0 indicates an incorrect response and 1 indicates a correct

response. The probability of student j answering item i correctly

can be defined as:

P
(

yij = 1 | θj,βi

)

= σ
(

θj − βi

)

=
1

1+ exp
(

−
(

θj − βi

))

(1)

Here, σ represents the sigmoid function, a monotonically

increasing function that outputs values between 0 and 1. The

parameter θj represents the ability of student j, while βi represents

the difficulty of item i. Higher values of θj or βi indicate a more

proficient student or a more difficult item. According to the

probability function of the 1PL model, if an item is more difficult

(i.e., βi is larger), the probability of a correct response decreases.

Conversely, if a student is more proficient (i.e., θj is larger), the

probability of a correct response increases. In addition, 1− P(yij =

1|θj,βi) represents the probability of an incorrect response.

Deep-IRT model (Tsutsumi et al., 2021) implements the 1PL

model in deep neural networks for parameter estimation. In their

model, ability parameter θ and difficulty parameter β are latent-

regressed using two independent deep IRT regressors, namely

student network Fθ and item network Fβ . The input to these

networks is a one-hot vector representing the index of the student

or item. The length of the one-hot vector depends on the number

of students or items in the dataset. For example, if there are five

students, the one-hot vector for the fifth student will be [0, 0, 0, 0, 1].

With the input of the student index vector, the student network

outputs the estimated student ability parameter θ5 for the fifth

student. A similar process is applied to estimate the item parameter

using item network Fβ . Both networks consist of several linear

FIGURE 1

Proposed model: State-Aware Deep Item Response Theory (SAD-IRT) uses facial videos (upper left) to estimate the student state parameter (upper

right) incorporated into Deep-IRT’s logistic function to predict response. With the operations of standardization and weighting (i.e., the multiplication

of the normalized estimation with a scalar weight parameter) in the deep state regressor, student state φij estimations are constrained to be

zero-mean and weighted variance.
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layers with a hyperbolic tangent activation function. Finally, the

estimated item response parameters θj and βi are used to predict

the probability of student j giving a correct response to question

item i using the sigmoid function, as in Equation 1. The predicted

response is 1 if P(yij = 1|θj,βi) ≥ 0.5 and 0 otherwise. The original

Deep-IRT model outputs the predicted probabilities for each class,

i.e., the correct and incorrect response. However, in this study, we

removed the last linear layer and the following softmax function in

the original Deep-IRT model because they made the interpretation

of IRT parameters difficult. Therefore, the model only outputs the

predicted probability of a correct response in the same way as the

standard 1PL, i.e., P(yij = 1|θj,βi).

Unlike traditional IRT models that estimate parameters

using statistical inference methods such as maximum likelihood

estimation, Deep-IRT utilizes independent Student/Item Networks

to estimate item-response parameters by leveraging inter-student

and inter-item correlations. The model parameters are estimated

through gradient descent optimization, minimizing the cross-

entropy loss between predicted and true responses.

3.2 The proposed model: State-Aware
Deep Item Response Theory (SAD-IRT) for
modeling student state in IRT with deep
facial-video-based methods

In this study, we introduce a novel deep neural network model

that estimates the student state using facial videos of each question-

solving process in conjunction with Deep-IRT model. We call it

State-Aware Deep Item Response Theory (SAD-IRT). As shown in

Figure 1, SAD-IRT predicts the response of student j to item i by

incorporating the newly proposed student state parameter, denoted

as φij, into the logistic function of Deep-IRT:

P
(

yij = 1|θj,βi,φij

)

= σ
(

θj − (βi + φij

)

) (2)

Here, φij is assumed to follow a zero-mean normal distribution,

allowing it to be interpreted as a relative subjective difficulty

parameter.

In SAD-IRT, the proposed deep state regressor, denoted as

Fφ , estimates φij as shown in Equation 3. The video vij collected

during the student j solving problem i is input into the deep state

regressorFφ .Fφ extracts facial features using deep neural network-

based spatial and temporal facial feature extractors sequentially.

The spatial feature extractor extracts a sequence of features from the

input facial video by each frame or a sliding temporal window. Then

the temporal feature extractor extracts the temporal feature and

estimates the student state φij from the spatial features. Here, the

temporal feature extractor is similar to the Feature Aware Student

Knowledge Tracing Model (González-Brenes et al., 2014), where

the response result prediction was obtained through a weight vector

multiplying a feature vector. However, instead of a weight vector

parameter, we can use a deep sequential model such as TCN to

learn spatial features as a time series input. By passing the output

of the temporal feature extractor to a linear layer, we get its output

as a scalar representation of the student state. As we assume φij

represents the relative subjective difficulty, we need its distribution

to have a zero mean. Therefore, we estimate φij by standardizing

the scalar representations and multiplying them with a variance

weight parameter, resulting in a zero mean and weighted variance

distribution of the estimations of φij as illustrated in Figure 1.

φij = Fφ(vij) (3)

The model is trained using the steps outlined in Algorithm 1.

