
TYPE Technology and Code

PUBLISHED 23 August 2024

DOI 10.3389/frai.2024.1258086

OPEN ACCESS

EDITED BY

Rashid Ibrahim Mehmood,

Islamic University of Madinah, Saudi Arabia

REVIEWED BY

Jize Zhang,

Hong Kong University of Science and

Technology, Hong Kong SAR, China

Takashi Kuremoto,

Nippon Institute of Technology, Japan

*CORRESPONDENCE

Yijun Feng

buaa_fengyijun@buaa.edu.cn

Xiangdong Wu

karlwu2021@163.com

RECEIVED 13 July 2023

ACCEPTED 22 July 2024

PUBLISHED 23 August 2024

CITATION

Li M, Feng Y and Wu X (2024) AttentionTTE: a

deep learning model for estimated time

of arrival. Front. Artif. Intell. 7:1258086.

doi: 10.3389/frai.2024.1258086

COPYRIGHT

© 2024 Li, Feng and Wu. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

AttentionTTE: a deep learning
model for estimated time
of arrival

Mu Li1, Yijun Feng1* and Xiangdong Wu2*

1School of Computer Science and Engineering, Beihang University, Beijing, China, 2Ecole Centrale de

Pékin, Beihang University, Beijing, China

Estimating travel time (ETA) for arbitrary paths is crucial in urban intelligent

transportation systems. Previous studies primarily focus on constructing

complex feature systems for individual road segments or sub-segments, which

fail to e�ectively model the influence of each road segment on others. To

address this issue, we propose an end-to-end model, AttentionTTE. It utilizes a

self-attention mechanism to capture global spatial correlations and a recurrent

neural network to capture temporal dependencies from local spatial correlations.

Additionally, a multi-task learning module integrates global spatial correlations

and temporal dependencies to estimate the travel time for both the entire

path and each local path. We evaluate our model on a large trajectory dataset,

and extensive experimental results demonstrate that AttentionTTE achieves

state-of-the-art performance compared to other methods.
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1 Introduction

In intelligent transportation systems, the estimated time of arrival (ETA) is a critical

task (Zhang et al., 2011). Accurate travel time estimations facilitate the optimization of

vehicle scheduling and path planning, thereby reducing user travel time by predicting the

duration from the starting location to the destination based on given departure times and

routes. The complexity of road traffic is closely linked to the accuracy of ETA predictions,

making it challenging to forecast travel times under intricate road conditions (Oh et al.,

2018).

Various methodologies have been explored for ETA tasks, including the use of

AutoRegressive Integrated Moving Average (ARIMA) models (Billings and Yang, 2006).

Deep learning approaches, such as Monte Carlo Tree (MCT)-TTE (Liu et al., 2022) and

DeepTTE (Wang D. et al., 2018), have significantly improved prediction capabilities by

modeling complex spatial correlations and temporal dependencies within trajectories.

Additionally, CoDriver (Sun et al., 2020), which is based on the wide–deep–recurrent

(WDR) framework (Wang Z. et al., 2018), incorporates an auxiliary task of learning driving

styles to integrate driver information, thereby enhancing prediction accuracy. Despite these

advancements, there remains a need for improved extraction of spatial correlations and

temporal dependencies.

Traffic conditions are influenced by a combination of spatial correlations,

temporal dependencies, and external information. For instance, a sub-segment

with unique spatial features, such as a single one-way lane, can affect upstream

and downstream sub-segments if congestion occurs, as depicted in Figures 1A, B.
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Accurate ETA predictions necessitate consideration of both

local and global spatial correlations, temporal dependencies, and

external factors such as weather and driver information. Previous

research has attempted to integrate external information with each

road segment or historical trajectory point to enhance prediction

accuracy (Wang D. et al., 2018; Song et al., 2020). However, these

methods often fail to account for temporal variations and the

interactions between different external factors.

In this study, we proposed an end-to-end deep learning-based

arrival time prediction model, termed AttentionTTE, to address

these challenges. Our contributions are as follows:

1. An adjusted self-attention mechanism that effectively

captures correlations between nodes within the same

sequence, highlights the most influential trajectory

points, and integrates external information that may

affect prediction results.

2. A spatial correlation and temporal dependencies extraction

module that learns spatial correlations and temporal

dependencies from historical trajectory sequences.

3. A novel external information fusion method, the weighted

attribute fusion module, assesses the impact of various

attributes (e.g., driver information) on prediction results in

different scenarios.

4. An innovative weighting method for collective prediction,

leveraging a self-attention matrix to accurately identify the

contribution of each local trajectory segment to the overall

travel time estimation of the global trajectory.

2 Related work

2.1 Methods of ETA tasks

Initial ETA research focused on mathematical models like

ARIMA for time series forecasting. Though effective, ARIMA

struggles with nonlinear data, leading researchers to explore

machine learning methods such as Gradient Boosting Decision

Trees (GBDT) (Guin, 2006; Zhang and Haghani, 2015). While

GBDT scales well, it faces challenges with complex datasets and

external information.

Deep learning introduced models from NLP and time series

prediction, such as LSTM and RNN (Duan et al., 2016), proving

effective for GPS-based travel time prediction. Hybrid models

like CNN-RNN captured spatial and temporal correlations, with

notable implementations like Yibin Shen’s CNN-LSTM for sparse

data (Shen et al., 2019) and DongWang’s end-to-end hybrid model

improving accuracy through external information fusion (Wang D.

et al., 2018). However, these methods still lack in modeling distant

sub-segment correlations and external information interactions.

Further advancements include the WDR model, which views

travel time prediction as a regression problem, and the Deep TTE

model, which uses geographic convolution and multi-task learning

to balance global and local predictions. Despite their accuracy, these

models still have limitations, highlighting the need for an ETA

method that models long trajectory connections without extensive

pre-training and considers external information interactions (Liu

et al., 2022).

