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In-memory computing (IMC) with non-volatile memories (NVMs) has emerged

as a promising approach to address the rapidly growing computational demands

of DeepNeural Networks (DNNs). MappingDNN layers spatially ontoNVM-based

IMC accelerators achieves high degrees of parallelism. However, two challenges

that arise in this approach are the highly non-uniform distribution of layer

processing times and high area requirements. We propose LRMP, a method

to jointly apply layer replication and mixed precision quantization to improve

the performance of DNNs when mapped to area-constrained IMC accelerators.

LRMP uses a combination of reinforcement learning and mixed integer linear

programming to search the replication-quantization design space using a

model that is closely informed by the target hardware architecture. Across five

DNN benchmarks, LRMP achieves 2.6–9.3× latency and 8–18× throughput

improvement at minimal (< 1%) degradation in accuracy.

KEYWORDS

in-memory computing, analog accelerator, quantization, reinforcement learning,mixed

integer linear programming

1 Introduction

Deep Neural Networks (DNNs) have come to dominate the field of machine learning,

and achieve state-of-the-art performance on a variety of complex tasks. However, the

advancements in their capabilities have come at the cost of a steep growth in model size

and computational complexity. Researchers have developed specialized digital accelerator

architectures (Chen et al., 2016; Jouppi et al., 2018; Lie, 2022) and methodologies like

quantization and pruning (Liang et al., 2021) that attempt to strike better tradeoffs between

cost and functional performance. These implementations are, however, fundamentally

limited by the memory bottleneck, as memory accesses are significantly more expensive

than arithmetic operations.

In-Memory Computing (IMC) is a computing paradigm where the elementary

operations of input vector-weight matrix multiplications in DNNs are performed within

memory arrays, potentially alleviating the memory bottleneck. IMC systems have been

designed and prototyped with various memory technologies, including SRAM (Zhang

et al., 2017; Kang et al., 2020; Yin et al., 2020), DRAM (Gao et al., 2019), and emerging

non-volatile memories (NVM) such as RRAM (Chi et al., 2016; Shafiee et al., 2016;

Song et al., 2017), PCM (Burr et al., 2015; Khaddam-Aljameh et al., 2021; Narayanan

et al., 2021) and STT-MRAM (Jain et al., 2018; Yan et al., 2018). In this work, we

focus on IMC with emerging NVMs, where the weights are programmed into the

NVM arrays as the conductance, of the memory device. To perform a vector-matrix
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multiplication (VMM) using such a memory array, the input

vector can be presented simultaneously along multiple wordlines

using digital-to-analog converters (DACs). The current that flows

through each memory cell is the product of the conductance of

the memory element (weight) and the wordline voltage (input).

These currents naturally sum up at each bit line. These behaviors

are dictated by Ohm’s and Kirchoff’s laws. These bit line currents

can then be digitized using analog to digital converters (ADCs) to

produce the input vector-weight matrix dot product.

Emerging non-volatile memories have a lot of desirable

qualities that make them a good fit for in-memory computing.

Their high densitymeans that largermodels can be stored, and their

non-volatility eliminates the need for continuous power or refresh.

However, their high programming costs coupled with their limited

endurance make frequent weight re-programming undesirable.

These factors make NVMs suitable for weight-stationary inference

architectures where all the weights are programmed spatially across

the chip and activations flow through and get processed by the

appropriate arrays. A consequence of this approach is that the

required area scales with the size of the network.While NVMarrays

are compact, the peripherals required for IMC (ADCs and DACs)

can be quite large, lowering the effective density (storage capacity

per unit area) and thus, resulting in large area requirements. To

mitigate the large area requirements, researchers have proposed bit-

decomposed architectures (Shafiee et al., 2016; Ankit et al., 2019), in

which weight bits are stored in spatially distinct arrays and input

bits are processed serially, reducing the precision requirements

of ADCs and DACs. As the area of the peripherals scale with

their precision, the reduced precisions of ADCs and DACs in bit-

decomposed architectures result in better effective density, thereby

lowering area requirements of IMC accelerators.

While mitigating the area requirements is important, the

system performance is also an important consideration. Despite the

impressive peak performance offered by spatial IMC accelerators,

the actual performance achieved can be significantly lower due

to poor utilization caused by the non-uniformity in processing

times across the layers of a DNN. Effective mapping techniques

can help close the gap between peak and actual performance

(Jain et al., 2023). Layer replication, which replicates bottleneck

layers to facilitate tensor and data parallelism, can balance

layer processing times and thus, improve performance. However,

layer replication is not a trivial optimization. Finding the

resources to replicate the layers, choosing the right layers to

replicate, and the number of times to replicate the chosen layers,

are all decisions that involve complex tradeoffs between area

requirements and performance. Also, with growing model sizes,

improving the performance of spatial architectures with layer

replication becomes challenging since it exacerbates the area

requirements.