As the input video duration varies, we apply zero padding to

all extracted spatial facial features to ensure consistent sequence

lengths. The model parameters are updated by minimizing the

cross-entropy loss L, as shown in Equation 4.

Require: Fφ ,Fθ ,Fβ ,D

while not converged do

(vij, i, j, yij)← sample batch D ⊲ facial video vij, item

index i, student index j and response yij

φij ← Fφ (vij) ⊲ Latent-regress student

state φij with facial features extracted from the

video vij with spatial feature and temporal feature

extractors

θj ← Fθ (j) ⊲ Estimate student ability parameter θj

from input index j

βi ← Fβ (i) ⊲ Estimate item difficulty parameter βi

from input index i

P(yij = 1|θj,βi,φij)← σ (θj − (βi + φij)) ⊲ Probability of

correct response

{φ, θ ,β} ← ∇{φ,θ ,β}L
(

yij, P(yij = 1|θj,βi,φij)
)

⊲ update

parameters

end while

Algorithm 1. Training Procedure for SAD-IRT Model.

L
(

yij, P
(

yij = 1 | θj,βi,φij

))

=

I
∑

i=1

J
∑

j=1

[

log
(

P
(

yij = 1 | θj,βi,φij

))

yij

+ log
(

1− P
(

yij = 1 | θj,βi,φij

)) (

1− yij
)]

(4)

4 Experiment

This section explains the experiment to collect a dataset to

evaluate the methods described in Section 5. The dataset comprises

participants’ answer logs and facial videos. In the Learning

Analytics research community, several open datasets are available

that contain face or log data, which are commonly used for various

purposes. For example, the DAISEE dataset (Gupta et al., 2022)

provides facial video data with annotations of learning engagement,

while the student engagement dataset (Delgado et al., 2021) offers

in-the-wild facial video data for learning engagement analysis.

Additionally, the ASSISTment dataset1 provides response log data

1 https://sites.google.com/site/assistmentsdata/home/2009-2010-

assistment-data?authuser=0, [Accessed: 27-Aug-2023].
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for educational assessment. However, to the best of our knowledge,

no open dataset is available that includes both face and log data for

learning purposes.

4.1 Participants

A total of 20 participants, Japanese native students at the

university, were recruited for the experiment after providing

informed consent. The inclusion criteria for participant selection

were as follows: (1) aged between 18 and 30 years old, (2) no prior

full-time work experience, and (3) good physical and mental health

to use experimental devices and complete the main tasks.

4.2 Experiment apparatus

The experiment questions used in this study were adapted from

recruitment assessment questions in Japan, specifically from the

Synthetic Personality Inventory (SPI2). The goal of this experimental

study was to target general abilities using tests that are frequently

utilized both in research and practical settings. SPI fits this criterion,

as it is a family of aptitude tests widely used in Japanese recruitment

to assess fresh university graduates’ personalities and capabilities,

including verbal and numerical reasoning3. SPI has also been

utilized in e-Learning studies with Japanese university students, as

seen in Takegami (2010); Arai (2012), and is comparable to studies

in English, such as those using MathTutor (Ruiz et al., 2021) or

literacy education robots (Park et al., 2019). Given the experiment’s

context, conducted at a Japanese university with native Japanese

students, we consider SPI an appropriate choice.

Furthermore, math items in SPI often require respondents to

use paper and pencil, which can hinder capturing their frontal face

for facial analysis, as also reported in Behera et al. (2020). Therefore,

to prioritize clear facial recording, we chose to use only literacy

problems (including verbal reasoning, lexical skills, and reading

comprehension questions) in our study. An example of such a

literacy problem was provided in Figure 2. These questions used in

the main experiment were excerpted from practice books4 ,5 ,6.

The experiment required each participant to solve a minimum

of 50 questions, ensuring the reliability of the estimation results.

It was necessary because the proposed model incorporates the IRT

model, which typically requires a test size of at least 50 or more

to obtain accurate estimations. Although we did not employ the

standard IRT with statistical inference directly in this study, we

2 Wikipedia. SPI . https://ja.wikipedia.org/wiki/SPI

[Accessed 22-August-2023].

3 https://www.3anet.co.jp/np/secure/0-0001-03-401800/0-0001-03-

401800-1.pdf, [Accessed: 29-Nov-2023].

4 オフィス海(2021).史上最. SPI &テストセンタ超集2021最新版.Tokyo:ナ

ツメ社.

5 SPIノトの会(2020).これが本当のSPI3だ! 2020.年度版Tokyo:洋泉社.

6 ノマドワクス(2017)本で内定! SPI & テストセンタ-1 2 0 0 (2017年度
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still adhered to the suggestion from the IRT research community,

considering it a rule of thumb.

The software development environment used for this study

was Windows 11 (ver. 21H2) and PsychoPy (ver. 2022.1.2) (Peirce

et al., 2019). PsychoPy is a Python-based Psychology Experiment

Development Environment. We utilized the OpenCV (Bradski,

2000) interface (ver. 4.4.0.46) in the PsychoPy experiment program

to enable video recording with the laptop’s built-in camera. The

experimental content was displayed on the laptop screen, as shown

in Figure 2. The question was presented in the center of the screen,

while a moving bar at the top of the screen indicated the remaining

time, as depicted in Figure 3.