2.2 Individual and collective

ETA task methods based on deep learning can be categorized

into individual and collective predictions. Individual prediction

methods, such as those proposed by Qiu et al. (2019), divide

a complete trajectory into multiple road segment blocks or

partial paths based on criteria such as the length of the

actual road segment. These methods predict the travel time

for each sub-segment sequentially and then aggregate the

results to determine the travel time for the entire trajectory.

While individual predictions often achieve higher accuracy

for each sub-segment, they struggle to account for complex

traffic conditions, such as intersections of various road sections,

leading to error accumulation and lower accuracy for complete

trajectories. On the other hand, collective prediction methods,

such as those proposed by Jenelius and Koutsopoulos (2013),

predict the travel time for the entire trajectory in one step.

Although collective prediction can address issues such as error

accumulation inherent in individual predictions, it suffers from

reduced confidence when predicting travel times for longer

trajectories due to the relatively smaller number of such

trajectories available for training (Wang D. et al., 2018). As a

result, collective predictions tend to be less accurate for longer

travel trajectories.

3 Preliminary

In this part, we will give the definition of the problem and some

models and techniques related to deep learning.

3.1 Problem definition

In this section, we will give some definitions.

3.1.1 Historical trajectory
The historical trajectory is the sampling result of the

historical driving trajectory of each driver. We define a historical

trajectory sequence P, containing |T| consecutive historical GPS

coordinate points, i.e., P ={ p1, ... , p|T|}. Each GPS coordinate

point contains a longitude (pi .lng), a latitude (pi .lat), and

a timestamp (pi .ts). For each trajectory, we will record the

driver number of the current trajectory, the start time of

the journey, the start date of the week, and the current

weather conditions.

3.1.2 Travel time prediction
In the training phase, our model learns how to predict the

travel time of a given historical trajectory by learning spatio-

temporal features from the historical trajectory defined above and

the corresponding external information. In the test phase, for each

given trajectory, we predict the travel time of the entire trip from

the starting point to the endpoint.
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FIGURE 1

Correlation between sub-segments. In the picture, orange circles represent moving vehicles; the closer the orange circles are, the more congested

the tra�c. The red circles indicate the cars involved in the accident, and the green arrow indicates the car’s direction of travel. The red dotted boxes

represent special sub-segments (unusual spatial features or abnormal tra�c conditions), and the green ones represent the a�ected sub-segments.

The long arrows represent the impact relationship, where black arrows indicate the impact on the farther sub-segments and red arrows indicate the

e�ect on adjacent sub-segments. (A) The influence of spatial feature. (B) The influence of abnormal tra�c conditions.

3.1.3 Individual prediction
Individual prediction divides a complete trajectory into

multiple road segment blocks according to conditions, such as the

length of the actual road segment. It predicts the travel time of

each sub-segment. In our task, we will split the full trajectory path

according to the size of the 1D convolution kernel in the local

spatial correlation extraction module.

3.1.4 Collective prediction
The collective prediction directly predicts the travel time of the

complete trajectory. We predict travel times for whole trajectories

in our task by generating a fixed-length feature vector.

3.1.5 Spatial correlation and temporal
dependencies

In a GPS trajectory dataset, the spatial correlation of a

trajectory refers to the spatial characteristics of the different areas

through which the trajectory passes in real-world geography.

Temporal dependencies refer to the time series characteristics of

the trajectory.

Local spatial correlation is the spatial correlation between each

sub-segment in a complete trajectory and its adjacent sub-track

segments; that is, the spatial characteristics of each sub-segment are

determined by itself and its adjoining suborbital segments.

Global spatial correlation is the spatial correlation of each sub-

segment in an entire trajectory to any sub-segment within the

same trajectory; that is, the spatial characteristics of each sub-

trajectory segment are determined by all suborbital segments of the

complete trajectory together. Based on the local spatial correlation,

it further considers the potential spatial correlation between the

distant sub-trajectory segment on the trajectory.

3.2 Relevant knowledge

In this section, we give a brief introduction to some of the deep

learning models and techniques used in our method.

3.2.1 One-dimensional convolutional neural
network

The convolutional neural network (Chua and Roska, 1993)

is a deep neural network with a convolutional structure. The

convolutional structure can reduce the amount of memory

occupied by the deep network and the number of parameters of

the network and alleviate the overfitting problem of the model.

A typical convolutional neural network consists of an input

layer, a convolution layer, a down-sampling layer (also called

a pooling layer), a fully connected layer, and an output layer.

The one-dimensional convolutional neural network (Zhang et al.,

2019; Livieris et al., 2020) applies a convolutional neural network

in one-dimensional data. Generally speaking, a one-dimensional

convolution kernel is usually used to learn the features of text data

or time series data because it only convolutes the width but not

the height.

3.2.2 Long-short-term memory
Long–short term memory (LSTM) (Hochreiter and

Schmidhuber, 1997; Yu et al., 2019) is a kind of recurrent

neural network which is widely used in time series and natural

language processing. The ingenuity of LSTM lies in that by adding

an input gate, forgetting gate, and output gate, when processing the

current time step of a sequence, the hidden state of the sequence

is dynamically updated according to the current input and the

“memory part” (a part of last times hidden state) passed in before.
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The content of the hidden state is properly “forgotten” by the

forgetting gate so that the weight of the self-loop is changed. When

the parameters of the model are fixed, the integral scales at different

times can be dynamically changed, thus avoiding the problem of

gradient disappearance or gradient expansion (Zhu et al., 2015).

3.2.3 Self-attention
Self-attention is one of the attention mechanisms (Vaswani

et al., 2017), and it is also a kind of network configuration. Self-

attention can make the model better learn the relationship between

each node in the same sequence and improve the prediction

accuracy by establishing features for the relationship. In general,

self-attention was used in natural language processing because of

its excellent feature extraction ability for long sequence data.

The self-attention mechanism calculates the attention weight of

each sequence fragment by calculating the feature matrix of the

sequence. For sequences represented X = (x1, x2 ... xn), where

xi ∈ Rdmodel×1, the weights can be generated by three learnable

matrices: WQ, WK , and WV , which generate the three matrices of

the sequence X, respectively: query matrix, key matrix, and value

matrix (as shown in Equations 1–3).