Researchers have proposed various techniques to address the

challenges of IMC accelerator design. For example, various mixed

precision quantization techniques that assign specialized bitwidths

to the weights and activations across the layers of a DNN using

different optimization strategies (Huang et al., 2021; Kang et al.,

2021; Meng et al., 2021b; Peng et al., 2022) have been shown to

achieve significant compression of weight and activation footprints,

resulting in area, speed and energy improvements. However, these

techniques do not address the severe under-utlization of NVM

tiles caused by the imbalance in processing times across the layers

of DNNs. Others have proposed layer replication techniques to

improve utilization that either do not address the question of where

to find the resources to replicate layers (Rasch et al., 2019; Li

et al., 2020; Li W. et al., 2023) or rely on design-time tradeoffs to

accommodate the replicated layers (He et al., 2022). In contrast,

we identify a novel synergy between Layer Replication and Mixed

Precision quantization that can be exploited at compilation-time

to improve the performance of DNNs on spatial IMC accelerators.

We propose LRMP, an automated mapping framework that

explores the quantization-replication design space to quantize

layers selectively to free up resources and then replicate the right

layers using the freed-up resources to improve performance. In

summary, our contributions are as follows:

• We present LRMP, a novel framework that jointly performs

mixed precision quantization and layer replication during

mapping of DNNs to IMC accelerators.

• We propose a joint-optimization approach with (i) deep

reinforcement learning based selection of precision for each

layer in the network to maintain accuracy while conserving

hardware resources, and (ii) linear programming based

selective layer replication to redeploy the conserved resources

in the IMC hardware to improve performance.

• We evaluate the LRMP framework on a benchmark suite

of convolutional and fully-connected neural networks

and achieve 2.6–9.3× latency improvement and 8–18×

throughput improvement, at iso-area and near iso-accuracy.

The rest of the paper is organized as follows. We describe

the process of mapping a neural network layer in an IMC system

and discuss the implications of precision on resource requirements

and latency in Section 2. We motivate the synergy between mixed

precision and layer replication using an illustrated example in

Section 3.We present the details of the LRMP framework in Section

4. We describe our experimental setup in Section 5 and present our

results in Section 6.We discuss the contributions of our work in the

context of existing related works in Section 7. Finally, we conclude

the paper in Section 8.

2 Preliminaries

Vector-matrix multiplication (VMM) is an elementary

operation in the evaluation of neural networks. In this section,

we describe how a weight matrix can be mapped to multiple

crossbar tiles and how these crossbar tiles can collectively

perform a multiplication operation between an input vector and

a weight matrix to produce an output vector. We also describe

the latency and the number of crossbar tiles required for such an

implementation of VMM.

Convolutional layers represent a common layer configuration

used in DNNs. They are composed of a three-dimensional weight

tensor array sliding across a three-dimensional input tensor,

producing an output value for each patch of overlap. Convolutional

layers are realized on IMC substrates by converting the weight
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tensor into a two-dimensional matrix and performing image-

to-column lowering of the input tensor into a sequence of

vectors. Then, the convolution output values can be produced by

performing a sequence of VMMs.

Consider a convolution operation with C input features, N

output features and a kernel size of K, producing output features

of dimension W × W. The size of its lowered weight matrix is

K2C×N. The input tensor is transformed intoW2 vectors of length

K2C. With a sequence of VMMs, W2 output vectors of length N

are produced. It must be noted that the number of vectors can be

quite high and it depends on the dimensions of the input, the filter

kernel size K, the padding and the stride. For, example, in the first

convolutional layer of the ResNet18 DNN, the input matrix has

over 12,000 column vectors.

To map a convolutional layer to a crossbar, the weight tensor

is first lowered to a two-dimensional matrix, as shown in Figure 1.

The weight matrix is then segmented into multiple sub-matrices

of size X × X, which denotes the size of the crossbar array or

tile. To build a spatial architecture, each of these sub-matrices are

mapped onto individual crossbar tiles. The number of tiles required

to perform this spatial mapping is given by Equation 1.

