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Background: As global demographics shift toward an aging population,

monitoring their heart rate becomes essential, a key physiological metric for

cardiovascular health. Traditional methods of heart rate monitoring are often

invasive, while recent advancements in Active Assisted Living provide non-

invasive alternatives. This study aims to evaluate a novel heart rate prediction

method that utilizes contactless smart home technology coupled with machine

learning techniques for older adults.

Methods: The study was conducted in a residential environment equipped

with various contactless smart home sensors. We recruited 40 participants,

each of whom was instructed to perform 23 types of predefined daily living

activities across five phases. Concurrently, heart rate data were collected

through Empatica E4 wristband as the benchmark. Analysis of data involved

five prominent machine learning models: Support Vector Regression, K-nearest

neighbor, Random Forest, Decision Tree, and Multilayer Perceptron.

Results: All machine learning models achieved commendable prediction

performance, with an average Mean Absolute Error of 7.329. Particularly,

Random Forest model outperformed the other models, achieving a Mean

Absolute Error of 6.023 and a Scatter Index value of 9.72%. The Random Forest

model also showed robust capabilities in capturing the relationship between

individuals’ daily living activities and their corresponding heart rate responses,

with the highest R2 value of 0.782 observed during morning exercise activities.

Environmental factors contribute the most to model prediction performance.

Conclusions: The utilization of the proposed non-intrusive approach enabled an

innovative method to observe heart rate fluctuations during di�erent activities.

The findings of this research have significant implications for public health.

By predicting heart rate based on contactless smart home technologies for

individuals’ daily living activities, healthcare providers and public health agencies

can gain a comprehensive understanding of an individual’s cardiovascular health

profile. This valuable information can inform the implementation of personalized

interventions, preventivemeasures, and lifestylemodifications tomitigate the risk

of cardiovascular diseases and improve overall health outcomes.
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1 Introduction

1.1 The impact of aging population and the
need for active assisted living

The world is currently experiencing a significant demographic

shift, characterized by a rapid increase in the aging population.

This demographic milestone is projected to reach unprecedented

levels in the coming years (United Nations, 2019). Advancements

in healthcare and living standards have led to an increase in

the lifespan of individuals, resulting in a significant rise in the

proportion of the older individuals within the global population

(Quora, 2022). In 2022, the world wide population of individuals

aged 65 years or older is more than 770 million, which means more

than one in 10 people are older adults (Alvarez, 2023). Eastern and

South-Eastern Asia are home to the largest number of older adults

who are 65+ years old, accounting for ∼260 million individuals,

followed by Europe and Northern America with over 200 million

older individuals, representing the highest percentage of older

adults (more than 17%) (United Nations, 2019). These numbers are

projected to increase over the next three decades, with an estimated

one in six people worldwide being aged 65 years or over by 2030,

and this figure is expected to double to 1.5 billion individuals by

2050. Especially in low and middle-income countries, where 80%

of older adults are projected to reside, healthcare challenges may be

significant [World Health Organization (WHO), 2023].

Chronic non-communicable diseases, including heart diseases,

cancer, and chronic respiratory diseases, often accompany the

process of aging (Prince et al., 2015). These conditions require

specialized healthcare services that monitor various health

indicators, including physical activity, heart rate, blood pressure,

and sleep quality (Soon et al., 2019). Active Assisted Living (AAL)

technology, i.e., technology that aims to maintain older adults’

living independence using technology advancements, has emerged

as a promising solution to address the healthcare needs of the

aging population. By embedding reliable devices and sensors

within a house, AAL creates a “smart home” environment (Domb,

2019). When coupled with Artificial Intelligence (AI), Smart Home

Technologies (SHTs) has the potential to assist with daily functions

in the home and monitor, treat and manage chronic health

conditions (Philip andWilliams, 2019).Moreover, smart homes can

allow caregivers to provide better healthcare for older adults and

even reduce their reliance on caregivers (Frisardi and Imbimbo,

2011). Smart home devices can continuously capture health-related

information in an unobtrusive manner, thereby enabling safer

independent living for the older adults (Wang et al., 2021). The

integration of SHTs with AI offers the potential to constantly

observe, model, and understand human behavior, as well as identify

early warnings for interventions (Chen et al., 2014). Compared

Abbreviations: AAL, active assisted living; ADLs, activities of daily living; AI,

artificial intelligence; SHTs, smart home technologies; IoT, internet of things;

CVDs, cardiovascular diseases; HR, heart rate; APIs, application programming

interfaces; LSTM, long short-term memory; DBN, deep belief network; RF,

random forest; SVR, support vector regression; KNN, K-nearest neighbor;

DT, Decision Tree; MLP, multilayer perceptron; RMSE, root mean squared

error; MAE, mean absolute error; R2, R-squared; SI, Scatter Index; MDI, mean

decrease in impurity.

to other Internet of Things (IoT) technologies, such as wearables,

SHTs do not require older individuals to carry it all day, which

can be inconvenient or easily forgotten, particularly for those

individuals living with dementia (Stavropoulos et al., 2021).

1.2 Heart rate prediction and its
importance in cardiovascular health
monitoring

Cardiovascular diseases (CVDs), also known as heart-related

diseases, stand as the leading cause of death worldwide. In 2019

alone, CVDs accounted for 17.9 million deaths, representing

32% of all global deaths (World Health Organization, 2021).

These devastating consequences are particularly prevalent in low-

and middle-income countries, where limited access to healthcare

services hinders early detection and treatment (Wirtz et al., 2016).