Q = WQ · X (1)

K = WK · X (2)

V = WV · X (3)

whereWQ ∈ Rdk×dmodel ,WK ∈ Rdk×dmodel ,WV ∈ Rdv× dmodel .

The query matrix of each node in the same sequence is

multiplied by the keymatrix of all other nodes. The result is mapped

non-linearly between 0 and 1 through the softmax activation

function to obtain the weight assignment matrix. The weight

distribution is multiplied by the value matrix to get the attention

value Attentioni corresponding to the ith node in the attention

matrix of the entire sequence (as shown in Equation 4).

Attention (Q,K,V) = softmax

(

QT · K√
dk

)

· VT (4)

The characteristic of the self-attention mechanism (Shaw et al.,

2018) is that the operation object in the weighting process and the

weight generation process is the sequence itself, that is, the sequence

itself generates the weight involved in the weighted summation in

the attention calculation process. Therefore, in the attention matrix

Attention, the internal relationship between each node in the same

sequence is described.

4 Model architecture

In this section, we will describe our proposed model the

AttentionTTE. AttentionTTE is mainly composed of four parts: (1)

the weighted attribute fusion module is used to process the external

information (such as driver number and weather) of the current

trajectory. (2) The local spatial correlation extraction module is

used for mapping the GPS coordinate into the vector space,

extracting the local spatial correlation, and generating a feature

mapping for the subsequent process. (3) The spatial correlations

and temporal dependencies extraction module is the main module

of the model, which is mainly used to learn the temporal

dependencies of the trajectory, the global spatial correlation of

the trajectory, and the fusion of external information items to the

trajectory. (4) Multi-task learning module, which is mainly used to

predict the travel time of the provided trajectory and balance the

individual prediction and collective prediction.

4.1 Weighted attribute fusion module

As mentioned in this article, the travel time of historical

trajectories depends not only on the coordinate distribution and

length of the trajectories in the geographical space but also

on various external factors such as drivers, weather conditions,

and departure time. These external factors, as attributes for

each trajectory, influence the temporal and spatial features, thus

affecting the prediction of travel time. Therefore, it is necessary

to appropriately consider the impact of external information on

temporal and spatial features.

In previous work, most studies used word embedding

techniques to incorporate attribute information into trajectories

(Gal and Ghahramani, 2016; Wang D. et al., 2018). They embedded

attribute information that can influence the travel time into

feature vectors and fused them with the feature vectors of the

trajectory. Specifically, researchers identified four types of values,

including driver ID, weather conditions, date, and departure time,

as the attributes. Since these four types of values cannot be

directly input into neural networks, they used word embedding

techniques (Wang D. et al., 2018) to transform them into low-

dimensional vectors.

First, driver ID, weather conditions, date, and departure time

are considered as four distinct categorical variables V . Among

them, departure time is divided into 86,400 categories with

intervals of 1min to cover the entire day. Then, word embedding

techniques project each value v belonging to the i-th original

categorical variable, v ∈ Vi, into the vector space R1×Ei (where

Eiis the dimensionality of the embedding for the i-th categorical

variable in the feature vector). Specifically, each original categorical

variable value, which has been one-hot encoded, is multiplied by

a series of trainable matrices Wi with the same dimensionality to

obtain low-dimensional vectors corresponding to each attribute’s

information. Each matrix Wi, Wi ∈ RNi×Ei , where Ni represents

the number of categories for the i-th original categorical variableVi.

Compared to using only one-hot encoding for original categorical

variables, word embedding can identify each type of value with

fewer dimensions when there is a large number of categories,

making computations more efficient. Additionally, in an ideal

scenario, after word embedding encoding, similar values of the

same type are distributed adjacently in the embedding space,

effectively capturing relationships between each type of value.

This approach has limitations. When concatenating and

transferring the feature matrices generated by the embedding

method for each attribute to the model, each attribute is treated

as independent and assumes equal importance in influencing the
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prediction results. Previous studies primarily considered the impact

of attribute information on temporal and spatial features but

did not account for the varying degrees of influence that each

attribute may have on trajectories under different circumstances.

For instance, in real life, weather conditions can negatively affect a

driver’s mood, and experienced drivers may drive similarly to less

experienced drivers in adverse weather (Mikolov et al., 2013a,b).

In such scenarios, the primary factor affecting travel time would

be the current weather conditions rather than the driver’s personal

attributes. This indicates that when using attribute information

to improve model performance, the interactions between these

pieces of information need to be considered to identify which

attribute plays a major role in travel time prediction under specific

circumstances. Therefore, exploring more detailed methods to fully

utilize attribute information and maximize model performance

is essential.

To address this issue, this article proposes a weighted fusion

of attribute modules. This module maps all attribute information

values to the same-dimensional feature space and dynamically

constructs attribute features based on the contribution of each

attribute value. Specifically, each attribute is mapped to a low-

dimensional space using word embedding techniques, and its

vector representation is calculated. Next, a method based on the

L2 norm is employed to calculate weights for each attribute.

These weights represent the degree of influence that each piece

of information has on the final vector. By multiplying the weight

of each attribute by its vector representation, weighted attribute

features are obtained. Finally, these weighted features are integrated

with other model features to achieve accurate predictions of the

target variable.

First, we use the embedding technique to transform all

attributes into the feature space of the same dimension E to

obtain the embedded external information as attributes of the

trajectory Attr as shown in Equation 5.

AttrVi = WT
i · Vi (5)

where AttrVi ∈ RE× 1.

Second, we get the embedded attributes of each attribute

under the current external environmental conditions by a learnable

matrixWenv ∈ RE× E as shown in Equation 6.

AttrenvVi
= Wenv · AttrVi (6)

Then, to obtain the corresponding weight of each attribute, we

calculate the second norm (L2-norm) of each embedded attribute.