For participant interaction, a game controller with six buttons

was used. Each button corresponds to one of the six choices in the

experimental problem. The decision to use a game controller was

based on its ergonomic design, which allowed for easy gripping

with both hands. Throughout the experiment, participants held

the game controller and responded to questions by pressing the

appropriate buttons. The game controller was chosen over a

keyboard due to its limited number of buttons and ease of finger

movement. Additionally, using the game controller helped prevent

participants from obstructing their faces with their hands, ensuring

better video quality with fewer facial occlusions.

4.3 Procedure

The experiment consisted of two sessions: a practice session and

a main session.

4.3.1 Practice session
In the beginning, participants were provided with an

explanation of the experiment, including the procedure, the

operation of the experiment interface, the process of capturing

facial videos during the experiment, and the use of recorded videos

for research purposes. After obtaining informed consent from the

participants, the practice session started.

During the practice session, participants completed two pre-

tasks to familiarize themselves with the experiment procedures.

The first practice task involved solving four practice problems

with no time limit. In the second practice task, participants solved

the remaining four problems within a maximum time limit of 60

seconds, replicating the setting of the main session and allowing

participants to become accustomed to the time constraint.

4.3.2 Main task
In the main session, participants answered 50 questions divided

into two parts, as depicted in Figure 3. Each question allowed

a maximum response time of 60 seconds. If the time limit was

reached, the program automatically moved on to the next question.

Facial videos and log data were recorded for each question,

including question responses and response time. The main task

was further divided into two parts, with a break in the middle. The

first part consisted of 25 literacy problems, encompassing lexical

knowledge and reading comprehension. These 25 problems were

randomly selected from a total of 44 problems for each participant.

After completing the first 25 questions, participants were given a
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FIGURE 2

Experiment settings: the main experiment was conducted on a PC laptop, featuring an inbuilt camera for capturing facial videos and a game

controller for recording participant responses to prevent potential face obstructions by hand-over-face behaviors.

rest period of up to 10 min. They had the flexibility to end the break

at any time. The second part of the main task comprised 25 verbal

reasoning problems. These 25 problems were shuffled before being

presented to the participants. The experiment concluded once all

the questions in both parts were answered.

Moreover, as the potential issue mentioned in Section 2

that facial expressions used as emotion indicators might be

insufficient, we attempted to mitigate the issue by designing the

experiment to minimize communicative emotional expressions

(Chovil, 1997), with each participant solving problems alone in a

room. Therefore, the context of the experiment was fixed. However,

we acknowledge that this design was not flawless, as participants

were aware that their faces were being recorded for ethics

and compliance.

The experiment yielded 1,000 data samples (50 items · 20

respondents). After the experiment, the responses for each sample

were encoded as 1 for a correct response and 0 for an incorrect

response.

5 Evaluation

In this section, we evaluate the proposed method explained in

Section 3.2 using a dataset collected.

5.1 Evaluation settings

We implemented our proposed model using PyTorch (ver.

1.12) and Python (ver. 3.97) and utilized an Nvidia RTX 3080 GPU

for accelerated computation. The Adam optimizer was employed

for training, with a learning rate of 1e-03, a batch size of 64, and a

total of 200 epochs.

5.2 Implementations of proposed and
baseline models

Regarding the implementation of the proposed SAD-IRT

model, as shown in Figure 1, in our proposed model, we extract

spatial features from the input video using a spatial feature

extractor, which can be any facial-video-based model, such as facial

expression recognition model, and we can use the middle-layer

or penultimate-layer output as the high-level facial features. These

features are obtained from facial videos vij recorded during the

student’s task-solving process. As highlighted in a survey paper on

facial analysis (Li and Deng, 2020), one common challenge in facial

analysis tasks is the lack of sufficient training data. To address this,

using pre-trained models to extract features provides a solution to

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2023.1324279
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhou et al. 10.3389/frai.2023.1324279

FIGURE 3

Timeline for each item in the main task. (1) Presentation of Problem (up to 60 s): problem displayed on the screen with a red time bar shown above;

Time bar shrinks until it disappears at the time limit. (2) Fixation Cross (1 s): a brief pause before the feedback phase; Fixation Cross Presented at the

center. (3) Feedback Display (2 s): text message informing whether the last answer was correct; A sound e�ect played di�erently depending on the

response result; Correct choice highlighted to provide with visual reinforcement; (4) Fixation Cross (1 s): repeat showing fixation cross again and

move on to the next.

train facial-video-based models on smaller datasets. Regarding the

spatial features, action units extracted with OpenFace have been

commonly used as facial features in previous works such as Joshi

et al. (2019); Ruiz et al. (2021); Kamath et al. (2022); Wang et al.

(2023). At first, we implemented the facial-video-only (OpenFace)

model proposed by Joshi et al. (2019). This model is a neural

network with two linear layers. Each layer has 100 nodes and is

followed by a ReLU activation function. Themodel learns summary

statistics features extracted by OpenFace, including the maximum,

minimum, mean, and SD values of action units, eye gaze, and head

pose.