As individuals age, the prevalence of CVDs increases, with the aging

population being more susceptible to these diseases compared to

younger individuals (Rodgers et al., 2019). A report from Benjamin

et al. (2019) indicated that 40% of individuals aged between 40

and 59 have CVDs, while more than 70% of older adults aged 60

and above were affected by CVDs. Heart Rate (HR) serves as a key

risk factor for CVDs and has been found to have a strong positive

association with cardiovascular morbidity and mortality (Saxena

et al., 2013). Consequently, accurate and timely prediction of heart

rate can greatly contribute to the early detection and prevention

of cardiovascular events, thereby improving overall cardiovascular

health outcomes.

1.3 Current challenges and objectives

Despite the significant potential of SHTs and AI in predicting

heart rate and enhancing cardiovascular health monitoring, there

are several challenges that need to be addressed. Existing literature

primarily focuses on wearable devices and IoT technologies for

health monitoring, which often rely on user compliance and can be

burdensome for older adults (Mitratza et al., 2022). Furthermore,

the application of SHTs in predicting heart rate has been limited

to specific contexts or necessitates the combination of wearable

technologies, rendering it impractical for daily living scenarios.

Therefore, the objective of this research paper is to investigate

the feasibility of utilizing SHTs, coupled with AI, for heart rate

prediction in an unobtrusive manner within an active assisted

living environment. The paper aims to bridge the existing gap in

research and contribute to the development of a comprehensive

and practical solution for predictive monitoring of heart rate

in real-world scenarios, addressing the limitations of wearable

devices and current monitoring approaches. The objectives assume

that smart home indicators, such as motion sensors and power

consumption, can observe activity patterns and their correlation

with changes in HR and studies whether such correlation exists.

1.4 Overview and paper structure

The increasing prevalence of cardiovascular diseases among the

aging population highlights the urgent need for reliable indoor

heart rate monitoring. This study leverages the potential of smart
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home technologies to address the need, proposing a contactless,

machine learning-based solution for heart rate prediction. This

paper is organized as follows: Section 1, the Introduction,

introduces the topic and outlines the current challenges in the

field. Section 2, Related Work, reviews relevant literature to

provide an overview of the state-of-the-art in using smart home

technology for heart rate prediction. Section 3, Materials and

Methods, describes the devices used for the study, along with

the deployment of the smart home environment. This section

also details the methodology employed in the study. Section 4

presents the Results and Findings, where the analyses performed

are reported. Finally, Section 5 discusses the implications of these

findings, acknowledging the limitations of the current study and

suggesting potential areas for future research.

2 Related work

This section presents an overview of previous research

conducted in the field of heart rate prediction using IoT technology,

machine learning, and smart home approaches for older adults.

Lin et al. (2021) have explored the use of IoT technology to

monitor cardiovascular events. They provided a comprehensive

overview of sensor advancements capable of monitoring various

physiological signals associated with CVDs. However, most of

these sensors require attachment to the body. To address the

limitations associated with inconvenience to carry of traditional

health monitoring devices, Xiao et al. (2020) developed an

intelligent wearable bracelet that can monitor heart rate during

sports and provide real-time alerts for abnormal records. Similarly,

David Chung Hu et al. (2018) proposed an intelligent monitoring

system by integrating temperature sensors, pulse sensors, and

accelerometers to measure the vital signs in older adults. The

system demonstrated high accuracies, exceeding 90%, in measuring

body temperature, pulse rate, and fall detection. Through the

comparison of pulse rates during various activities, the study

revealed substantial variations in heart rate across different

activities. Ali et al. (2019) developed a wearable sensor prototype

for heart rate and body temperature monitoring, achieving a

low deviation of 2% compared to commercially available devices.

Al Rasyid et al. (2015) integrated body temperature senor and

pulse oximeter sensor into a wireless body sensor network to

monitor various vital signs. This study identified a limitation

related to the distance threshold (20m) between the body-attached

sensors and the server receivers, and the greater distance, the

more data loss. Alnaggar et al. (2023) utilized Eulerian Video

Magnification for non-contact heart rate and respiration rate

extraction from video signals using camera. Although the proposed

architecture are effective in extracting heart rate estimation from

facial recordings, they face limitations with high-frequency noise,

varying light conditions, motion, and raise privacy concerns,

making it less suitable for daily living monitoring. The integration

of AI techniques enables researchers to gain deeper insights

from heart-related data and predict cardiovascular events. Dami

and Yahaghizadeh (2021) proposed a deep learning method

called LSTM-DBN, combining Long Short-Term Memory (LSTM)

and Deep Belief Network (DBN) to detect arterial events with

superior performance compared to other methods, such as Logistic

Regression, Random Forest (RF), and Recurrent Neural Network.

Mohan et al. (2019) introduced a hybrid machine learning model,

HRFLM, which combined RF and Linear Model to predict

cardiovascular diseases with a high accuracy of 88.7%. Wang

and Gao (2020) developed a real-time heart rate monitoring

system for athletes using wearable devices and deep learning

techniques, achieving accurate heart rate prediction and activity

classification in volleyball plays. Additionally, IoT based SHTs

have been widely utilized in indoor healthcare and assisting older

adults in aging in place (Linkous et al., 2019). Adib et al. (2015)

utilized ubiquitous sensing technologies to remotely monitor

vital signs using a wireless sensing technology called Vital-Radio,

achieving a high accuracy of 99% for breathing and heart rate

measurements. However, the performance of this method is limited

by large body movements, as it primarily relies on detecting

chest motion. In studies, Kumar et al. (2022) and (Liu et al.