The L2-norm of each embedded attribute is the modulus value of

each attribute in the feature space. The weight of each attribute is

obtained by calculating the proportion of its modulus value relative

to the total modulus values. In this context, mod\text{mod}mod

represents the L2-norm of all attribute vectors, andmod represents

the L2-norm of each individual attribute vector as shown in

Equation 7.

mod =
√

∣

∣

∣
AttrenvV1

∣

∣

∣

2
+

∣

∣

∣
AttrenvV2

∣

∣

∣

2
+ . . . +

∣

∣

∣
AttrenvVn

∣

∣

∣

2
(7)

The weight corresponding to each attribute αAttr
i is as shown in

Equation 8.

αAttr
i = modi

mod
(8)

wheremodi is the L2-norm of each attribute vector.

Finally, we weigh and sum the embedded attributes to get the

final embedded attributes as shown in Equation 9.

attr = αAttr
1 · AttrV1 + . . . + αAttr

n · AttrVn (9)

Compared with directly fusing each attribute value by

embedding coding, the attribute fusion module based on weighting

can better learn the difference of the influence of each attribute on

the target path at different times and under different conditions.

4.2 Local spatial correlation extraction
module

Referring to the correlation deep learning method, we use a

neural network based on a one-dimensional convolution kernel

as our local spatial feature extraction module (Chua and Roska,

1993) to learn the local spatial correlation of several adjacent

trajectory points of a historical trajectory. Recall from the previous

definition that each historical trajectory consists of a continuous

set of GPS trajectory points (containing latitude and longitude

information and a sampling timestamp), P = {p1, ... , p|T|}, and pi
contains longitude (p.lng), latitude (pi.lat), and timestamp (pi.ts).

The longitude and latitude information in each trajectory point

contains the local spatial features and correlation around the

trajectory point. We used the local geographic convolutional neural

network, which is based on a one-dimensional convolution kernel,

to learn the local spatial correlation of each trajectory point and

its surroundings.

By stitching the latitude and longitude coordinate values of each

trajectory point, we process the raw data into pi that the neural

network can process as shown in Equation 10.

pi = pi.lng ◦ pi.lat (10)

Here ◦ represents the splicing operation of latitude and

longitude, and pi ∈ R2×1, pi ∈ traj, traj =
{

p1, p2 . . . pT
}

.

For each GPS trajectory point pi, it is first converted into a

lower-dimensional vector by a learnable matrix Wlocal, Wlocal ∈
RC×2, that is loci as shown in Equation 11.

loci = tanh
(

Wlocal ·
(

pi
))

(11)

Therefore, the output sequence loc (loc ∈ RC×T , loc =
{

loc1, loc2 . . . locT
}

) is a sequence feature of length T in the vector

space R1×C , where the C channels of each node contain the spatial

feature and correlation information of this node.

Second, a one-dimensional convolutional neural network with

a parameter size ofWconv ∈ Rk × C (k is the size of the convolution
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kernel, usually an odd number) is used to convolve each GPS

trajectory point and its adjacent trajectory points. The local spatial

correlation of every k adjacent trajectory point is extracted by the

convolution operation as shown in Equation 12.

pathlocal = relu
(

Wconv ∗
(

loci : i+k−1

)

+ b
)

(12)

where pathlocal ∈ RC×(T−k+1), pathlocali is the trajectory segment of

loci to loci+k−1, b is bias,
∗ is a convolution operation.

Then, we append a column to the previously obtained pathlocal,

converting the pathlocal from RC×(T−k+1) to R(C+1)×(T−k+1), and

we get pathlocal ∈ R(C+1)×(T−k+1). The i-th element of the

new appended column is the distance of the i-th local path. i.e.,
∑i+k−1

j=i+1 Dis
(

pj−1, pj
)

, to mark the order of the whole sequence to

facilitate the extraction of global spatial correlation by the self-

attention mechanism (Vaswani et al., 2017).

4.3 Spatial correlations and temporal
dependencies extraction module

In this section, we mainly introduce the main structure

of our model, spatial correlations and temporal dependencies

extraction module. This module is mainly comprised of two

parts, the global spatial correlations extraction module and the

temporal dependencies extraction module. Based on the local

spatial correlation extraction result, the global spatial correlations

extraction module is used to extract global spatial features from the

historical trajectory. Finally, we obtained a hidden state of the travel

time by cleverly stacking the spatial and temporal features above the

two modules.

4.3.1 Global spatial correlation extraction module
We first propose the global spatial correlation extraction

module as shown in Figure 2. This module is an improvement

of the self-attention mechanism, enabling it to better learn the

potential relationships among nodes within the same sequence

in time series data. It dynamically fuses the influence of external

information on the sequence. Initially, this module extracts the

relevance among all nodes of a local spatial feature sequence

using a simple self-attention mechanism. Then, the key trajectory

points that have the most significant impact on a sequence’s

global spatial correlations are identified through the attention

weight distribution matrix. Finally, the global spatial correlation is

obtained by dynamically fusing the external information.

There is a new sequence of length T − k+ 1 containing a local

spatial correlation path local, calculated in Equation 12 by the local

spatial correlation extraction module. It is worth noting that spatial

feature extraction of the trajectory would have been completed if

we had followed the traditional method of previous jobs (Wang

D. et al., 2018). However, the spatial correlation of a trajectory

depends on the spatial features of all trajectory points on the

trajectory, and the method obtains the local spatial correlation per

k trajectory point. It does not consider the global spatial correlation

between sub-segments in the complete trajectory. To deal with

this problem, we use the self-attention mechanism to learn the

sequence containing the local spatial feature and correlation. The

self-attention mechanism has a prominent role in processing the

relationship between nodes in a complete sequence and has been

partially applied in traffic prediction (Cai et al., 2020; Xu et al.,

2020). In NLP and other fields, the feature extraction of keywords

or nodes in a piece of text or sequence is mainly completed by

increasing the dimension of the feature vector of each word or node

in the text or sequence and increasing the number of layers of the

self-attention mechanism (Vaswani et al., 2017). Still, this process

will cause the model parameters to be too large. In the research

process of this article, we found that it is difficult for the model

to converge after assigning a higher dimension to each trajectory

point in the GPS trajectory dataset and using the self-attention

mechanism with a higher number of layers. When the feature

dimension of each node is small, the feature extraction ability of

the self-attention mechanism on the key node decreases. It is not

sufficient to use the self-attention mechanism directly in this task.