However, OpenFace primarily focuses on static images, which

may not adequately capture video information across frames. In

this study, we employed another pre-trained facial feature extractor

calledMasked Autoencoder for facial video Representation LearnINg

(MARLIN) from Cai et al. (2023). MARLIN is a variational

auto-encoder-based facial reconstructor that extracts spatial7 facial

features from videos. Cai et al. (2023) reported good performance of

MARLIN in downstream tasks such as in-the-wild facial expression

recognition. Therefore, we utilized MARLIN model as spatial

7 Technically, the MARLIN model extracts spatial-temporal features from a

short video clip segmented from the input video. Here, we still refer to it as

the spatial feature extractor for simplicity, while the latter one, the temporal

feature extractor, learns temporal features over the whole video’s features

instead.

feature extractor in our study. In practice, MARLIN divided the

input video into a sequence of video clips and extracted features

from each video clip sequentially. In our dataset, the longest

MARLIN feature length was 56, the shortest was 2, and the average

length was 23.10± 14.45.

We then employed a deep sequential model, TCN, as the

temporal feature extractor in Fφ . TCN has been previously used

for predicting learning engagement using the facial emotion

recognition model’s middle layer features from videos (Abedi and

Khan, 2021). We use the penultimate layer output of the TCN

module as the high-level facial video features. We pass these

features through a linear layer with a batch normalization layer and

hyperbolic tangent function to obtain a scalar representation. We

then get the estimations of φij after the operations of normalization

and weighting for the scalar representations.

In SAD-IRT and Deep-IRT, we improved the prediction

performance by combining student and item networks with

additional linear and Batch Normalization layers. The Batch

Normalization layer (Ioffe and Szegedy, 2015) standardizes layer

inputs after weight updates, stabilizing the learning process and

accelerating optimization, particularly in deeper networks.

Since the proposed model, SAD-IRT, combines the deep state

regressor and Deep-IRT models, we compare it to the two separate

baseline models: The facial-video-only independent deep state

regressor (consisting of two feature extractors, i.e., MARLIN and

TCN) and Deep-IRT models. We expect that SAD-IRT model
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FIGURE 4

Facial-video-only (MARLIN-TCN) Model, the output classification scalar value before the sigmoid function corresponds to the student state φij

without standardization and weighting operation in Figure 1.

FIGURE 5

Baseline Deep-IRT model (Tsutsumi et al., 2021).

will exhibit better prediction performance by integrating Deep-IRT

with the proposed deep state regressor Fφ .

Facial-video-only (MARLIN-TCN) model (Figure 4) is a facial-

video-based model used for response prediction. Similar to the

facial videos processed in SAD-IRT, MARLIN-TCN model was

trained with videos by using the MARLIN spatial and TCN

temporal feature extractor. Unlike SAD-IRT, which uses deep

state regressor to estimate the student state, MARLIN-TCN model

makes predictions directly from its outputs and thus does not need

the normalization and weighting operations to constrain outputs in

the end.

As for Deep-IRT baseline models, one is Deep-IRT model (as

illustrated in Figure 5), which follows a similar structure and is

also integrated with the proposed model. The other one is the

original Deep-IRT w/o BatchNormmodel in Tsutsumi et al. (2021),

which has only two linear layers with every 50 nodes in the

student/item network. There is only a hyperbolic tangent activation

function after each linear layer, without a Batch Normalization

layer. The two Deep-IRT models solely learn participants’ answers

for prediction. By providing student and item indices, Deep-IRT

model estimates student and item parameters, θ and β , and then

predicts whether the response is correct.

5.3 Evaluation methods

To evaluate the prediction performance of the proposed model

and the baseline models, we employed a 20-fold stratified cross-

validation. Since the dataset was imbalanced, with around 72%

positive response samples, we used stratified cross-validation to

ensure that the training and test sets had the same proportion of

positive and negative samples as the entire dataset. It allowed us

to obtain cross-validation results that were close approximations

of the generalization error. Due to the relatively small size of the

collected dataset, we conducted a 20-fold stratified cross-validation

for both the proposed and baseline models to evaluate their

prediction performance under this limitation better. The dataset

was shuffled and split into a training set (950 samples) and a test

set (50 samples) for each fold. We recorded the estimated item

response parameters and predicted probabilities on the test set of

each fold for further analysis. Since response prediction is a binary

classification task, we used accuracy and F1 score as evaluation

metrics. The average accuracies and average F1 scores of all folds

on the training and test sets were reported. The F1 score, i.e.,

the harmonic mean of precision and recall, was used as a fairer

metric than accuracy in an imbalanced dataset. Additionally, we
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conducted a Wilcoxon signed-rank test to determine if the cross-

validation results of each fold between the proposed model and the

baseline models were significantly different.

We also evaluated the prediction performance in the case of

early prediction to see how much the performance changed when

the prediction was made before the student answered the question.