(2022), the authors utilized Wi-Fi technology to monitor vital

signs by detecting physiological movements that affect channel

state information. However, this technology also has limitations

in accurately detecting high heart rates or breathing rates during

periods of excessive movement. Scalise et al. (2016) developed

a smart home network with heterogeneous health sensors to

monitor cardiovascular situations in older adults, while Pham

et al. (2018) presented a cloud based smart home environment for

comprehensive homecare services for older adults.

Despite the advantages of wearable devices in terms of accuracy

and non-invasiveness, challenges related to their adoption and user

compliance exist. Wearable devices heavily rely on participants’

willingness to wear them, and some individuals such as older

adults with dementia may forget to wear them regularly, leading

to incomplete data and reduced healthcare monitoring quality

(Stavropoulos et al., 2021). Additionally, concerns regarding the

use of unfamiliar devices in research studies and the discomfort

associated with wearing them for extended periods can create

resistance among users, especially older adults. Sensor burden and

user discomfort have been identified as critical issues that need to

be addressed in wearable sensor monitoring solution (Zhang et al.,

2022).

However, current research exhibits a gap in the ability to

monitor heart rate information using smart home technologies

alone, without the need for additional wearable devices, which is

more practical for daily living contexts. The primary contribution

of this research is achieving precise heart rate prediction

and enabling cardiovascular healthcare monitoring for different

activities within the context of daily living without requiring

additional involvement from individuals.

The scientific novelty of this study is demonstrating the

adaptability of machine learning techniques to heterogeneous

smart home indicators for indoor heart rate monitoring.

Furthermore, the application novelty lies in exploring the

potential of smart home technology to unobtrusively monitor

heart rate for general surveillance, addressing the limitations of

existing approaches.

3 Materials and methods

3.1 Devices

3.1.1 AAL devices
Through the collaboration with smart home manufacturer

Swidget, this study can acquire diverse smart home sensors
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FIGURE 1

AAL environment.

and have access to their data repository through Application

Programming Interfaces (APIs). The Swidget concept focuses on

the adaptability and integration of smart home technologies. Their

smart devices operate based on installing modular sensors into

reconfigured common electrical devices such as outlets, on-off

switches, and dimmers, which makes these devices unobtrusive,

ensuring zero-effort from users. Moreover, these sensors are

integrated directly into electrical circuits, meaning they do not

have batteries. This ensures that they can be powered reliably

for an extended period of time, without the concern of depleting

battery life, provided there are no power outages. In this study, we

paired smart outlets and smart switches with (1) air quality module

sensors, (2) temperature and humidity sensors, and (3) passive

infrared motion module sensors, which create four configurations

in total. In addition, door contact sensors were also installed in

the environment.

3.1.2 Wearable devices
The purpose of using wearable device here was to collect the

HR data, serving it as the benchmark when comparing with the

predicted HR values. Consequently, it requires that the selected

wearable device should be reliable and accurate. Empatica E4

wristband was selected as the HR measuring tool. Its accuracy

has been validated by the study from Schuurmans et al. (2020),

which demonstrated that Empatica E4 is a practical and reliable

device for collecting HR data. Empatica E4 can measure the HR

value with a sample rate of 1HZ. In addition to HR, Empatica

E4 is also equipped with an electrode, a photoplethysmography,

a skin temperature, and a three-axis accelerometer, from which

electrodermal activity, blood volume pulse, and skin temperature

can be measured. Through the Empatica Manager application,

Comma-Separated Values (CSV) files containing raw HR data can

be downloaded from the devices.

3.2 AAL environment

A smart home environment was constructed in an apartment

unit in the Research Institution for Aging in Waterloo (see

Figure 1), with each device being assigned an ID. This apartment

unit is composed of a kitchen, a living room, a bedroom, and

a bathroom, which is decorated with necessary furniture to

fulfill individuals’ daily living requirements. The smart home

environment was designed to be a sensor-rich space aiming to

capture as many Activities of Daily Living (ADLs) as possible.

According to locations of electrical devices in the room, we replaced

original switches and outlets with Swidget intelligent devices and

paired them with four types of environmental sensors.

When placing motion sensors in the environment, we followed

the optimized sensor placement principles stated in Nasrollahzadeh

et al. (2021), considering the detection range of Swidget motion

sensor is 3m, including (1) coverage: making sure the sensor

has a wide enough field of view to detect movement in the area

we want to monitor; (2) placement: mounting the sensor at a

height of around seven feet to ensure it can detect movement
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across a room; (3) false alarms: positioning the sensor away from

areas that is covered by furniture, such as behind sofa or bed,

but areas where movement is likely to occur naturally to reduce

false alarms. Door contact sensors were attached on each door,

closet, and drawer to capture open/close events. Similarly, to get

more accurate and comprehensive environmental data, we placed

multiple temperature & humidity sensors and air quality sensors

in different rooms. Additionally, we placed more sensors in the

areas where these parameters are more likely to change, such as the

kitchen, and the bathroom.

In order to better capture the ADLs happening in the room,

we recruited five volunteers during the design phase to perform

potential activities in the room, assisting us to iteratively test and

adjust the locations and numbers of sensors.

3.3 Study

3.3.1 ADLs scenarios
The ADLs scripts in this study was generated by following

the principles in Edemekong et al. (2022). They cover basic

ADLs and instrumental ADLs as well as single activities, posture-

oriented, and movement-oriented activities, involving all spaces in

the room, which can be representative for an individual’s ADLs

that happen within days. Each orientation requires different efforts

from individuals and under each of them, we developed four to five

scenarios to ensure the coverage of comprehensive ADLs.

