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Multi-round Q&A based on background text needs to infer the answer to the

question through the current question, historical Q&A pairs, and background

text. The pre-trained model has proved its e�ectiveness in this task; however,

the existing model has many problems such as too many parameters and high

resource consumption.We propose a knowledge transfermethod that combines

knowledge distillation, co-learning of similar datasets, and fine-tuning of similar

tasks. Through multi-knowledge cooperative training from large model to small

model, between di�erent data sets, and between di�erent tasks, the performance

of the small model with low resource consumption can match or surpass that of

the large model.
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1 Introduction

Background-oriented text question answering (Q&A) studies (Minaee et al., 2021;

Li et al., 2022; Cui et al., 2022; Huang et al., 2023b) derived from machine-reading

comprehension tasks represented by SQuAD (Rajpurkar et al., 2016, 2018) are gaining

attention. Considering a background text fragment and a question associated with it, we

try to determine an answer to a question based on the background text or mark that the

answer does not exist. Although multiple issues with the background text exist, none of

them are related. However, in a real environment, Q&A is a multi-round and continuous

process, and the questions are not independent as students may ask questions to teachers

on random topics of interest (Stede and Schlangen, 2004; Huang et al., 2023c). Because

numerous coreferences and ellipses are used in multi-round of Q&A to achieve concision

and efficiency, question comprehension should consider the current question content

and combine historical Q&A pairs to determine the object of pronoun reference and

ellipsis content to understand the current question in detail. The challenge of background

comprehension in multi-round Q&A is the deduction of an answer to a question based on

the current question, historical Q&A pairs, and background text (Martinez-Gil, 2023; Cui

et al., 2023; Shao et al., 2023).

To promote studies on multi-round Q&A considering background and evaluate the

validity of the Q&A model, a few datasets have been published, such as CoQA (Reddy

et al., 2019) and QuAC (Choi et al., 2018). Each of these datasets involves multiple

rounds of Q&A around a single piece of background text; both datasets include two

speakers (questioner and responder) and allow for unanswerable questions. Table 1 lists a

complete multi-round Q&A based on the CoQA dataset. The background relates to a CNN

news report divided into two sections. According to the conversion method proposed by
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TABLE 1 Q&A example of CoQA.

(CNN)–American journalist Michael Scott Moore, held
for more than 2 years by Somali pirates, has been
freed, Moore’s family and a Somali o�cial told CNN on
Tuesday.

“We are just elated,” Marlis Saunders, Moore’s mother, said

in a brief conversation. “It took a lot of work for us to get this

point. And to hear he is free—just joyful, I can’t describe it”

Q1 : Who was held for two years? Q6 : Who?

A1 : Michael Scott Moore A6 : Marlis Saunders

Q2 : What happened to him? Q7 : Who was that?

A2 : freed A7 : Moore’s mother

Q3 : From who? Q8 : How Did she feel?

A3 : Somali pirates A8 : elated

Q4 : After how long? Q9 : Why?

A4 : More than 2 years A9 : To hear he is free

Q5 : Did anyone feel about this? Q10 : How does she describe it?

A5 : Yes A10 : She can’t.

Yatskar (2019), CoQA answers can be converted into four types: (1)

SPAN representing the background text fragment, (2) affirmative

YES, (3) negative NO, and (4) UNANS that cannot be answered.

With an increase in the number of pre-training models (Qiu

et al., 2020; Yu et al., 2022; Gou et al., 2021), corresponding

studies have introduced pre-trainingmodels for new studies (Singh

et al., 2021; Gu et al., 2021; Kandpal et al., 2023; Lauriola et al.,

2022). From the beginning, it was a supplement to the traditional

word vector (Yatskar, 2019), which is regarded as a downstream

task of the pre-training model, and the model performance was

improved by adding word-embedding information (Qu et al.,

2019), adjusting the output layer structure (Yeh and Chen, 2019),

and improving the training objectives (Ju et al., 2019; Garg and

Moschitti, 2021; McCarley et al., 2020; Chen et al., 2021; Yang

et al., 2020). We explored a small pre-training model suitable for

Q&A background awareness to ensure that the performance of

the small model matches or surpasses that of the large model and

achieves an effective environment of resource consumption and

performance. We proposed a model based on knowledge transfer—

KTM. Knowledge transfer is divided into two stages: “preparation”