#tiles(K,C,N,X) =

⌈

K2C

X

⌉

×

⌈

N

X

⌉

(1)

As discussed in Section 1, crossbar arrays can be built with

a variety of memory technologies. Also, these memory devices

are designed to store a specific number of bits. The precision of

the memory element is a matter of concern, as high precision

elements have been shown to bemore sensitive to process variations

and conductance drift (Shim et al., 2021) and incur higher

programming costs (Perez et al., 2021). Thus, low precision devices

are desirable with regards to both accuracy and performance.

The achievable precision of the memory device needs to be

reconciled with the required logical precision of the weights. If the

device precision (sb) is less than the required weight precision (wb),

the weight sub-matrices can be sliced into groups of sb bits and then

each slice can be mapped to a separate crossbar tile, as shown in

Figure 1. It must be noted that the digital outputs corresponding to

the bit-slices of the weight matrix need to be appropriately shifted

and added to produce the final output. The number of tiles required

considering a bit-sliced mapping is given by Equation 2.

#tiles(K,C,N,X,wb, sb) =

⌈

K2C

X

⌉

×

⌈

N

X

⌉

×

⌈

wb

sb

⌉

(2)

As discussed in Section 1, to perform a vector-matrix

multiplication using crossbars, we must convert the input vector

values to analog voltages using a digital-to-analog converter (DAC).

The output currents of the crossbar array are then converted to

digital using analog-to-digital converters (ADC). These peripheral

circuits, especially ADCs, occupy a significant proportion of

latency and, area and power budgets. The design choices of

the number of ADCs per crossbar array, and ADC and DAC

precisions are important considerations in the design of crossbar-

based architectures. The number of ADCs can be chosen to be

lesser than the number of columns and the ADCs can be time-

multiplexed between multiple columns. In order to reduce the

precision requirements of ADCs and DACs, we can stream the

input vectors bit-by-bit and reduce the corresponding outputs with

shift-add operations. The latency of performing VMMs required

by a convolution layer in such a bit-streamed manner is given by

Equation 3.

lat(W, ab,X, nADC, ttile) = W2
× ttile ×

⌈

X

nADC

⌉

× ab (3)

where nADC is the number of ADCs per crossbar array, ttile is

the time elapsed between presenting an input to the tile and the

ADCs producing their output, ab is the number of bits required to

represent the input vector values andW2 is the number of vectors.

Thus, both the hardware requirements and latency of a

crossbar-based architecture depend on the precision of the weights

and activations of the neural networks mapped onto them.

3 Motivation

In this section, we illustrate how mixed precision and layer

replication greatly impact latency and throughput of DNN

evaluation.

Let us consider the baseline implementation of ResNet18 with

8-bit weights and 8-bit activations. As defined by Equation 2, the

tile consumption of each layer in a spatial architecture depends on

the size of the weight matrix, the logical weight precision (wb) and

the physical memory device precision (sb). As shown in Figure 2A,

we observe that different layers of the network have different

latencies and tile requirements, as defined by Equations 3 and 2,

respectively. In our evaluations, we use a device precision of 1-bit

and a crossbar size of 256×256.

By selectively reducing the precision of weights in certain layers,

we can take advantage of the bit-sliced implementation and reduce

the number of tiles required by that layer. These conserved tiles can

be used to replicate bottleneck layers in a neural network to process

parts of the layer input in parallel, resulting in a latency reduction.

Similarly, by selectively reducing the precision of input vectors, we

can reduce the number of bits to be streamed to the crossbar arrays,

resulting in proportional reduction of latency.

Let us consider reducing the weight precision of a resource-

intensive layer and the input precision of the bottleneck layer

to 6-bits. As shown in Figure 2B, we observe that 72 tiles are

conserved. In addition, as explained by Equation 3, the latency of

the bottleneck layer is reduced resulting in an overall 5.7% latency

improvement and 1.33× throughput improvement.

If these newly freed-up tiles are used to naively replicate only

the bottleneck layer, we can create 9 more copies of that layer. Thus,

10 input vectors of that layer can be processed in parallel, resulting

in 25.5% improvement in total latency and 2.34× improvement in

throughput, as illustrated in Figure 2C.

The above example illustrates that a trade-off exists between

precision and latency in spatial IMC architectures. A few questions

that arise related to this trade-off are:

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1268317
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nallathambi et al. 10.3389/frai.2024.1268317

FIGURE 1

Realizing a VMM operation using crossbar arrays.

FIGURE 2

An experimental illustration of heterogeneous quantization and layer replication using ResNet18. (A) 8-bit baseline. (B) Selective Quantization. (C)

Layer Replication.