Box 1 indicates that the activities designed for the different

scenarios share similarities but different levels of activities, which

can cause changes in heart rate. By repeating similar activities,

a larger and more diverse dataset can be collected, which aids

the machine learning model in distinguishing between various

activities and heart rate patterns, thereby improving the robustness

and accuracy of the models.

3.3.2 Participants
Recruiting participants for this study posed several challenges

unique to the COVID-19 pandemic, especially with respect to

our target population of older adults who are more vulnerable to

infection. Consequently, we recruited students from the University

of Waterloo as participants using convenience sampling. A total

of 40 participants took part in the study, comprising 17 males

and 23 females. The participants’ mean age was 24 years, ranging

from 18 to 39 years. Written informed consent was obtained from

all participants before they took part in the study. To safeguard

their privacy and confidentiality, participant information was de-

identified. In order to minimize the bias arising from this age group

difference, we instructed participants to simulate being seniors and

engage in activities at a slower pace than their usual speed. The

ethics of the study were reviewed and approved by the Research

Ethics Office of the University of Waterloo under the ORE #43843.

3.3.3 Procedure and data collection
Prior to the experiment, participants were asked to provide

their informed consent and complete a questionnaire that was

designed to collect demographic information. Subsequently, the

BOX 1 ADLs scenarios.

1. Phase 1. Single activities

• Scenario 1. Arriving home

• Scenario 2. Eating dinner

• Scenario 3. Sleep

• Scenario 4. Cooking

• Scenario 5. Going out

2. Phase 2. Posture-oriented

• Scenario 1. Reading on sofa

• Scenario 2. Completing a puzzle

• Scenario 3. Reading on bed

• Scenario 4. Meal time

• Scenario 5. Bathroom job

3. Phase 3. Movement-oriented

• Scenario 1. Tidying a room

• Scenario 2. Morning exercise

• Scenario 3. Taking shower

• Scenario 4. Wandering in rooms

4. Phase 4. Basic ADLs

• Scenario 1. Cleaning rooms

• Scenario 2. Changing footwear

• Scenario 3. Prepare meal

• Scenario 4. Make up

5. Phase 5. Instrumental ADLs

• Scenario 1. Arriving home from groceries

• Scenario 2. Cleaning kitchen

• Scenario 3. Emptying garbage

• Scenario 4. Morning routine

• Scenario 5. Wrap up things

researchers escorted participants to the smart home environment,

where they were oriented to the locations of labeled sensors,

appliances, and furniture. Additionally, participants were requested

to wear Empatica E4 wristbands to generate benchmark heart

rate data.

During the experiment, facilitators observed participants’

activity performance through cameras in the room next to the

apartment unit while delivering activity instructions to participants

via a phone. Activity instructions were delivered in sequence by

phases and scenarios to participant and no further instructions

were provided unless participants asked for specific assistance.

One minute transition time was allotted between each scenario,

in order to reset all activated sensors. An observer documented

activity information, including start and end timestamps, using an

annotation sheet. Sensor readings were collected, formatted, and

stored in the cloud database via our smart home data ecosystem.

Only one participant was tested at a time, and each experiment

session lasted∼3 h.

3.3.4 Data pre-processing and summary
After performing data cleaning and excluding datasets from

incomplete participants, a total of 28 participants’ data remained

available for further analysis. The data collected from the

participants originated from two distinct sources, each with its own
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FIGURE 2

Total number of data instances and average time duration for each scenario.

sampling rate. The smart home data gathered through 41 sensors

shown in Figure 1 had a granularity of 30 s, while the HR data was

recorded by the Empatica wristband at a rate of one measure per

second. There is no missing data in the dataset, thereby eliminating

the need for data imputation.

In the preprocessing stage for smart home data, we integrated

data from different smart home sensors into a unified dataset. This

integration involved structuring parameters from each sensor into

individual columns within a single dataset. Consequently, each

column in this dataset corresponds to a specific sensor parameter,

facilitating ease of analysis and interpretation. Moreover, we

ensured the synchronization of data across different sensors,

leveraging the uniform timestamps and intervals recorded by each

device. The synchronization process involved aligning data points

from different sensors that shared the same timestamp.

To ensure compatibility between these datasets for HR

prediction tasks, a methodical preprocessing approach was

implemented forHR dataset, beginning with the synchronization of

their timestamps. Let thome represent the starting timestamp of the

smart home dataset, and tHR represent the corresponding starting

timestamp in the Empatica dataset. The alignment process involves

matching these starting points such that thome = tHR. Following

this synchronization, the HR data was resampled to align with

the 30-s granularity of the smart home data. This was achieved

by calculating the average HR over every 30-s intervals, starting

from tHR. So for each 30-s interval in the smart home dataset, the

corresponding HR30s computed, ensuring that the HR data is in

sync with the smart home data.

In this study, each sensor recorded data for various features

(see Appendix 1) during the experiment session. To ensure the

accuracy and reliability of the data, we incorporated a 1-min transit

time between each experimental scenario. It is essential to clarify

that data from these transition times were not included in our

analysis. During these transit periods, participants were inactive,

allowing the sensors to reset to their initial state. This approach was

crucial to mitigate any potential carryover effects from one scenario

to the next. Consequently, it resulted in ∼270 data instances per

parameter for each participant. These instances represent a time

series within each scenario, with each data point corresponding to a

30-s interval. However, it should be noted that these time series are

not continuous between scenarios because of transition time.When

aggregating data across all subjects, the final dataset comprised over

7,500 sample points. Figure 2 illustrates the total number of data

instances collected from all subjects for each scenario, along with

the average time duration (s) spent by subjects in each scenario.