and “learning.” First, three fine-tuned large and small models were

obtained during the preparation phase. The fine-tuning of the small

model was performed on the machine-reading comprehension

dataset, that is, SQuAD, which allowed the small model to learn

knowledge on similar tasks. Next, in the learning stage, knowledge

distillation was applied, and CoQA and QuAC datasets were

combined to learn together. The small model learns the knowledge

owned by the large model; in contrast, the two background

understanding datasets learn from each other and complement

each other. Comparative experiments show that compared with

the large model, KTM has fewer parameters, lower memory

usage, significantly shorter training time, and faster prediction

speed, while maintaining the excellent background understanding

ability of the large model. The contributions of this study are

as follows.

1. The computational time and performance differences in

the background understanding task of the automatic Q&A of

mainstream pre-training models were compared.

2. A small-scale pre-training model for the background

understanding of Q&A was proposed. Knowledge distillation, co-

learning of similar datasets, fine-tuning of similar tasks, and other

strategies were comprehensively used to achieve various types of

knowledge transfers to ensure that the performance of small models

with low resource consumption matched or exceeded that of large

models.

3. Abundant validation experiments were performed

to demonstrate the effectiveness of knowledge transfer.

Experimental results on the QuAC validation set indicate that the

performance of the knowledge transfer model exceeds that of the

large model.

2 Related work

While the foundational work by Hinton et al. (2015)

on knowledge distillation provides a basic framework, recent

studies have applied knowledge distillation techniques specifically

within QA systems (Gou et al., 2021). For instance, Izacard

and Grave (2020) demonstrated how distilling knowledge from

a reader to a retriever enhances the efficiency of open-domain

QA systems. Moreover, Yang et al. (2019b) focused on model

compression within large-scale QA systems through multi-task

knowledge distillation. Unlike these studies, our approach uniquely

optimizes small model performance in amulti-roundQA setting by

integrating knowledge distillation with co-learning, a combination

less explored in prior research.

Considering model performance and computing resources,

the traditional background understanding model represented by

BiDAF++ w/ n-ctx demonstrates lower memory consumption,

short training and prediction time, and poor performance. The

pre-training model can considerably improve the performance

of background understanding; however, its large number of

parameters increases resource consumption and renders it difficult

to deploy. In addition, the parameters of large and small models

are not proportional to performance. For example, XLNet (Yang

et al., 2019a) has numerous parameters but does not perform as

well as ALBERT (Lan et al., 2020). The current trend of pursuing

large models is worrisome for the environment (Schwartz et al.,

2019), and performance can be improved only by consuming a large

number of computing resources (Wu et al., 2022; Chang et al.,

2022; Huang et al., 2023a).

Table 2 compares the application of different models to the

CoQA dataset from three aspects: parameter quantity, computation

time, and performance. Among the five pre-training models,

BERT (Devlin et al., 2019) was first proposed, and the following

four models, XLNet, RoBERTa (Liu et al., 2019), ALBERT, and

DistilBERT (Sanh et al., 2019), are all improvements to BERT.

1. The parameter quantity of BiDAF++ w/ n-ctx is much

smaller than that of the pre-trained model; the former is ∼1/10 of

the latter. As lightweight pre-training models, ALBERT-base and
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TABLE 2 Trainable parameters of traditional and pre-trained models in CoQA.

Model Trainable Round Predict Validation

Param (h) (min) F1

BiDAF++ w/ n-ctx 2M 1.12 5.75 69.2

BERT-base 110M 11.17 16.33 80.5

XLNet-base 117M 50.08 23.67 78.8

RoBERTa-base 125M 11.42 16.17 80.2

ALBERT-base 12M 10.67 10.18 80.6

DistilBERT-base 66M 5.50 8.02 75.0

The training and prediction time is the time required to complete the corresponding operation of the model considering a single Tesla K40m graphics card. Among them, Round (h) represents

the time required for one round of training, in hours, and Predict (min) represents the time required for prediction, in minutes.

DistilBERT-base have 90 and 40% fewer parameters than BERT-

base, respectively.