The general way of early prediction is fixed time-based, such as

predicting the response at the first 12 seconds, as widely used

in previous works (Joshi et al., 2019; Ruiz et al., 2021). In this

research, we set a series of early prediction timings based on the

quantiles of the response time distribution of the whole dataset. We

truncated the feature-length according to the timing, only retaining

the features no later than it. The early prediction timings included

12 seconds (the first quantile of the response time), 23 seconds (the

median), 37 seconds (the third quantile), and 60 seconds (the full

length of videos). We also reported the results for the most extreme

case in which only the first video clip (approximately the first 1

second) was used for prediction.

To evaluate the interpretability of the proposed model, we

compared the estimations of IRT parameters between the proposed

model and Base IRT model in the previous study of Zhou et al.

(2021). Base IRT model does not have student or item networks,

and scalar parameters in the neural network estimate the student

and item parameters. We observed a strong correlation between

the estimated parameters of the Base IRT model and those inferred

using the Markov chain Monte Carlo (MCMC) algorithm, which

suggests that the model parameters can be interpreted as item-

response parameters. To obtain the estimated IRT parameters, we

iteratively trained Base IRT model using the entire dataset and

kept the model that achieved the best prediction performance. The

scalar parameters in the trained model represent the estimated IRT

parameters. Additionally, we compared the estimations of SAD-

IRT with Deep-IRT model, which has been shown to accurately

estimate IRT parameters, especially for small datasets.

To evaluate whether the proposed model can be interpreted in

the same way as IRT, we compared the similarities between the

estimations made by the proposed model on test sets with Base

IRT and Deep-IRT models. The root mean square error (RMSE),

Pearson’s correlation coefficient and the Kendall rank correlation

coefficient were used as similarity metrics, following the work

of Tsutsumi et al. (2021). Since the student and item networks

estimated each student and item parameter multiple times on test

sets, we used their averaged estimations for each student and item.

6 Results

6.1 Prediction performance

The overall dataset had a mean response value of 0.721± 0.449

(i.e., the mean value± the standard deviation, SD), indicating that,

on average, participants answered approximately 72.10% of the

questions correctly. The average response time across all samples

was 25.15 ± 15.44 seconds, ranging from 2.67 to 60.00 s. Base IRT

model fitted the whole dataset and achieved 0.821 and 0.884 in

terms of accuracy and F1 score.

The results of the cross-validation, including the average and

SD of accuracies and F1 scores on the training and test sets, are

TABLE 1 Performance of prediction on training sets using 20-fold

cross-validation (mean ± SD).

Model Accuracies F1 scores

SAD-IRT (Proposed) 0.857± 0.003 ∗∗ 0.892± 0.006 ∗∗

Deep-IRT (Tsutsumi et al.,

2021)

0.832± 0.003 0.878± 0.007

Deep-IRT w/o BatchNorm

(Tsutsumi et al., 2021)

0.826± 0.003 0.881± 0.004

MARLIN-TCN (Bai et al.,

2018; Cai et al., 2023)

0.746± 0.002 0.838± 0.012

OpenFace (Joshi et al., 2019) 0.745± 0.004 0.825± 0.019

∗∗p < 0.01. Bold values indicate the highest/best results. Italic values indicate the second-

highest/second-best results.

TABLE 2 Performance of prediction on test sets using 20-fold

cross-validation (mean ± SD).

Model Accuracies F1 scores

SAD-IRT (Proposed) 0.844± 0.043 ∗ 0.895± 0.028 ∗

Deep-IRT (Tsutsumi et al.,

2021)

0.823± 0.042 0.884± 0.026

Deep-IRT w/o BatchNorm

(Tsutsumi et al., 2021)

0.816± 0.037 0.882± 0.023

MARLIN-TCN (Bai et al.,

2018; Cai et al., 2023)

0.763± 0.033 0.857± 0.017

OpenFace (Joshi et al., 2019) 0.754± 0.021 0.853± 0.011

∗p < 0.05. Bold values indicate the highest/best results. Italic values indicate the second-

highest/second-best results.

shown in Tables 1, 2, respectively. Our proposed model, SAD-

IRT, outperformed all baselinemodels, achieving average accuracies

and F1 Scores of 0.857 ± 0.003 and 0.892 ± 0.006 on training

sets, 0.844 ± 0.043 and 0.895 ± 0.028 on test sets, respectively.

Overall, they were also the highest compared with all baseline

models. Regarding the overall prediction performance on test sets

for other baseline models, it was followed by Deep-IRT, Deep-

IRT w/o BatchNorm, facial-video-only (MARLIN-TCN), and

facial-video-only (OpenFace) in terms of accuracy and F1 score.