3.1 How to choose the precision of each
layer?

When choosing the precision of each layer, we need to consider

its impact on the tile consumption, overall latency, and accuracy.

The weight precision affects the bit-slicing factor, which is only

one of the factors that determines the tile consumption of a layer

(Equation 2). The other factors depend on the size of the weight

matrix. Thus, it is important to choose the weight precision of each

layer in a way that the number of tiles conserved is maximized.

Similarly, the activation precision only affects the bit-streaming

factor of Equation 3. The other factor is the number of input vectors

to be processed. Thus, it is important to choose the activation

precision of each layer in a way that the latency is minimized.

Moreover, reducing the activation/weight precision of any layer in

a neural network has implications for the overall accuracy of the

network. Thus, it is important to choose the precision of each layer

in a way that the overall accuracy is not compromised.

3.2 Where to repurpose the conserved
tiles?

When choosing the replication factor of a layer, we need to

consider its impact on the overall latency and tile consumption. The

latency of a layer is a function of the number of input vectors and

their precision, both of which can vary across the layers of a neural
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FIGURE 3

Overview of the proposed LRMP methodology.

network. At the same time, the number of tiles required to replicate

layers also varies based on the size of their weight matrices. Thus, it

is important to choose the replication factor of each layer in a way

that the utility of the conserved tiles is maximized, and the overall

latency is minimized.

4 LRMP methodology

In this paper, we propose LRMP (Layer Replication through

Mixed Precision), a framework that combines reinforcement

learning (RL) and mixed integer linear programming (MILP) to

jointly optimize latency/throughput and accuracy of DNNs realized

on IMC hardware fabrics.

As shown in Figure 3 LRMP is an iterative process with

each iteration or episode consisting of two-steps: (1) an RL-agent

choosing the precision of each layer in the DNN, and (2) an MILP-

based optimizer choosing the replication factors of each layer. After

each episode, the latency, throughput and accuracy of the network

are evaluated and used to guide the RL-agent. In the remainder

of this section, we describe the hardware modeling of an RRAM-

based IMC accelerator, and then discuss how linear programming

and reinforcement learning can be employed in tandem to quantize

and replicate layers to jointly optimize accuracy and performance

metrics under a chip capacity constraint.

4.1 Hardware model

LRMP is a joint optimization process that is designed to

improve accuracy and latency/throughput achieved by DNNs

on spatial in-memory accelerators. To estimate the performance

metrics of evaluating DNNs on these spatial accelerators, we

develop a simple and effective cost model that can be used to

estimate latency and throughput of a DNN during the optimization

process. The cost model is based on the compute-in-memory

system developed by Chang et al. (2022), which consists of a Cortex

M3 microprocessor, two vector modules for digital compute,

and 288 crossbar tiles of dimension 256×256. Data transport is

implemented using 8 lanes of 8-bit wide buses from the vector

modules to the crossbar tiles and 8 lanes of 32-bit wide buses

from the crossbar tiles to the vector modules. Each vector module

has 8 lanes of parallel compute and 128KB of SRAM. The system

is equipped with fine-grained power gating and each tile can be

individually turned off. On account of the larger computer vision

models used to benchmark the proposed approaches in this work,

the cost model assumes a scaled-up version of this system with

5688 tiles and 40 vector modules, each with 64 lanes of parallel

compute. Further details on the microarchitecture are provided

in Section 5.

The latency of evaluating a DNN layer (Tl) on this compute-

in-memory system, described in Equation 4, comprises of 4 factors:

TtileIn.l, which refers to the latency of transferring input vectors of

layer l from vector modules to the respective tiles. This transfer

is performed over eight 8-bit lanes, which are shared among 144

tiles. Similarly,TtileOut.l represents the latency of transferring output

vectors of layer l from crossbar tiles to the respective vectormodules

using eight 32-bit lanes shared by the same 144 tiles. The latency of

performing Vector-Matrix-Multiplication (VMM) using crossbar

tiles with temporally bit-streamed inputs and spatially bit-sliced

weights of layer l is represented by Ttile.l. Lastly, the post-VMM

digital compute of layer l performed by vector modules has a

latency of Td.l, which uses 64 lanes processing the output vectors

of 144 tiles. It must be noted that each of these components is
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a function of the number of bits used to represent the input

activations and weights of layer l.

Tl = TtileIn.l + TtileOut.l + Ttile.l + Td.l (4)

With the latency of evaluating a layer defined, the latency of

evaluating a DNN is the sum of the latencies of its constituent

layers. The latency of evaluating a DNN with L layers is given by

Equation 5.