2. BiDAF++ w/ n-ctx consumes less time than the pre-

training model owing to its smaller number of parameters, and

the maximum difference is ∼50 times. Remarkably, the training

time of ALBERT-base was close to that of BERT-base. This

implies that the smaller the number of parameters, the smaller

the time consumption; however, ALBERT-base does not conform

to this rule. ALBERT reduces the number of parameters but not

the number of calculations. DistilBERT-base complies with the

aforementioned rules, and its training and prediction times are

reduced by 50%, which is aligned with the reduction in the number

of transformer coding layers by 50%.

3. In terms of performance, the advantages of pre trained

models have been fully demonstrated. The F1 values of BERT-base,

RoBERTa-base, andALBERT-base differ bymore than 10 compared

to BiDAF++ w/ n-ctx. Even DistiBERT base, which has the worst

performance among the five pre-trained models, has an F1 value

difference of 5.8.

In summary, the larger the model, the better the balance

between deep model performance and resource consumption,

which is the aim of this study.

3 Approach

3.1 Task definition

Given a background text of length m B = {b1, b2, . . . , bm},

current question Qi (i > 1), and historical Q&A pair

{Q1;A1;Q2;A2; . . . ;Qi−1;Ai−1}, the goal of the background

understanding of the Q&A system is to generate the answer Ai

of the question Qi, which requires the type of Ai t to be SPAN,

YES, NO, or UNANS. In particular, the SPAN type requires that

the answer must be a span of the background text, that is, Ai =

{bj}
l
j=k

(1 6 k 6 l 6 m), and must satisfy l − k 6 n, n is

the maximum allowed length of the answer, and different datasets

have different values. If the answer is to the other three types, Ai

is determined by the dataset. For example, UNANS answers are

represented by “unknown” and “CANNOTANSWER” in CoQA

and QuAC, respectively.

3.2 Pre-trained models in background
understanding

Figure 1 shows the background understanding model based on

BERT or DistilBERT. As the main difference between BERT and

DistilBERT is the number of transformer coding layers, and there

is no difference between the input and output, a uniform purple

box is used to represent the two models in the figure, which ignores

differences in the internal structure of the models.

The input to the model comprises two concatenated sequences:

s1 and s2 of length N andM, respectively. Sequence s1 includes two

parts: the historical Q&A pair and current question.

s1 = {[Q];Q1; [A];A1; . . . ; [Q];Qi−1; [A];Ai−1; [Q];Qi}, (1)

where [Q] and [A] are special words that mark question and

answer sentences, respectively, and are located at the beginning of

the sentence. As question Q1 has no historical Q&A pairs, s1 =

{[Q];Q1}. Sequence s2 includes background B.

s2 = B. (2)

The two sequences are spliced together before inputting BERT

or DistilBERT: {[CLS]; s1; [SEP]; s2; [SEP]}. Here, [CLS] is used

to calculate the probability of the answer type, and [SEP] is

used to segment the sequence. After entering the model, first,

each word was converted into a vector, which was obtained by

adding three parts: word embedding, segment embedding, and

position embedding (DisitlBERT has no segment embedding).

Segment embedding indicates whether the word belongs to s1 or

s2, and positional embedding indicates the position of the word

in the input sequence. Subsequently, after multi-layer transformer

encoding, the latent vector of the last layer of each word was used

as the output of the pre-training model, which was recorded as

T ∈ R
d×L. Based on T, we calculated the probability of the start

position k and the end position l of the segment when the answer is

of type SPAN, and the probability of the answer is of types YES,

NO, and UNANS. In particular, the calculation methods for the

probability distributions pk and pl ∈ R
L of k and l are as follows.

pk = softmax(wT
1 T + b1), and (3)

pl = softmax(wT
2 T + b2), (4)
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FIGURE 1

Background understanding based on pre-trained models.

where w1, w2 ∈ R
d, b1, b2 ∈ R are to-be-trained parameters. The

probability distribution pt ∈ R
3 of the three types of answers, YES,

NO, and UNANS, is calculated as follows.