The proposed SAD-IRT outperformed Deep-IRT, the second-best

model, achieving 0.857 and 0.892 for averaged accuracy and F1

score on the training sets, compared to 0.832 and 0.878 for Deep-

IRT, respectively, with p < 0.01 on aWilcoxon signed-rank test. On

the test sets, SAD-IRT achieved 0.844 and 0.895 for accuracy and

F1 score, compared to 0.823 and 0.884 for Deep-IRT, respectively,

with p < 0.05. We found that facial-video-only (MARLIN-TCN)

outperformed facial-video-only (OpenFace) on the test sets, with a

0.9% and 0.4% increase in average accuracy and average F1 score,

respectively. It also achieved higher results on the training sets,

with a 0.1% and 1.3% increase. Comparing the results of Deep-

IRT and Deep-IRT w/o BatchNormmodels, we observed an overall

performance improvement of 0.7% and 0.2% in terms of accuracy

and F1 score for Deep-IRTmodel on the test sets. In addition, all the

results of the evaluated models were at least higher than the chance

level in the cross-validation.

Regarding the results of early prediction, the average accuracies

and F1 scores of SAD-IRT and facial-video-only (MARLIN-TCN)
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FIGURE 6

Early prediction results on test sets of 20-fold cross-validation: horizontal axis is for timings of early prediction. (A) SAD-IRT. (B) Facial-video-only

(MARLIN-TCN).

TABLE 3 Similarity of estimated IRT parameters between the proposed

model (SAD-IRT) and Base IRT.

RMSE Pearson (r) Kendall (τ )

Student ability θ 0.29 0.98 0.85

Item difficulty β 0.85 0.97 0.84

TABLE 4 Similarity of estimated IRT parameters between the proposed

model (SAD-IRT) and Deep-IRT.

RMSE Pearson (r) Kendall (τ )

Student ability θ 0.12 0.98 0.85

Item difficulty β 0.40 0.97 0.84

on the test sets were presented in Figure 6, respectively. It was

observed that in terms of accuracy and F1 score, the prediction

performance of both models increased as they were given longer

time to predict, ranging from the shortest 1 second to 60 seconds,

which is the full length of the videos. The proposed model,

SAD-IRT, still maintained better prediction performance than the

student-state-unaware baseline model Deep-IRT which achieved

the second-best prediction performance in the cross-validation.

Even in the shortest 1s case, SAD-IRT was slightly better than

Deep-IRT, with a 0.5% and 0.3% increase in accuracy and F1 score,

respectively. As for MARLIN-TCN model, the overall prediction

performance on the test sets decreased almost to the chance level

in the shortest 1s case. Usually, the face was neutral at this moment

after being presented with the fixation cross for 1s, and the student

just began to read the question. Since facial muscle activities usually

take hundreds of milliseconds to respond, as found in Dimberg

and Thunberg (1998), the first-second features may only contain

limited facial information.

6.2 Interpretability

By comparing the estimated IRT parameters among the

proposed model, Base IRT, and Deep-IRT, we found strong

correlations (r ≥ 0.97 and τ ≥ 0.84) of estimated parameter values,

including θ and β . Regarding RMSE, we found that the error of

the student ability parameter θ was relatively small (RMSE was 0.29

and 0.12 for Base IRT and Deep-IRT, respectively) but not for the

item difficulty parameter β (RMSE was 0.85 and 0.40), probably

due to the larger sample size of items and the correlation with

subjective difficulty φ. The details are summarized in Tables 3, 4,

and also illustrated in the scatter plot in Figure 7. In summary, the

proposed SAD-IRT model can estimate item-response parameters

as accurately as IRT. In addition, since φ is our proposed parameter,

it is difficult to compare it with IRT directly.

We calculated the statistics of student state estimations for

SAD-IRT on the whole test sets. Regarding the φ parameter, we

confirmed that the mean was 0.000 (while the SD was ± 0.781).

In addition, the averaged student state φ·j and φi· on each student

and item showed weak negative correlations with θ (-0.157) and β

(-0.276). The weak correlations between estimated item-response

parameters and student states show they are independent.

We compared SAD-IRT’s predictions on test sets with the

student-state-unaware Deep-IRT’s predictions and grouped them

into two groups based on whether or not they made the same

predictions. The number of samples in the group with the same

predictions was 931, and the number of samples in the group

with different predictions was 69, out of which SAD-IRT correctly

predicted 45. Regarding the same predictions made by the two

models, they achieved the same prediction performance. Only for

those different predictions, either SAD-IRT model or Deep-IRT

model correctly predicted, while the other failed. Obviously, SAD-

IRTmodel outperformed Deep-IRTmodel because SAD-IRTmade

more correct predictions than Deep-IRT in the group of samples

with different predictions.
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FIGURE 7

Estimated parameters: proposed model (horizontal axis) vs. base IRT (vertical axis). The number of dots in each plot equals the number of students

for θ (A, C), and the number of items for β (B, D).

TABLE 5 Statistics of estimated IRT parameters of SAD-IRT in di�erent

sample groups (mean ± SD).