Additionally, in the feature extraction process, we utilized

parameters from each sensor, acquired through APIs at 30-s

intervals, as individual features. This approach means that each

sensor parameter was treated as a distinct feature. Specifically,

for extracting temperature and humidity feature, we divided

the environment into five separate rooms and extracted these

parameters independently for each room. We selected sensors

located in each specific room, and the room’s temperature and

humidity features were determined by averaging the readings from

these sensors. Consequently, each participant’s dataset comprised

137 features (Appendix 1) related to smart home indicators, and all

of these features were utilized in the data analysis. These features

encompassed a wide range of factors, including but not limited

to motion occupancy, temperature, humidity, air quality, switch

log, and energy consumption gather from each of the sensors in

the environment. The inclusion of these smart home indicator-

related features added depth and richness to the dataset, enabling a

comprehensive analysis of the participants’ living environment and

activity patterns.

3.3.5 Machine learning models and evaluation
metrics

In this study, five classical machine learning models were

selected to perform the prediction task. These models included
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FIGURE 3

Heart rate distribution.

support vector regression (SVR), K-nearest neighbor (KNN),

RF, Decision tree (DT), and multilayer perceptron (MLP).

Furthermore, to evaluate the performance of prediction models,

several commonly-used metrics were used, which are root mean

squared error (RMSE), mean absolute error (MAE), R-squared

(R2), and scatter index (SI). These metrics comprehensively assess

different aspects of model performance. Their equations are

as follow:

RMSE=

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)
2

MAE=
1

n

n
∑

i=1

∣

∣ŷi − yi
∣

∣

R2
= 1−

∑n
i=1 (ŷi − yi)

2

∑n
i=1 (yi − yi)

2

SI =

(

RMSE
1
n

∑n
i=1 ŷi

)

∗ 100%

where yi is true value, yi is the mean of true value ŷi is the

predicted value.

Specifically, RMSE calculates the square root of the average

squared differences between predicted values and the actual values,

while MAE measures the average absolute difference between

predicted values and true values. R2 indicates how well the

predicted values from themodel fit the observed data, ranging from

0 to 1. SI provides a normalized measure of prediction error. A

lower value of SI indicates better performance of the model. If the

SI value is <10%, it indicates a good model performance (Oyeleye

et al., 2022).

3.3.6 Evaluation setup
The data was process and analyzed on a Linux server (16GB

RAM) with Ubuntu v22.04.3 operation system. Python v3.10.12

was used as the programming language to complete the data

analysis task, along with its corresponding libraries such as

Pandas v2.0.3, Matplotlib v3.5.1, and Numpy v1.21.5. Machine

learning models were constructed based on the Scikit-learn

v1.2.1 framework.

4 Results

4.1 HR data summary visualization

4.1.1 Overall HR data distribution
The distribution of heart rate data for all participants and

activities is illustrated in Figure 3.

The majority of observations are concentrated around 80 beats

per minute (bpm), which is commonly associated with typical

resting heart rate. This suggests that a major portion of the data

corresponds to individuals in a relaxed state, aligning with common

indoor activities. A smaller proportion of instances is observed

around 50 bpm, likely indicating periods of low activity intensity.

The distribution of heart rate values also includes a proportion

of samples ranging from 120 to 150 bpm, capturing instances of

elevated heart rate during physical exercise scenarios.

This wide range of heart rate values reflects a spectrum of

activity intensities within the set scenarios, from light to moderate

and vigorous levels, highlighting the body’s adaptive physiological

responses to different forms of physical exertion. The distribution

of the heart rate data appropriately reflects different activity

intensities, providing a solid foundation for prediction analysis and

ensuring the reliability and interpretability of prediction models

(Yang et al., 2019).
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FIGURE 4

Heart rate data distribution on di�erent scenarios (P stands for phase and S stands for scenario).

4.1.2 HR data distribution by scenarios
In this section, we analyzed the distribution of heart rate data

in various scenarios (Figure 4) using boxplots to gain insights

into physiological responses associated with different daily life

scenarios. Each box represents a specific scenario, and the upper (or

lower) whisker extends to the maximum (or minimum) data points

within 1.5 times the height of the box from box top (or bottom).

Data points outside of the whisker are considered as outliers, which

have been excluded from the analysis. The thick line within the

box represents the median, while the box itself represents the

interquartile range between 25th and 75th percentiles, capturing

the middles 50% of the data. This visualization provides insights

into the spread or dispersion of the dataset.

The figure illustrates the heart rate data distributions across

various scenarios, revealing some variation among them. However,

the differences observed are not excessively pronounced and align

with typical daily living situations. These fluctuations in heart

rate are expected based on the nature of the performed activities.

Phase 2, which comprises posture-oriented activities with minimal

movement, exhibits a relatively stable data distribution across

different activities. These activities typically involve low physical

exertion, resulting in heart rates that remain within a relatively

narrow range. The majority of heart rate data in Phase 2 falls

between 70 and 90 bpm, indicating a consistent and moderate

level of cardiovascular demand. Conversely, Phase 3 includes

movement-oriented activities that require individuals to exert

energy, resulting in considerable variability in heart rate data

distribution across scenarios. The range of heart rate values for

Phase 3 activities seems to be wider compared to other phases.

Notably, the morning exercise scenario (P3S2) displays the highest

heart rate distribution, with values exceeding 120 bpm, which may

indicate the significant cardiovascular demands associated with this

activity. Phase 1, encompassing a range of single activities including

sleep, also exhibits noticeable variations in heart rate data. During

sleep (participants only lied down rather than in actual sleep), heart

rates tend to decrease due to the body’s relaxation and decreased

metabolic demands, resulting in the lowest recorded heart rate

during this phase approaching∼50 bpm.On the other hand, Phases

4 and 5 show similar and consistent heart rate distributions. These

distributions exhibit a notable right-skewed pattern, indicating that

the majority of activities in these phases result in heart rates higher

than the median value. This suggests increased cardiovascular

demands during these activities. In other words, these activities

generally involve more intense physical exertion, causing a higher

cardiovascular response compared to the median level.