As shown in Figure 3 we use three different learnable matrices

(WQ
ent ∈ Rdk×(C+1),WK

ent ∈ Rdk×(C+1),WV
ent ∈ Rdv×(C+1)) to

multiply each node of the sequence to obtain the query matrix, the

key matrix, and the value matrix of the global spatial correlation

of the node. In general, to enhance the learning ability of the self-

attention mechanism on the relationship between each node of a

sequence, we can also use a one-dimensional convolutional neural

network with a convolution kernel size of 1 to generate the above

feature matrix (Karpov et al., 2020). Compared with the original

method, in this task, the self-attention mechanism of using a one-

dimensional convolutional neural network to generate Q, K, and

V matrices can be reduced by an average of 0.26% using mean

percentage absolute error (MAPE) as the loss function. Taking

the node i of a trajectory sequence as an example, the calculation

process is as shown in Equations 13–15.

Qlocal = W
Q
ent · pathlocal (13)

Klocal = WK
ent · pathlocal (14)

Vlocal = WV
ent · pathlocal (15)

The query matrix Qlocal of each node in the sequence is

multiplied by the key value matrix Klocal of all other nodes and

multiplied by the value matrix Vlocal by the softmax activation

function to obtain the attention weight distribution matrix

Attentionlocal (as shown in Equation 16).

Attention = softmax

(

QT
local

· Klocal√
dk

)

· VT
local

(16)

To extract the influence of critical sub-segments in a trajectory

sequence (such as road segments with traffic lights) on other sub-

segments, we map the relationship between different sub-segments

of the same trajectory to intervals [0,1]. The closer the relationship

value between sub-segments is to 1, the stronger the correlation

between sub-segments. We achieve this by generating a fuzzy

attention allocation matrix using the sigmoid activation function

(Kosko, 1986; Felix et al., 2019).

We activate each vertex Attentioni of Attention that contains

the global spatial correlations of trajectories to state ai by
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FIGURE 2

The main structure of the AttentionTTE.

FIGURE 3

The self-attention of spatial correlations extraction module.

the activation function tanh and a learnable matrix Wa,

Wa ∈ RC× dv as shown in Equation 17.

ai = tanh
(

Wa · AttentionTi
)

(17)

Subsequently, we use the sigmoid activation function

(Homenda and Jastrzebska, 2019; Wang et al., 2020), query

matrix Qlocal, and key matrix Klocal to generate a fuzzy attention

allocation matrix Wfuzzy and multiply it with the trajectory state a

of learning critical node features on the trajectory sequence, and

get the featurepart as shown in Equations 18, 19.

Wfuzzy = sigmoid
(

QT · K
)

(18)

featurepart = Wfuzzy · aT (19)

where, a =
(

a0, a1 . . . aT−k+1

)

.

Usually, the influence of external information on the predicted

outcome will change with the duration of driving time (e.g., the

driver is tired due to the extended driving time, and the same driver

will have different driving styles in the fatigue and normal driving

state). This change is often difficult to quantify, but providing an

accurate prediction must consider this problem.

To simulate the influence of external information on the

prediction results with driving time, the model inputs it into an

LSTM to obtain the output of the perturbation term. As each

node in the sequence is processed, the LSTM dynamically fuses

external information. The advantage of this method is that it can

capture the trend and law of the degree of influence of external

information on the results with time to better reflect the current

external environment information and improve the prediction

ability and generalization ability of the model. For example, in

traffic forecasting, the dynamic fusion of external information

based on weather forecasts, time, and other factors can more

accurately predict road congestion and improve the accuracy of

traffic forecasting.

To dynamically fuse external information, we concatenate attr ,

attr ∈ R1×E with each node in the featurepart , featurepart ∈
R(T−k+1)×C sequence to get the distractor input hiddend, hiddend ∈
R(T−k+1)×(C+E ).
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In the real world, external information changes over time,

such as the driver’s driving style, weather conditions, and other

information changes over time. To model the process of external

information changing with the duration of driving time, we pass

hiddend into a recurrent neural network (recall from the previous

description that LSTM is usually very effective in dealing with

time series problems) to get the output of the disturbance term.

In dealing with each node in the sequence, the recurrent neural

network will dynamically fuse external information as shown in

Equation 20.

disturb = LSTM
(

hiddend
)

(20)

disturb is the feature vector of external information changed with

the path, where disturb ∈ R(T−k+1)× C .

Finally, we fuse the above three feature hidden states by three

learnablematricesWfs,Wat , Wfd, to obtain the hidden state features
with captured spatial correlations as shown in Equation 21.

features = Wfs · tanh
(

featureTpart

)

+Wat · tanh
(

AttentionT
)

+Wfd · tanh
(

disturbT
)

(21)

where features ∈ RC×(T−k+1 ).

4.3.2 Time dependencies extraction module
We introduce recurrent neural networks into our model to

extract the temporal dependencies of historical trajectories. The

time dependence is contained in the sequence of individuals of each

trajectory segment in a complete trajectory sequence, that is, held in

the pathlocal. The recurrent neural network is a deep learning model

widely used to capture the dependencies of time series (Duan et al.,

2016).