Samples θ β φ

All samples on test sets 0.521± 0.609 −0.842± 1.546 0.000± 0.781

Samples of the same

predictions with

Deep-IRT

0.532± 0.614 −0.907± 1.555 −0.044± 0.710

Samples of different

predictions with

Deep-IRT

0.370± 0.532 0.039± 1.098 0.591± 1.303

We then compared the parameter estimations of SAD-IRT

among groups. Regarding the group of the same predictions, the

mean and SD of the item-response parameter and student state

estimations were close to the estimations of all samples on test

sets. However, we found great differences in the group of different

predictions. Compared with the group of the same predictions, the

mean student ability θ was less proficient (0.370 ± 0.532 vs. 0.532

± 0.614), and the item difficulty β was more difficult (0.039± 1.098

vs. -0.907± 1.555), and the student state φ was much higher (0.591

± 1.303 vs. -0.044± 0.710) as shown in Table 5.

7 Discussion

The proposed model SAD-IRT demonstrated the best overall

prediction performance compared to other baseline models. SAD-

IRT significantly outperformed the second-best Deep-IRT model

in the 20-fold cross-validation. The performance improvement was

achieved by incorporating the student state into the IRT logistic

function. SAD-IRT leverages facial video features to estimate

student states and uses students’ answers to estimate item response

parameters. Additionally, we observed that Deep-IRT model with a

deeper structure and Batch Normalization layers resulted in further

improvements in prediction performance. MARLIN-TCN model

trained on facial video representation features also resulted in

higher prediction performance than OpenFace model trained on

summary statistics of facial action unit features.

Regarding the results of the early prediction tasks shown in

Figure 6, the proposed model, SAD-IRT, exhibited the ability to

make predictions even before the student responded, surpassing

the performance of the baseline models. This advancement is

a good improvement compared to the results of the previous

facial-video-only (OpenFace) method in early prediction (Joshi

et al., 2019). The model’s early prediction capability has a

practical advantage in providing timely tutor instruction or

intervention. Along with later features available, the general

trend of the increase in SAD-IRT and MARLIN-TCN prediction

performance validates that the facial video features contain

crucial information for student performance prediction. Slight

prediction performance improvement was achieved with very

short and early facial features. In the shortest and earliest case

of the early prediction at the first 1 second, it is clear that

SAD-IRT achieved very similar results to Deep-IRT, while the

result of MARLIN-TCN model almost degraded to the chance

level.
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By calculating SAD-IRT’s parameter estimation mean and SD

in the group of different predictions on test sets between SAD-

IRT and the student-state-unaware Deep-IRTmodel, we found that

SAD-IRT outperformed Deep-IRT on test sets, in the case of lower-

skilled students (θ = 0.370 for samples of different predictions

group, compared to 0.521 for all samples) solving difficult tasks (β

= 0.039 vs. -0.842), as shown in Table 5. Moreover, we observed

that the mean value of the student state was higher as well (φ

= 0.591 vs. 0.000). These results indicate that when a low-skilled

student attempts a difficult question, they perceive it as relatively

more difficult, leading to an increase in φ. In this case, the

predicted response probability decreases, and SAD-IRT predicted

it to be wrong, unlike the student-state-unaware Deep-IRT model

overestimating the response to be correct. This finding aligns with

the relationship between student affect and ability as elaborated in

Fenza et al. (2017), which suggests that if a question is too difficult,

students may feel frustrated and anxious, ultimately causing an exit

from the ideal learning, resulting in a failure to answer the question

correctly. SAD-IRT can interpret the relative subjective difficulty

through φ, particularly in the case of low-skilled students solving

difficult tasks.

As a typical limitation in preliminary research, our study’s

small sample size of 20 students might limit its generalizability

to a broader population. We thus performed additional analyses

to validate the robustness of the proposed model (SAD-IRT)

compared to Deep-IRT model, which is identical except for the

exclusion of the key φ parameter. Our procedure involved leaving

the data of one participant out of the 20-participant dataset (thus

resulting in a dataset of 19 participants), and then conducting the

same cross-validation with both SAD-IRT and Deep-IRT models.

We repeated this process 20 times, excluding each participant once.

The results from a paired t-test showed a significant performance

improvement of SAD-IRT over Deep-IRT: for accuracy, t(19) =

13.11, p< 0.001, mean 0.899± 0.003 [SD] vs. 0.850± 0.004; and for

F1 score, t(19) = 11.57, p < 0.001, 0.892 ± 0.002 vs. 0.838 ± 0.003.

These results suggest that the participant size of 20 was acceptable

for our evaluation study.

Another relevant concern is that cultural and ethnic biases

in the application of facial features. However, focusing on a

single culture and ethnicity, such as Japan, can be beneficial for

ensuring diversity and representativeness within this scale. Japan is

a homogenous and frequently explored culture/ethnicity, making

it an ideal target for this study. Our participant selection of native

Japanese university students was not gender-biased, with a female

participation rate of 30% (6 out of 20 participants), comparable

to the average student ratio at Japanese universities (30.8% for

postgraduates and 44.5% for undergraduates8). Additionally, we

found no significant gender differences in prediction performance

in our test sets: for accuracy, t(998) = -0.872, p = 0.394, with means

of 0.837 ± 0.049 [SD] for males and 0.860 ± 0.055 for females;

for F1 score, t(998) = -0.763, p = 0.455, 0.885 ± 0.043 vs. 0.903 ±

0.053. Investigating other cultures and ethnicities is an important

direction for future research. Delving into individual differences

might require more explainable models, potentially at the expense

8 https://www.mext.go.jp/en/news/topics/detail/__icsFiles/afieldfile/

2017/10/13/1397166_001_1.pdf, [Accessed: 29-Nov-2023].

of predictive performance (Rudin, 2019; Zhou et al., 2021), which is

another intriguing topic but beyond the scope of the current study.