4.2 Heart rate prediction

4.2.1 Di�erent models
The whole dataset was initially shuffled and divided into an

8:2 ratio for training and testing, respectively. During the training

phase, the training dataset was further divided into five equal

subsets to facilitate five-fold cross-validation. In this process, each

of the five subsets, in turn, served as a validation set while

the remaining four subsets were used for training. This process

aided in parameter tuning, identifying the optimal model, and
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TABLE 1 Evaluation results for five machine learning models.

SVR KNN RF DT MLP

RMSE 9.217 9.495 8.124 10.469 11.327

MAE 6.954 7.227 6.023 7.814 8.588

R2 0.277 0.281 0.594 0.099 0.237

SI (%) 13.14 11.52 9.72 9.98 13.60

Bold values indicate that the metrics from the corresponding method get the best

performance.

enhancing the reliability and generalizability of the predictive

models. Each model was constructed through the Scikit-learn

framework. The main optimized hyperparameters for each model

were set as follows, which was operated by grid search (Ahmad

et al., 2022) from different combinations of parameters: SVR (rbf

kernel, c = 5); KNN (k = 8); RF (n_trees = 200, max_depth =

12); DT (max_depth = 9); MLP (max_iter = 350). The detailed

performance is shown in Table 1.

The results presented in the table confirm the feasibility

of utilizing smart home indicators for heart rate prediction, as

demonstrated by the performance of the five machine learning

models with a mean MAE value of 7.321. Among the evaluated

models, RF achieved the best performance in terms of MAE, with a

value of 6.023. This indicates that RF achieved the lowest average

prediction error for the heart rate value compared to the other

models. Additionally, RF also exhibited the lowest RMSE (8.124)

and the highest R2 value (0.594), indicating superior accuracy and

goodness of fit. KNN and SVR also performed reasonably well,

with RMSE values of 9.495 and 9.217, respectively. Both models

showed similar MAE values, with KNN at 7.227 and SVR at 6.954

suggesting comparable average prediction errors and accuracy. In

contrast, DT and MLP exhibited higher RMSE and MAE values,

indicating greater prediction errors compared to the other models.

DT achieved the lowest R2 value of 0.099, indicating a weaker fit

between predicted and actual heart rate values. MLP also had a

relatively low R2 value of 0.237, suggesting a moderate fit to the

actual data. When considering the SI, which provides an overall

measure of model performance, RF achieved the lowest value of

9.72%, followed by DT (9.98%), KNN (11.52%), SVR (13.14%), and

MLP (13.60%). It is worth noting that a SI below 10% is considered

good for model performance in regression tasks (Oyeleye et al.,

2022). Based on their performance, RF outperformed the other

models, demonstrating the lowest prediction deviation, highest

accuracy, and the lowest SI, while KNN and SVR also showed

competitive performance. DT and MLP, on the other hand,

exhibited relatively weaker performance compared to the other

models. Overall, the evaluation results indicates that that leveraging

smart home indicators with machine learning models can be a

promising approach for heart rate prediction.

4.2.2 Di�erent phases and scenarios
To gain insight into the prediction performance across different

phases and scenarios, we conducted a separate evaluation for

each of the 23 predefined activity scenarios (Box 1). The results,

obtained using the RFmodel, are presented in Figure 5 and Table 2.

Figure 5 combines the SI line chart with the R2 bar chart, enabling

a comprehensive comparison of model’s performance across

different phases and scenarios, and facilitating an understanding

of the relationship between R2 and SI for each scenario. Table 2

provides detailed results for all evaluation metrics, serving as

reference for interpretation. Results from them demonstrate that

the machine learning models, particularly RF model, exhibited

moderate to good prediction accuracy for heart rate values in

various orientated phases and scenarios.

4.2.2.1 Phases

The analysis of evaluation results provided valuable insights

into performance of the RF model across different phases.

The model demonstrated its strong performance in Phase 3,

which includes movement-oriented activities. In this phase, the

RF model achieved the lowest RMSE (7.145) and the second

lowest MAE (5.375), indicating higher precision and accuracy in

predicting heart rate values for such activities. In contrast, Phase

4, representing basic ADLs, had the highest RMSE value of 8.779

among the phases, followed by Phase 2 (8.695). Phase 5 exhibited

the highest MAE value of 6.472, followed by Phase 4 (6.301).

Despite this, the RMSE and MAE values across all phases are

within a reasonable range, indicating a generally acceptable level

of prediction accuracy.

In terms of theR2 scores, three out of five phases (Phase 1, Phase

2, and Phase 3) achieved R2 scores consistently exceeding 0.5, while

the other two phases approached 0.5. Particularly, Phase 1 achieved

the highest R2 score (0.646), closely followed by Phase 3 with a R2

score of 0.559. Similarly, when considering SI values, three out of

five phases (Phase 1, Phase 3, Phase 5) achieved SI values below

10% with the remaining two slightly exceeding this threshold. The

lowest SI is observed in Phase 3 with 8.65%, closely followed by

Phase 1 at 8.68%.

4.2.2.2 Scenarios

Further analysis of individual scenarios within each phase

revealed notable variations between activities. Among the different

scenarios, Phase 1 Scenario 2 (P1S2) involving eating dinner

exhibited the lowest RMSE (5.987), closely followed by P4S3 which

pertains to meal preparation. On the other hand, the highest RMSE

was observed on P4S1, associated with tasks of cleaning rooms.