T =

L
∑

l=1

Tl (5)

The system is designed to operate with coarse-grained pipeline

parallelism. Thus, the throughput of the system is defined by the

maximum latency of any layer. The throughput of the system is

given by Equation 6.

P =
1

max
l

Tl
(6)

Themodel described above is used in LRMP to perform analysis

and exploration of the quantization and replication design space.

4.2 Optimizing layer replication using
mixed integer linear programming

As discussed in Section 3, tiles can be freed up by selectively

quantizing layers based on their tile footprint and selectively

replicating layers based on their latencies. When a layer is

replicated, the number of tiles and vector modules allocated to that

layer is increased. Thus, for the said layer: (1) the total bandwidth

available for data transfer is increased; (2) the amount of digital

compute allocated is increased; and (3) the number of tiles available

for performing the required VMM operations is increased. This

results in a linear reduction in the latency of evaluating the layer.

If there are rl instances of layer l, then the latency of evaluating

the DNN is given by Equation 7.

T =

∑

l

1

rl
(TtileIn.l + TtileOut.l + Ttile.l + Td.l) (7)

Given a mixed precision quantization scheme, the total number

of tiles required to have one instance of each layer (sl) is given

by Equation 2. The total latency T can be optimized by carefully

choosing the layer replication factors denoted by the vector r. The

process of choosing the replication factors is naturally constrained

by the total number of tiles available in the system (Ntiles). This can

be formulated as a constrained optimization problem, as shown in

Formulation 8.

minimize
r

∑

l

1

rl
(TtileIn.l + TtileOut.l + Ttile.l + Td.l)

subject to

rl ≥ 1,
∑

l

(rl ∗ sl) ≤ Ntiles

(8)

The constraints ensure that there is at least one instance of

each layer and the total number of allocated tiles doesn’t exceed

the number of tiles available (Ntiles). Since sl is constant for a

given quantization scheme, the constraints are linear. However, the

objective function is non-linear.

As defined by Equation 6, the throughput of the system is the

inverse of themaximum latency across all layers. Thus, tomaximize

throughput, we need to minimize the maximum latency across all

layers. Optimizing for throughput is, thus, a min-max problem.

The optimization problem can therefore be re-written as shown in

Formulation 9.
minimize

r
M

subject to

1

rl
(TtileIn.l + TtileOut.l + Ttile.l + Td.l) ≤ M

subject to

rl ≥ 1,
∑

l

(rl ∗ sl) ≤ Ntiles

(9)

We introduce a dummy variable M and reformulate the

optimization problem to minimize M, while ensuring that the

latency of each layer does not exceedM. By constraining the latency

of each layer to be no greater than M and minimizing M, we are

effectivelyminimizing themaximum latency across all layers, which

maximizes the throughput of the system.

These optimization problems are not automatically linear.

However, we can employ linearization techniques (Asghari et al.,

2022) to reformulate the optimization problem with linear

constraints and objective function. Then, we solve the reformulated

problem using an MILP solver.

4.3 Constraining the action space with
performance budgets

The reinforcement learning framework used in this work is

based on the work by Wang et al. (2019), which imposes a

performance cost constraint on the action space of the RL agent.

If the quantization policy prescribed by the RL agent does not meet

the performance targets, it is modified by decreasing the bitwidths

until the performance targets are met. While this approach is

effective, it does not provide any insight into the tradeoffs between

accuracy and performance.We restructure this approach to explore

the tradeoffs between accuracy and performance by exponentially

tightening the performance budget. This results in the RL agent

exploring the space of quantization policies to not just meet a

performance budget but also achieve better performance metrics.

4.4 Rewarding the RL agent with accuracy
and performance metrics

In each episode of exploration, the RL agent is rewarded based

on the quality of the quantization policy it prescribes. Wang

et al. (2019) rewarded the RL agent based on the accuracy of the
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quantized DNN. In this work, we optimize the performance of

the quantized DNN by using the layer replication technique. Thus,

to achieve joint optimization, the RL agent is rewarded based on

the accuracy and performance of the quantized DNN. The reward

function is given by Equation 10.

R = λ × (accquant − accoriginal)+ α × (1− Tquant/Toriginal) (10)

where, accquant is the accuracy of the quantized DNN, accoriginal
is the accuracy of the original DNN, Tquant is the latency of the

quantized DNN and Toriginal is the latency of the original DNN

when optimizing for latency. When optimizing for throughput,

Tquant and Toriginal are latencies of the bottleneck layers of the

respective DNNs. The hyperparameters λ and α control the relative

importance of accuracy and performance in the reward function.