We will extract the time dependencies from the sequence

pathlocal processed by the local spatial correlations extraction

module by two layers of connected LSTM to obtain the sequence

featuret , with extracted time dependence as shown in Equation 22.

featuret = LSTM
(

pathlocal
)

(22)

We fuse the spatial correlation and temporal dependence into

the hidden state featurest by two learnable matrices as shown in

Equation 23:

featurest = Ws · features +Wt · featuret (23)

4.4 Multi-task learning module

Finally, we introduce the multi-task learning module. Previous

studies on arrival time prediction primarily divided the task

into individual and collective predictions. Individual prediction

involves dividing a historical trajectory into multiple sub-historical

segments (Yang et al., 2013; Wang D. et al., 2018), predicting each

segment, and summing the results. Collective prediction directly

predicts the travel time of the entire historical trajectory. Generally,

individual predictions are more accurate but fail to model the

complex traffic environment of the entire trajectory, such as the

impact of signal lights and intersections, making them less accurate

for longer sequences. Therefore, an ideal model should combine

the accuracy of individual predictions with the ability to model

complex traffic states in collective predictions. In the experimental

phase, we train the model by combining individual and global

predictions to improve overall accuracy (Wang D. et al., 2018;

Zhang and Yang, 2018).

In the individual prediction stage, we review the previous

content. We can make the hidden states sequence featurest =
hidden = h1, h2.., hT−k+1, where each hi represents a spatial-

temporal feature of a local trajectory. We construct an individual

prediction unit with two layers of fully connected neural networks.

We obtainT−k+1 scalars, where ti representing the time of passage

by each local trajectory.

Because the feature sequence featurest is still a hidden state of

length T − k + 1, which varies depending on the length of the

initial trajectory, we need to convert it to a fixed-length hidden state

before making a collective prediction. The commonly used method

is to sum and average the T − k + 1 hidden states, which is the

mean polling method. However, this method can not effectively

determine the contribution of the spatial–temporal features of each

local trajectory to the overall trajectory.

Reviewing the content of the self-attention mechanism part,

the result is that the hidden state of the sequence processed by

the self-attention mechanism contains the correlation between the

nodes on the sequence. We calculate the L2-norm value of the

hidden state of each node to generate the contribution of the hidden

state of each node (featurest) to the entire hidden state (featureseq).

We process the sequence Attention obtained by the global spatial

feature extraction module and calculate the vector modulus in the

space RC×1 for each node in the sequence to obtain the modulus

sequence mod,mod ∈ R1×(T−k+1). We generate the weight αi

according to the proportion of the magnitude of the modulus of

each node in the modulus sequence as shown in Equation 24.

αi = modi
∑T−k+1

j modj
(24)

Then the final trajectory feature a hidden state featureseq is

obtained by the weighted summation of the feature sequence as

shown in Equation 25.

featureseq =
∑T−k+1

i=1 αi · featuresti (25)

Finally, we input the trajectory hidden feature states by

multiple fully connected layers (Kingma and Ba, 2014; Zhang

and Yang, 2018) (in the experiment, the hidden state dimension

of the fully connected layer is 128) connected by the residual

network structure. Recall that the residual network can avoidmodel

degradation caused by depth deepening. At the tail of the residual

network, we generate the collective prediction time tcollective by

adding a fully connected layer with output dimension 1.
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4.5 Model training

Finally, we will introduce the training steps of the model. We

train an end-to-end model. In the training process of the model,

we use the MAPE as our loss function and calculate the loss for

individual and collective prediction simultaneously.

We specify a hyperparameter weight β between [0,1] and

calculate the loss function value for individual prediction

time and collective prediction time (Wang D. et al., 2018),

respectively. Furthermore, weigh it using that hyperparameter

weight β , balancing the individual and collective predictions, as

described below.

We take a loss on the individual prediction as shown in

Equation 26:

Lindividual = 1
|T| − k + 1

∑T−k+1
i=1

|ti−(pi+k−1 .ts−pi .ts)|
pi+k−1 .ts−pi .ts+ε

(26)

where ε is a small constant value that may approach zero in some

exceptional cases due to the usually short time interval between two

sampling points, and ε prevents the denominator from being equal

to 0.

Take a loss on the collective prediction as shown in Equation 27:

Lcollective =
∣

∣tcollective −
(

p|T|.ts− p1.ts
)
∣

∣

p|T|.ts− p1.ts
(27)

Our model will combine the above two losses as the final loss of

the model prediction. By the hyperparameter β , our model can find

the optimal solution by balancing between collective prediction and

individual prediction as shown in Equation 28.

β · Lcollective + (1− β) · Lindividual (28)

During the testing of the model, our model predicts the

collective travel time of the complete trajectory.

5 Experiment

In this section, we will describe the process of our experiment.

We first test our model and other benchmark models in a

realistic large-scale traffic dataset. Subsequently, we performed

relevant experiments on the validity of the individual structures of

our model.

5.1 Dataset setting

In this section, we will give a detailed description of the dataset

and the preprocessing of the dataset.

5.1.1 Dataset description
Chengdu Dataset: Chengdu Dataset (Wang D. et al., 2018)

contained more than 9,737,557 trajectories (14 million GPS

coordinates) for 14,864 taxis in Chengdu in August 2014. We

remove some abnormal trajectories in the experimental process,

such as unnatural driving speed and short driving distance.

TABLE 1 Data points.

1,300,30.4996330000,103.9771760000,1,2014/08/03/08:00:00

TABLE 2 Data description.

Trajectory number 1

Driver number 300

Weather status Sunny, 16

Time 14:02

Longitude sequence 30.4996, 30.4886. . .

Latitude sequence 103.97717, 103.97727. . .

Sampling time series 0.0, 6.0. . .

Travel time 3096

5.1.2 Data preprocessing
The Chengdu Dataset data set is divided into a plurality of data

set files according to the specific date of the sampling day. The

original format of each file is a path formed by a majority of GPS

sampling points, and each path comprises a plurality of sampling

points. The external information of each sampling point includes

the route number, taxi number, latitude, longitude, passenger

status (1 means carrying passengers, 0 means no passengers), and

sampling time point. Examples of data are provided in Table 1.

By identifying the route number and the driver number, we

extract all the trajectory points of the same route, sort them

according to the sampling time of the sampling points, and sort

them into longitude and latitude sequences and passenger carrying

state sequences. According to the start time of the trajectories,

we calculate the sampling time sequence and calculate the travel

time of the whole route according to the start and end time of the

sampling of the sequence. The sequence of trajectories is shown in

Table 2.