Additionally, themodel demonstrated strong performance in terms

of MAE during Phase 3 with minimal variance ranging from 4.903

to 5.755. Notably, P3S2 (morning exercise) and P3S4 (wandering in

rooms) achieved low MAE values of 4.903 and 5.028, respectively.

Furthermore, P1S3 obtained the lowest MAE with 4.447 while P4S1

recorded the highest MAE with a value of 8.543.

In terms of R2 scores. The highest R2 score of 0.78 was observed

for the morning exercise scenario (P3S2). Similarly, the scenario

of wandering in rooms (P3S4) exhibited a relatively high R2 score.

However, the scenario of taking a shower (P3S3), which lacked

sensor coverage in the shower area, recorded the lowest R2 score

of 0.17. This disparity highlights the impact of sensor availability on

the predictive accuracy of heart rate during specific activities. For SI

score, whichmeasures the variability of the predicted values around

the true values, the RF model showed good performance with a

majority of the scenarios having an SI score of <10%. However,

some scenarios had higher SI scores, with the highest being 15.54%
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FIGURE 5

RF performance for di�erent scenarios.

for cleaning rooms (P4S1).Moreover, model performedmoderately

well in Phase 1, with the lowest SI score of 7.34% observed for

cooking (P1S4). Even though taking shower had the lowest R2

score, its SI score was only 9.02%.

4.2.3 Sensor and feature importance
To determine which sensors and features most significantly

influence heart rate prediction, based on RF model, we utilized the

Mean Decrease in Impurity (MDI) metric to quantify the relative

importance of each feature. We identified the top 20 features that

significantly impact heart rate prediction, as illustrated in Figure 6.

Figure 6 illustrates that features related to temperature and

humidity in all five rooms prominently dominate the feature

importance hierarchy, with the top 10 spots occupied by these

variables. Specifically, temperature readings in the bedroom is the

most influential feature, achieving the highest MDI value of 0.76.

The humidity level in the bathroom follows closely, marked as the

second most critical feature with an MDI value of 0.65.

Subsequently, air quality-related features, as measured by

relevant sensors, including CO2 levels, Air Quality Index, and Total

Volatile Organic Compounds, occupy seven of the next 10 spots in

feature importance. The sensors monitoring these parameters were

strategically positioned in key home areas such as the living room

(sensor O04), bedroom (sensor O09), and bathroom (sensor S11).

Moreover, the analysis reveals that features associated with the

use patterns of switches and electrical outlets at specific locations

also contribute significantly to the model’s predictive performance.

For instance, switch sensors S01 in the living room and S09

outside the bathroom, which were frequently interacted with by

participants, proved to be influential.

These findings highlight the critical role of sensors monitoring

environmental conditions like temperature, humidity, and air

quality in impacting the model accuracy for heart rate prediction.

This is consistent with the results from Ren et al. (2011),

which suggest a strong correlation between these environmental

factors and heart rate response, implicating their impact on

cardiovascular health.

5 Discussion

5.1 Principal findings

The principal findings of this study demonstrate the potential

and feasibility of using machine learning methods in predicting HR

based on AAL technologies. All machine learningmodels employed

in the study achieved favorable prediction results, with the RF

model standing out as particularly noteworthy. Its capabilities in

capturing the relationship between daily living activities and heart

rate responses can make it a promising tool for accurate heart rate

prediction in the future.

Furthermore, the study suggested that the performance of the

RF model varied depending on the specific daily living activities

being performed. A common knowledge we can take from the

results is that activities that involved more indoor movement and
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TABLE 2 Detailed results on phases and scenarios based on RF.

Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 Avg

Phase 1 RMSE 7.974 5.987 6.583 6.154 9.560 7.252

MAE 6.152 4.560 4.447 4.894 6.643 5.339

R2 0.721 0.738 0.694 0.637 0.439 0.646

SI (%) 9.31 7.48 8.23 7.34 11.08 8.68

Phase 2 RMSE 9.811 7.414 7.923 8.856 9.473 8.695

MAE 7.051 5.214 5.682 6.048 7.352 6.269

R2 0.474 0.630 0.449 0.320 0.649 0.504

SI (%) 11.90 9.01 9.44 10.55 11.06 10.39

Phase 3 RMSE 7.369 7.202 7.596 6.413 7.145

MAE 5.755 5.028 5.740 4.903 5.357

R2 0.548 0.782 0.175 0.729 0.559

SI (%) 9.41 8.03 9.02 8.15 8.65

Phase 4 RMSE 13.340 6.383 6.058 9.336 8.779

MAE 8.543 4.530 4.922 7.210 6.301

R2 0.433 0.529 0.608 0.262 0.458

SI (%) 15.54 8.01 7.47 11.32 10.58

Phase 5 RMSE 6.493 7.506 7.573 11.937 9.561 8.614

MAE 4.637 5.800 5.813 8.478 7.632 6.472

R2 0.599 0.291 0.425 0.416 0.734 0.493

SI (%) 7.80 9.19 8.79 13.67 10.47 9.98

FIGURE 6

Feature importance using MDI based on RF model.
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triggered multiple sensors within the smart home environment

resulted in higher prediction performance. On the other hand,

activities involving static positions or posture changes showed

comparatively lower prediction performance. These findings

emphasize the importance of constructing an AAL environment

with an adequate number of smart home devices, enhancing higher

prediction performance.