The reward function is designed to encourage the RL agent to

prescribe quantization policies that result in a quantized DNN that

is optimized to balance accuracy and speed.

5 Experimental methodology

5.1 Microarchitectural details

As described in Section 4, this work is based on a scaled-up

model of the compute-in-memory system fabricated by Chang et al.

(2022). The microarchitectural parameters are listed in Table 1.

The system is built using 1T-1R RRAM eNVM technology, with

a tile size of 256x256 and a total of 5688 tiles. The system also

includes 40 vector modules, each of which contains 64 lanes of

parallel digital compute and 128 KB of SRAM. Each tile is equipped

with eight 4-bit Flash ADCs and 256 1-bit DACs. To prevent partial

sum quantization and mitigate other non-idealities, only 9 rows are

activated at a time. The system is clocked at 192 MHz.

The energy consumption of the system is modeled with three

components: power consumed by the RRAM tiles, the energy cost

of reading and writing the activations to the on-chip SRAM buffers,

and the power leaked by the SRAMs. Each RRAM tile is reported to

consume an average power of 130 µW (Chang et al., 2022). The

SRAM blocks are modeled using CACTI.

While we evaluate LRMP on a specific architecture, the

proposed techniques are not limited to it. The proposed

optimizations are applicable to any bit-decomposed IMC

architecture (Shafiee et al., 2016; Ankit et al., 2019; Zhu et al., 2019),

and are otherwise agnostic to the underlying hardware.

5.2 Methods

5.2.1 Reinforcement learning
As described in Section 4, the reinforcement learning

framework used in this work is based on the hardware-aware

quantization tool proposed by Wang et al. (2019). The method

consists of two phases: exploration and finetuning. In the

exploration phase, the agent explores the action space to find a good

policy based on the performance budget and rewards provided, as

described in Section 4. The trajectory of the exploration phase is

discussed in Section 6.3.

TABLE 1 Microarchitectural parameters.

Parameter Value

eNVM 1T-1R RRAM

Tile size 256×256

No. of tiles 5688

No. of vector modules 40

Device precision 1 bit

Row parallelism 9

DAC precision 1 bit

Column parallelism 8

ADC precision 4 bits

Avg. power per tile 130 µW

Clock frequency 192 MHz

After the exploration phase, the DNN is quantized with

the mixed precision scheme found by the agent. In the

finetuning phase, the DNN is trained with the quantized

weights and activations to recover any accuracy lost

to quantization.

5.2.2 Mixed integer linear programming
Given a quantization policy prescribed by the RL agent,

the mixed integer linear programming step is used to find

the replication factors that optimize the performance of the

system. Optimization objectives of both latency (latencyOptim)

and throughput (throughputOptim) are implemented. The baseline

for each network in the benchmark suite is the implementation

with 8-bit weights and activations. Thus, the layer replication is

performed with a constraint that the total number of tiles used

is no more than the baseline. This is a design choice to ensure

that performance is optimized without increasing area. An ablation

study has been performed and described in Section 6.5 to show

the effectiveness of our LRMP method with and without this

design constraint.

5.3 Benchmarks

The proposed LRMP approach has been evaluated on a

set of DNN benchmarks trained on the ImageNet and MNIST

datasets. The baseline of comparison for each benchmark is

the implementation with 8-bit weights and activations. The

benchmarks are listed in Table 2, along with the number of

tiles required by the baseline implementation. The multilayer

perceptron (MLP) is trained on the MNIST dataset, with 4

hidden layers of 1024, 4096, 4096 and 1024 neurons respectively.

The ResNets are finetuned on the ImageNet dataset with

pre-trained weights. While we limit our evaluation to DNNs

trained for classification tasks, we believe the proposed

techniques are broadly applicable to any quantized DNN

(Dettmers et al., 2022; Li X. et al., 2023). Also, the proposed
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techniques do not place any limits on the number of bits used

for quantization.

It must be noted that, besides quantization, analog non-

idealities such as noise, conductance drift, device-to-device

variation etc. have not been modeled in this work. However,

modeling these non-idealities (Jain et al., 2020; Lu et al., 2021;

Roy et al., 2021) and developing compensation techniques (Charan

et al., 2020; Meng et al., 2021a; Jain and Raghunathan, 2019)

are areas of active and ongoing research and we believe these

effects are not an impediment to the principal contributions of

this work.

6 Results

In the sub-sections of this section, we first present the

latency, throughput and energy improvements achieved by LRMP.