pt = softmax(wT
4 tanh(wT

3C + b3)+ b4), (5)

where C ∈ R
d is the hidden vector of [CLS], and w3 ∈ R

d×d,

b3 ∈ R
d, w4 ∈ R

d×3, b4 ∈ R
3 are parameters to be trained. Finally,

we determined the answer-type estimate t̂ as follows.

pmax = max(pk + pl), 0 6 l− k 6 n, (6)

a = argmax pt , (7)

t̂ =

{
ANSa, if pk1 + pl1 > pmax,

SPAN, else.
(8)

In Equation 8, ANS = {YES,NO,UNANS}, pk1 and pl1 are the

starting and ending position probabilities corresponding to [CLS],

respectively. If the answer type is SPAN, its start and end position

estimates (̂k,̂ l) are Equation 6 when k and the value of l:

(̂k,̂ l) = argmax
k,l

(pk + pl), 0 6 l− k 6 n. (9)

The three probability distributions of Equations 3–5 are all

output by Softmax; therefore, we used the sum of the negative

logarithmic likelihood to construct the loss function L(θ) for

background understanding:

L(θ) = −
1

|D|

∑

i

[
1(yti = SPAN)(log pk

yki
+ log pl

yli
)

+1(yti 6= SPAN) log pt
yti

]
.

(10)

where θ is the model parameter, |D| is the number of training

samples, 1(·) is the indicator function, yti is the real type of answer

Ai, and yki and yli are the start and end positions of the span,

respectively.

3.3 Knowledge transfer method

The size model is a relative concept determined by the number

of parameters. A model with more parameters is called a large

model, while a model with fewer parameters is called a small

model. Specifically, in this article, the large model refers to BERT-

base, while the small model is DistillBERT-base. Figure 2 shows

the main steps and processes of the knowledge transfer method.

First, we fine-tuned large and small models. The size of the

model was determined based on the number of parameters. A

model with a large number of parameters is known as a large

model, whereas a model with a small number of parameters is

known as a small model. The large and small models can be

two with the same structure (e.g., BERT and DistilBERT) or

two with different structures (e.g., BERT and BiDAF++ w/ n-

ctx). In particular, fine-tuning was performed on two datasets,

CoQA and QuAC, to obtain CoQA and QuAC fine-tuned large

models, respectively. Small model fine-tuning was performed on

the machine-reading comprehension SQuAD dataset to obtain

SQuAD fine-tuned small models. Fine-tuning is used to prepare

for subsequent work; therefore, this process is known as the

preparation phase.

The next phase is learning, which is the core of the knowledge

transfer method and is roughly divided into the following three

steps. The first step is to initialize the KTM with a small

model fine-tuned using SQuAD. The second step is to combine

the training samples of the two datasets, CoQA and QuAC,

and input them into the KTM and fine-tuned large models to

generate the predicted values and soft labels of the samples,

respectively. The third step is to calculate the loss value based

on the predicted value and soft label, as well as the true label

(hard label) of the sample; subsequently, let the gradient propagate
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FIGURE 2

Knowledge transfer process for background understanding.

back to the KTM. In the aforementioned steps, the method of

combining datasets to learn is known as co-learning, and the

method of using soft labels to calculate the loss value is known as

knowledge distillation.

In this study, the purpose of SQuAD fine-tuning was to let

KTM learn in advance how to extract answers from the background

text and jointly learn the data characteristics shared between

CoQA and QuAC by expanding the training samples. Knowledge

distillation allows KTM to master answers learned from the

big model.

Therefore, the proposed knowledge transfer method used

SQuAD fine-tuning, co-learning, knowledge distillation, and

knowledge transfer between different tasks, between different data

sets, and from large to small models. The SQuAD fine-tuning

method has been described in Devlin et al. (2019).

3.4 Knowledge distillation

The knowledge distillation framework shown in Figure 3

contains two models: teacher and student. The teacher model is a

large trainedmodel or an ensemble of multiple models, whereas the

student model is a small model that learns from the teacher model.

The idea of knowledge distillation is to let the student model learn

from ground-truth labels and the probability distribution output of

the teacher model.