In this study, we focused on analyzing student state within

one problem-solving, potentially overlooking student states carried

from one item to another. To investigate whether there is

any temporal dependence among student states, we explored

how the student state φ parameter evolved by applying a first-

order autoregressive AR(1) model to each participant’s φ values.

This analysis revealed no temporal trend, either increasing or

decreasing. The autoregressive coefficient for each participant was

not significantly different from zero (p = 0.51 [mean] ± 0.28

[SD], with a minimum of 0.07 and a maximum of 0.96). This

lack of trend could be partially attributed to the video segment

for each problem-solving. More naturalistic scenarios without such

segmentationmight reveal a stronger temporal structure. Temporal

trends may be also observable in different contexts, such as in tests

with a predominance of either easier or more difficult items, which

could induce emotions like boredom. In such scenarios, it would be

beneficial to integrate attention networks, as proposed in Tsutsumi

et al. (2022); our φ parameter will be constrained by its previous

estimations as well.

Regarding the interpretability of the IRT parameters, we found

that the proposed model, SAD-IRT, accurately estimated the

IRT parameters, which was evident from the high Pearson and

Kendall correlation coefficients observed among SAD-IRT, Base

IRT, and Deep-IRT. The results demonstrated that the parameter

estimations were highly similar, as shown in Figure 7. Additionally,

since the mean of φ was zero, the student and item parameters were

less biased, with φ included in SAD-IRT. Given the high similarities

between the item-response parameter estimations of SAD-IRT

and the base models, SAD-IRT can interpret the estimated IRT

parameters, such as the student ability parameter θ and the item

difficulty parameter β , in the same way as IRT.

The relationship between emotion and student performance,

similar to the φ-emotion relationship, is also complex due to the

diverse emotions present in the learning domain (Pekrun, 2011;

Fenza et al., 2017). Furthermore, we had to consider the trade-

off between predictive performance and model interpretability

(Rudin, 2019). Given these factors, we found establishing a clear

relationship challenging. Therefore, in this paper, we focused on

extracting the most effective features to directly regress our relative

subjective difficulty parameter, φ, instead of identifying emotions,

to maintain prediction performance. To explore the φ-emotion

relationship within our model’s framework, we recognize at least

two potential methods. One involves employing video-based facial

emotion recognizers, as those in Goncalves et al. (2023), for a post

hoc analysis, although such analyses are sometimes not advisable

(Zhou et al., 2021). Alternatively, another classifier layer could be

added to our model to process the extracted facial spatiotemporal

features. While these approaches exceed the scope of this paper,

they offer promising future research directions, particularly if

ground truth emotion labels are available. Such methods could

significantly improve the interpretability of the φ parameter.

Overall, the proposed SAD-IRT model outperformed the

baseline models regarding overall prediction performance

and maintained its performance in early prediction tasks. By

incorporating the student state into IRT using facial features,

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1324279
https://www.mext.go.jp/en/news/topics/detail/__icsFiles/afieldfile/2017/10/13/1397166_001_1.pdf
https://www.mext.go.jp/en/news/topics/detail/__icsFiles/afieldfile/2017/10/13/1397166_001_1.pdf
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhou et al. 10.3389/frai.2023.1324279

SAD-IRT model demonstrated the best prediction performance

and enhanced the interpretability of the model by introducing

the relative subjective difficulty parameter, i.e., the student state

φ. SAD-IRT is useful in helping instructors understand students’

learning experiences through accurate student performance

prediction and the interpretability of the relative subjective

difficulty of the current task.

Furthermore, in addition to student performance prediction,

SAD-IRT model has the potential to predict students’ dropout

behaviors in the future. High dropout rates are a major challenge in

online learning (Lee and Choi, 2011). As facial expressions may be

elicited when dropout behaviors occur, potentially due to difficult

tasks, SAD-IRT can predict dropouts similarly by capturing the

student state from facial features and estimating item-response

parameters. The results are also interpretable to stakeholders and

can help prevent dropouts.

8 Conclusion

In conclusion, this research proposed the SAD-IRT model for

predicting student responses using facial videos and response data.

The SAD-IRT model incorporated the student state parameter

into (Deep-)IRT using facial videos, resulting in superior overall

prediction performance compared to baseline models. The model

also maintained its performance in early predictions, surpassing

the previous facial-video-only model. The accurate estimation of

IRT parameters and the student state enhances the interpretability

of the model in educational applications, allowing for appropriate

learning interventions based on student ability and subjective

difficulty. Additionally, the SAD-IRT model has the potential

to predict dropout behaviors, providing valuable insights for

preventing dropouts in online learning settings.
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