We then present results that provide insights into the RL-

based exploration process. We also show a layer-wise breakdown

of how latencies are optimized and an ablation study that

analyses the sensitivity of the layer replication methodology to

area constraints.

TABLE 2 DNN benchmarks.

Benchmark Dataset Ntiles

MLP MNIST 3,232

ResNet18 ImageNet 1608

ResNet34 ImageNet 2968

ResNet50 ImageNet 3376

ResNet101 ImageNet 5688

6.1 Latency and throughput improvements

Figure 4 reports the latency and throughput improvements

achieved by the LRMP framework. As explained in Section 5, the

improvements are reported with respect to fixed-precision baseline

networks with 8-bit weights and activations.

We observe 2.6–9.3× reduction in latency and 6.6–15×

improvement in throughput while optimizing for latency (denoted

as latencyOptim) across the suite of benchmark DNNs. Similarly,

we observe 8–18× improvement in throughput and 2.5–7.8×

reduction in latency while optimizing for throughput (denoted

as throughputOptim). These improvements are obtained with

accuracy loss of less than 1% after finetuning with the quantization

policies determined by LRMP.

6.2 Energy improvements

Although LRMP explicitly optimizes for throughput or latency,

it achieves energy improvements as a result of more efficient

DNN execution on the IMC substrate. Figure 5 shows the

energy improvements achieved by LRMP. We observe 4.75–

8.9× improvement in energy consumption while optimizing for

throughput and 4.7–8× energy improvement while optimizing for

latency.

6.3 Studying joint optimization of accuracy
and performance

As discussed in Section 4, the proposed approach jointly

optimizes for accuracy and performance by rewarding the RL

agent with an affine combination of accuracy and performance

FIGURE 4

Latency and throughput improvements achieved by LRMP.
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FIGURE 5

Energy improvements achieved by LRMP.

FIGURE 6

Trajectory of RL agent jointly optimizing ResNet18 for accuracy and latency.
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FIGURE 7

Layer-wise breakdown of latencies and tiles for ResNet18 for the baseline and while optimizing for latency (latencyOptim) and throughput

(throughputOptim).

metrics, and by continuously tightening the constraints placed on

the action space. Figure 6 shows the trajectory of the RL agent

performing latency optimization for ResNet18. The exploration

is started with a lenient performance budget of 0.35×baseline

latency and exponentially tightened to 0.2×baseline latency. Over

the course of the exploration, the agent finds quantization policies

that achieve upto 5× improvement in latency with layer replication

while also improving the accuracy.

6.4 Layer-wise breakdown

As discussed in Section 4, the layer replication can be

performed by optimizing for either latency or throughput.

The two objectives have different implications on the

latencies and tile consumptions of each layer and thus,

latency and throughput outcomes for the overall network.

Figure 7 shows the layer-wise breakdown of latencies and

tiles for ResNet18 for the baseline implementation as well

as the LRMP implementation while optimizing for latency

and throughput. Figure 8 shows the quantization policies

found by LRMP for ResNet18 while optimizing for latency

and throughput.

In the baseline case, we observe that the latency of the network

is bottlenecked by the first layer, which happens to consume very

few tiles. When the layers are replicated for latency optimization

(latencyOptim), the total latency is reduced by a factor of 4.6×,

while the latency of the bottleneck layer is reduced by 14× as

13 more copies of that layer are created. In the throughput

optimization mode (throughputOptim), the total latency is reduced

by a slightly smaller factor of 4.4×, while the latency of the

bottleneck layer is reduced by a larger factor of 19× as 18 more

copies of that layer are created. This is understandable, because the

bottleneck layer is solely responsible for determining throughput,

while all layers contribute to latency. It can be observed that LRMP

significantly improves tile utlization by balancing the pipeline

stages through quantization and replication, resulting in an energy

efficiency of 820 GOPS/s/W with throughputOptim, improving

from 127 GOPS/s/W.

6.5 Analysis of sensitivity to chip area

As discussed in Section 5, the layer replication methodology

is performed with an area constraint based on the fixed precision

baseline i.e., Ntiles in the optimization constraints is equal to the

number of tiles required by the fixed-precision 8-bit baseline

network baseline_tiles. We note that a different design choice, based

on the chip area and power budgets, could result in the relaxation

or tightening of this tiles constraint.