In addition, considering the road properties of the city and the

way the data set is taken, we exclude trajectories with a distance

>100 km or <0.5 km, a speed >100 km/h or <5 km/h, and a time

>7,200 s or <60 s.

5.2 Parameter setting

In this section, we give some hyperparameter settings for

our experiment.

1. Local Spatial Correlation Extraction Module

We set the dimension C of the learnable matrix Wlocal ∈
RT×C to be 16-dimensional, so that the learnable matrix of the

one-dimensional convolutional neural network,Wconv ∈ Rk× C.

2. Spatial Correlation and Temporal Dependencies

Extraction Module

We set the size of the Q, K, and V matrices in the Attention

process in the global spatial correlation extraction module to
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(

T − k+ 1
)

× C, where T − k + 1 represents the length of the

sequence and C is set to 16. In the attributes fusion process, the

recurrent neural network part has its input dimension set to C + E

and its output dimension set to C.

3. Multi-task Learning Module

We set the dimension of the hidden state of the residual

network part of the multi-task learning module to 128. We set the

superposition module of multiple linear layers to the decreasing

term of dimension C, that is, 16 dimensions, 8 dimensions, and 1

dimension. We choose the hyperparameter β to be 0.3.

4. Hyperparameter Setting

We trained the model on the dataset 50 times for each

experiment, and each experiment used the training parameters

of the Adam optimizer, which has a learning rate of 0.001. The

convolution kernel size of the local spatial feature extraction

module is set to 3, and the β value of themulti-task learningmodule

is set to 0.3.

5.3 Experiment environment

Our model is written using pyTorch, a deep-learning

framework. We train/predict the model on an NVIDIA GeForce

RTX 2080 Ti GPU, the CPU is Intel Core i7-9700F. We use the

Adam optimizer (Kingma and Ba, 2014), the learning rate is set to

0.001, and the batch size is 32.

5.4 Experiment description

1. We use the first 20 days of the data set as the training set, the

next 3 days as the validation set, and the last 7 days as the test

set to test the predictive ability of the model under the full

period (one week) training.

2. To determine the prediction ability of the model in a shorter

period, we conduct experiments on a data set for 24 h and a

week. First of all, we set the period of the data set to 24 h.

We use the data sets of two adjacent days as the training set

and the test set, respectively. To alleviate the interference of

artificial time planning (such as weekends, holidays, etc.), we

exclude the data sets of weekends, Mondays, and Fridays and

take Tuesday as the training set and Wednesday as the test

set. Moreover, in the attribute fusion module of the model, we

exclude the date attribute of the target trajectory. Second, we

select all the data sets of the previous week as the training set

andWednesday of the current week as the test set. We test our

model on the above data sets.

3. To test whether the prediction ability of the model for arrival

time will degrade with the increase of the time interval

between training and prediction, we use the first week data

set of Chengdu in August as the training set and the last week

data set as the test set for experiments.

4. We conducted ablation experiments on each module of the

model to determine the effectiveness of our proposed module.

5.5 Evaluation metric

We use mean absolute error (MAE), MAPE, and root mean

square error (RMSE) as the evaluation matrix of our experiment.

MAE represents the mean of the absolute error between the

predicted and observed values (Goodwin and Lawton, 1999).

MAPE is a relative measure, which is usually used to evaluate

the prediction results of time series (Willmott andMatsuura, 2005).

RMSE is the square root of the ratio of the square of the

deviation between the predicted value and the label value to the

number of observations n, which measures the deviation between

the predicted value and the label value (Chai and Draxler, 2014).

5.6 Performance comparison

In this section, we will compare the predictions of our model

with those of other models.

5.6.1 Baseline model
• GBDT: GBDT is an iterative decision tree algorithm. In the

context of travel time prediction based on GPS trajectories, it

combines the results of multiple decision trees to obtain the

travel time. Since the length of GPS trajectories in this study

is variable, and GBDT cannot directly handle sequences with

variable lengths, this study uniformly samples each trajectory

to a fixed length of 128.

• MLP-LSTM: We use a multilayer perceptron (five layers) and

a two-layer LSTM-connected model as one of our baseline

models, the input of the model is consistent with our model

input, and the hidden layer size of the model is 128.

• WDR: The WDR model is a deep learning model that

defines travel time prediction as a pure regression problem.

It is primarily based on the wide–deep–recurrent framework,

which learns different features of trajectories to accomplish

travel time prediction.

• Deep TTE: The deep TTE model is currently one of the

most accurate models for the time of arrival prediction based

on GPS trajectory data sets. In this model, the geographic

convolution module and the multi-task learning module

based on attribute fusion are proposed for the first time.

By extracting spatial and temporal features and balancing

the global and local prediction capabilities of the model, the

predicted values with high accuracy are obtained. However,

in the module of spatial feature extraction, deep TTE only

considers the spatial features of several adjacent path nodes

and does not establish correlations between the global spatial

features. It does not consider the change of attributes over

time in attribute fusion. During the experiment, we set the

dimension of its hidden state to be equal to our model.
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TABLE 3 Summary of experimental results.

Evaluation metric GBDT MLP-LSTM WDR Deep TTE AttentionTTE

1. Full dataset

MAPE 23.19% 18.73% 15.91% 14.10% 13.65%

MAE 391.42 387.13 307.42 227.38 227.38

RMSE 597.43 613.43 545.61 502.93 560.26

2. Short period A

MAPE 12.49% 9.16% 9.32% 7.91% 6.84%

MAE 293.41 276.32 252.71 183.31 165.67

RMSE 587.81 523.71 545.27 399.83 386.83

3. Short period B

MAPE 11.89% 8.21% 7.41% 5.41% 3.45%

MAE 262.73 166.62 128.51 105.87 74.38

RMSE 521.67 383.38 307.73 250.83 193.42

4. Long time span

MAPE 25.36% 22.32% 23.71% 18.79% 17.95%

MAE 507.59 421.31 458.59 270.94 229.71

RMSE 927.41 948.02 937.31 576.56 553.67

5.6.2 Results comparison
5.6.2.1 Predictions on the full data set

We take the first 3 weeks of the data set as the training

set and the last week as the test set and compare our model

with the above model. As shown in Table 3, we can see that our

model has achieved better prediction results compared with the

previous method.