5.2 Public health perspective

The findings of this research have valuable implications

for public health. Accurately predicting heart rate based on

contactless smart home technologies during individuals’ daily

living activities enables healthcare providers and public health

agencies to gain a comprehensive understanding of an individual’s

cardiovascular health profile. This valuable information can inform

the implementation of personalized interventions, preventive

measures, and lifestyle modifications to mitigate the risk of

cardiovascular diseases and improve overall health outcomes.

By monitoring heart rate fluctuations using non-intrusive AAL

technology, public agencies can detect early signs of cardiovascular

issues, provide timely interventions, and allocate resources

more efficiently to address cardiovascular health challenges

at both the individual and population levels, reducing the

burden of chronic diseases and improving the wellbeing of

older adults.

5.3 Novelty

This study contributes to the existing research by addressing

the limitations of previous studies that primarily focus on

wearable devices and IoT technologies, which may be burden

for some older adults. Unlike other studies (Al Rasyid et al.,

2015; David Chung Hu et al., 2018; Ali et al., 2019; Xiao

et al., 2020), this research investigates the feasibility of utilizing

contactless smart home technologies alone, without the need

for additional wearable devices, making it more practical for

daily living contexts. Even when compared to studies that also

monitor heart rate in a contactless manner (Adib et al., 2015;

Kumar et al., 2022; Liu et al., 2022; Alnaggar et al., 2023), this

study demonstrates distinct advantages. Firstly, it is not limited

by large body movements since it does not rely on detecting

chest or other physiological motions. This makes the proposed

solution particularly effective in daily living scenarios. Secondly,

there are fewer privacy concerns as it does not require visual

monitoring. Lastly, the proposed solution exhibits environmental

robustness, overcoming challenges such as high-frequency noise

and variable lighting conditions that can affect other systems.

By leveraging AI techniques, this study provides an advanced

approach that unobtrusively monitors heart rate within an AAL

environment, thus bridging the existing gap in research. The

integration of contactless smart home technologies and machine

learning algorithms enables heart rate monitoring without relying

on user compliance, overcoming the challenges associated with

wearable devices.

5.4 Limitations and future work

It is crucial to acknowledge the limitation of this study, which

is the age range of the sample population. The participants in

our study primarily consisted of young individuals, and it is

important to recognize that physiological responses and behaviors

may differ among different age groups, causing the bias in studies

results. Another limitation is the fixed order for ADLs in the

experiment, which may not accurately reflect real-world scenarios

and some previous activities could potentially impact HR response

during subsequent activities. Furthermore, the dataset for our

analysis was limited to evaluable data from only 28 subjects, a

sample size that is not sufficient for a comprehensive analysis of

robustness. While these data provide useful preliminary insights,

this limitation in sample size constrains the generalizability of

our findings.

Despite these limitations, our study still represents a

notable advancement in utilizing SHTs as a valuable tool for

healthcare monitoring, demonstrating the feasibility and potential

effectiveness of using contactless smart home technology for

heart rate monitoring. To further strengthen the validity and

applicability of our findings, future research will address these

limitations by evaluating with a larger group of participants

and including a more representative sample of older adult

participants. In addition, further study will be conducted in

real-world in an uncontrolled settings to evaluate impacts of

numbers and locations of smart home sensors to prediction

performance, exploring optimal configuration of sensors in a

AAL environment.

6 Conclusions

The results of this study highlight the promising potential

of utilizing contactless SHTs coupled with machine learning

techniques for accurate heart rate prediction during individuals’

daily living activities within AAL environments. Integrating

contactless SHTs into individuals’ living environments facilitates

a convenient and unobtrusive method for tracking variations

in heart rate during different activities. This approach not only

addresses common issues such as user compliance and sensor

burden found in traditional systems but also assist individuals

to discern the diverse impacts of various activities on their

heart rate, fostering a more engaged and informed approach to

personal health monitoring. This integration of technology into

the daily lives of older adults enables unobtrusive monitoring

of their cardiovascular health, providing valuable insights for

healthcare providers and public health officials. The approach

can be further integrated into the UbiLab AAL Data Ecosystem,

providing comprehensive indoor healthcare surveillance for older

adult population.
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Appendix

TABLE A1 Features table.

Feature name Description

outlet_0_on_O01-O18 18 features

Binary data reflecting the on/off states of the upper

ports as captured by outlet sensors designated as

O01 to O18

outlet_1_on_O01-O18 18 features

Binary data reflecting the on/off states of the lower

ports as captured by outlet sensors designated as

O01 to O18

outlet_0_avg_O01-O18 18 features

Continuous data reflecting the energy usage of the

upper ports as captured by outlet sensors

designated as O01 to O18

outlet_1_avg_O01-O18 18 features

Continuous data reflecting the energy usage of the

lower ports as captured by outlet sensors

designated as O01 to O18

switch_avg_S01-S11 11 features

Continuous reflecting the energy usage of switch

sensors designated as S01 to S11

living_temp 10 features

Measurement of temperature and humidity across

five rooms

living_humi

kitchen_temp

kitchen_humi

dining_temp

dining_humi

bedroom_temp

bedroom_humi

bathroom_temp

bathroom_humi

motion_01-23 23 features

Binary data reflecting the occupancy states from

23 passive infrared sensors

aq_co2_O04 9 features

Measurement of air quality related parameters

from 3 environmental sensors

aq_iaq_O04

aq_tvoc_O04

aq_co2_O09

aq_iaq_O09

aq_tvoc_O09

aq_co2_S11

aq_iaq_ S11

aq_tvoc_S11

door_contact_01-12 12 features

Binary data reflecting the door open/close states

from 12 door contact sensors
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