Figure 9 shows the sensitivity of the latency improvements

achieved by LRMP to different area constraints for the ResNet18

DNN. We perform this analysis by setting Ntiles to different ratios

of baseline_tiles and using LRMP to perform only quantization,

only replication, and joint quantization and replication. In other

words, we study the behavior of LRMP by tightening the tiles

constraint below the number of tiles required by the baseline or

by relaxing the tiles constraint by making more tiles available in

the system, while also using only one of the two optimization

dimensions of LRMP.

Because of the model compression naturally achieved by mixed

precision, with only mixed precision, we achieve 15.75% reduction

in latency while using 39% fewer tiles than the baseline. When we
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employ mixed precision and layer replication, we observe latency

reductions of 48% while using 35% fewer tiles than the baseline.

We note that layer replication can be performed even without

mixed precision, if more tiles are available. We employ only layer

replication with the baseline ResNet18 and observe 32% reduction

in latency while using 5% more tiles than the baseline. It should be

noted that when the tiles constraint is tightened, latency reductions

are not possible without mixed precision, as there are not enough

tiles for even a single copy of all the layers. Also, when all the tiles

in the system are used, using mixed precision and layer replication

achieves 46% lower latency compared to using only replication.

FIGURE 8

Quantization policies found by LRMP for ResNet18 while optimizing

for latency and throughput.

7 Related works

In this section, we discuss related previous work in the

areas of quantization and pruning for DNN implementation

on IMC hardware, as well as optimized mapping of DNNs to

IMC substrates.

7.1 Quantization

Quantization is the process of reducing the number

of bits used to represent numbers, which naturally adds

distortions in the form of quantization noise. Quantizing

weights and activations of neural networks is a common

technique to reduce the model size and improve performance

and energy efficiency. Pruning is a technique that removes

connections and neurons in a neural network to improve

sparsity. These complementary techniques have been widely

explored to optimize neural network implementations.

Quantization and pruning techniques have also been applied

specifically to the context of in-memory computing. Peng

et al. (2022) proposed a neural architecture search-based

approach to perform mixed precision quantization in a

crossbar-aware manner. Kang et al. (2021) proposed a

methodology to perform energy-aware quantization using a

genetic algorithm. Huang et al. (2021) proposed a methodology

that performs quantization at the tile granularity powered

by reinforcement learning. Meng et al. (2021b) proposed

a quantization and pruning framework for efficient RRAM

IMC implementations.

FIGURE 9

Latency improvements achieved by the proposed approach on ResNet18 with di�erent area constraints.
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7.2 Mapping optimization

Mapping neural networks to IMC architectures is a complex

problem. Li et al. (2020) proposed an approach to optimize the

mapping of multimodal neural networks to IMC hardware to

improve throughput. Gopalakrishnan et al. (2020) developed a

methodology to design convolutional neural networks that would

map better to crossbar architectures. Peng et al. (2019) proposed

a weight mapping methodology that would improve data reuse

of convolutional layers on crossbars. He et al. (2022) proposed a

methodology to replicate layers in a neural network based on area

freed-up by optimization of peripheral circuitry.

7.3 Optimization of peripheral circuitry

The peripheral circuits of crossbar tiles i.e., the DAC and ADC

systems are crucial parts of IMC designs. ADCs contribute to a

large portion of the power and area budgets, and are thus, a major

bottleneck in the design of IMC systems. Various optimized IMC

designs have been proposed that address these bottlenecks. Jiang

et al. (2021) discusses an ADC design that implements shifts and

adds in the analog domain. Saxena et al. (2022) proposed replacing

ADCs with 1-bit sense amplifiers and training neural networks to

be tolerant to such aggressive partial sum quantization. He et al.

(2022) proposed an approach of decreasing the row parallelism to

reduce the area overhead of ADCs and thus, improve the effective

density of IMC chips.

To the best of our knowledge, LRMP is the first work that

proposes a synergistic methodology that combine the benefits of

mixed precision quantization and mapping optimization to jointly

optimize the performance and accuracy of IMC-based neural

network accelerators. LRMP is also the first work that proposes a

linear programming-based approach to perform layer replication in

IMC systems. Furthermore, circuit optimizations of tile peripheral

are largely complementary to LRMP, and can be used to further

improve the performance.

8 Conclusion

In-memory computing is a promising technology for

accelerating neural networks by performing vector matrix

multiplications within memory arrays. We propose LRMP, a

method to synergistically perform layer replication and mixed

precision quantization to improve performance of DNNs when

mapped to area-constrained IMC accelerators. Our experiments

suggest that LRMP can achieve considerable improvements in

latency, throughput and energy consumption with similar accuracy

compared to 8-bit fixed point implementations.
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