5.6.2.2 Predictive ability of the model on short-period

data sets

For the training dataset with a period of 24 h, this study

extracts Tuesdays and Wednesdays of all weeks in August from the

complete dataset, selects Tuesday of each week as the training set

of the dataset, Wednesday as the test set, and finally obtains four

short-term datasets. This study tests the model of this article on

these datasets.

For the dataset with 1 week, we take the trajectory data of the

first 3 weeks (that is, 1 August to 22 August) in the dataset in August

in Chengdu as the three training sets, and the trajectory data within

the 3 weeks of the dataset in the last 3 weeks (that is, 8 August

to 29 August) as the three corresponding test sets. Therefore, the

period of the training set is an entire week. It can be seen from the

experimental results that the model trained on the test set with a

shorter period has higher prediction accuracy.

In addition, all models have significantly improved prediction

accuracy on test sets over short time spans, so the current traffic

state of a city may depend on the previous week’s traffic status.

5.6.2.3 Predictive ability of the model over a longer

time span

We take the data set of the first week of August in Chengdu,

from 4 August 2014 (Monday) to 10 August 2014 (Sunday), as the

training set, and the data set of the last week as the test set for

TABLE 4 Summary of ablation experimental results.

Model MAPE MAE MSE

No global spatial correlation

extraction module

5.79% 109.32 233.78

No attribute fusion module 4.29% 102.45 197.43

No multi-task learning module 4.21% 112.68 201.54

AttentionTTE 4.09% 97.85 191.41

the experiment, from 25 August 2014 (Monday) to 31 August 2014

(Sunday), with a time span of 3 weeks. The data set on 3 August was

used as a validation set to test the impact on the predictive ability

model over a longer time span.

From the experimental results, the prediction ability of the

model on the test set with a longer time span from the training set

has degraded. Compared to the results of the previous experiment,

this result may be because the current traffic state of the city is

similar to that of the near time.

5.6.2.4 Ablation experiment

During the ablation experiment, to reduce the training time of

the model, we used the data sets from 3 August to 9 August as the

training set and the data sets from 14 August and 15 August as the

test set. The experimental results are described in Table 4.

a) Global Spatial Correlation Extraction Module

We first train the model with or without using

the global spatial correlations extraction module. The

experimental results show that the results of the model

using the global spatial correlations extraction module
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and the model without it on the above data sets are

4.09 and 5.79%, respectively, when MAPE is used as the

evaluation matrix.

We conduct further experiments on the Attention

mechanism we proposed to verify that it is more efficient in

revealing the correlations between the nodes of the sequence

compared with the simple self-attention mechanism, which

has the same hidden state dimension. The experiment

results show that when using MAPE as the evaluation

matrix, the model with the Attention module and the

model with the simple self-attention module are: 4.09

and 4.53%. Experiments demonstrate the effectiveness

of our model.

During the process of integrating attribute features

into the spatial-temporal features of trajectories, we

conducted ablation experiments to investigate the fusion

of attributes. We explored two approaches: directly

concatenating the attribute feature vector with the

spatial features of trajectories and using LSTM for

attribute fusion. The experimental results are 4.09 and

4.17%, respectively.

b) Attribute fusion module

To verify the effectiveness of the attribute fusion module,

we conduct experiments on our model using the weighted

attribute fusion module and our model using only the

embedding coding technique. The experimental results show

that, when MAPE is used as the evaluation metric, the

results of the model using the weighted attribute fusion

module and the model using only embedding coding

attribute fusion module on the above data sets are 4.09 and

4.29%, respectively.

c) Multi-task learning module

To verify the validity of the weighting method and to sum

the spatio-temporal feature sequence by the attention matrix

to obtain the features of the travel time of the complete path,

we compare the experimental results of using the average

method to get the travel time of the complete path. The

results of the experiment show that the results of the model

using the weighted summation of the attention matrix and

the model using the averaging method on the above data sets

are 4.09 and 4.21%, respectively, when MAPE is used as the

evaluation metric.

d) Model size

The trainable parameter size of our whole model is about

0.56MB. The trainable parameter of the weighted attribute

fusion module is about 0.21MB, the trainable parameter of

the spatial correlations and temporal dependencies extraction

module (including the local spatial correlation extraction

module) is about 0.27MB, and the trainable parameters of

the multi-task learning module is about 0.08MB. Compared

with DeepTTE, a deep learning model with higher prediction

accuracy (the trainable parameters of the model are about

0.71MB, and the attribute fusion module is about 0.40MB),

there are fewer trainable parameters. The model has fewer

trainable parameters because the encoding latitude of each

attribute in the attribute embedding process is limited to a

lower value.

6 Conclusion and future work

In conclusion, we propose a novel external information fusion

method, the weighted attribute fusion module, which assesses

the impact of various attributes, such as driver information, on

prediction results in different scenarios. This innovative approach

significantly enhances the accuracy of travel time estimation

by integrating both global and local spatial correlations with

temporal dependencies. Looking ahead, the AttentionTTE model

holds significant potential for future urban projects, particularly

in the areas of electric vehicle (EV) scheduling (Ochoa and

Oliva, 2018) and the transition from conventional vehicles to

EVs (Ghasemlou et al., 2023). Accurate ETA predictions are

crucial for optimizing EV charging schedules and ensuring efficient

route planning, which can reduce energy consumption and

improve overall transportation efficiency. As cities continue to

evolve toward sustainable and intelligent transportation systems,

integrating the advanced predictive capabilities of AttentionTT

can facilitate smoother and more effective transitions in urban

mobility infrastructures.
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