Given an m classification dataset of the form (X,Y), the

classifier can be trained by minimizing the cross-entropy loss

function L:

p = softmax(z), (11)

LCE = −

m∑

k=1

Yk log pk, (12)

where p is the class probability distribution, and z ∈ R
m is

the logits of the model. If the aforementioned training process

is the process of classifier learning according to the real label Y ,

then knowledge distillation includes the process of student model

learning according to the class probability distribution q output

based on the teacher model. Similar to Y , in several cases, the

probability value of q for the correct class will be high, approaching

1, and the probability of the other classes will be 0. Thus, q does not

provide more information than Y and does not make much sense

for model training. To solve this problem, Hinton et al. (2015)

introduced the concept of temperature into the softmax function.

The modified softmax function is

softmax(z;T)k ≡
exp(zk/T)∑
j exp(zj/T)

, (13)

where T denotes the temperature. When T = 1, Equation 13

reduces to the standard softmax function.

Applying the modified softmax function to the teacher and

student models, we obtain

q = softmax(zt;T = τ ), and (14)

u = softmax(zs;T = τ ), (15)

where zt and zs are the logits of the teacher and student models,

respectively, and τ is a hyperparameter. The larger the value

of T, the more “soft” q and the more information the teacher

model provides. Therefore, q is often known as a soft label, the

corresponding real label Y is the hard label, u is the soft predicted

value, and p is the hard predicted value. According to Equations 14,

15, the loss functionLKD when the student model learns the output

of the teacher model is defined as

LKD = −

m∑

k=1

qk log uk. (16)
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FIGURE 3

Knowledge distillation framework.

The overall optimization objective of the student model is the

weighted sum of the two loss functions LCE and LKD.

λLCE + γLKD. (17)

where λ and γ are the weights.

3.5 Training method

Based on the knowledge distillation theory (Hinton et al., 2015),

the proposed KTM was considered as the student model, and

the two fine-tuned large models were considered as the teacher

models. The CoQA soft label, QuAC soft label, and KTM soft

prediction value are denoted by q∗CoQA, q
∗
QuAC, and u∗ ( ∗ = k, l, t),

respectively. Considering uk, the calculation method is defined as

uk = softmax(wT
1 T + b1;T = τ ). (18)

According to the aforementioned soft labels and soft prediction

values, the loss function of the KTM (LKD(2)) can be obtained as

LKD(2) = −
1

|D|

∑

i

[ L∑

j=1

(qkj log u
k
j + qlj log u

l
j)

+

|ANS|∑

a=1

qta log u
t
a

]
,

(19)

where 2 is the sum of the parameters of KTM, and | · | represents

the number of set elements. In summary, the optimization goals of

the KTM are

L(2) = λLCE(2)+ γLKD(2). (20)

In particular, QuAC only has two answer types, SPAN and

UNANS, and the probability distribution pt can be discarded. The

answer type is determined to be UNANS according to pk0 + pl0 >

pmax. Therefore, for the QuAC dataset, the estimation method for

the answer type t̂QuAC is as follows.

t̂QuAC =

{
UNANS, if pk0 + pl0 > pmax,

SPAN, else.
(21)

Accordingly, the optimization objective L(2) simplifies to

LQuAC(2) = −
1

|D|

∑

i

[
λ(log pk

yki
+ log pl

yli
)

+γ

L∑

j=1

(qkj log u
k
j + qlj log u

l
j)
]
.

(22)

Based on the aforementioned optimization objectives, we

developed the KTM training mechanism of the KTM, as explained

in Algorithm 1. As the KTM training process involves two datasets,

first, CoQA and QuAC, the mini-batches of the two datasets were

merged, and the combined KTM training set is denoted as D.

The entire training process iterated epochmax rounds. Before each

round, the training set D was disturbed to ensure the randomness

of the training samples. Subsequently, a mini-batch bα was selected

from the out-of-orderD with samples from the same dataset α. Bα

was input into the large model fine-tuned by dataset α and KTM,

and the soft labels and soft and hard predicted values needed to

calculate the loss value were output. If α = CoQA, use Equation 20

to calculate the loss value; if α = QuAC, use Equation 22. Finally,

the gradient of each parameter was calculated from the loss value,

and the KTM was updated.

4 Experiment

4.1 Details

For datasets, CoQA and QuAC use release versions, whereas

SQuAD uses version 2.0 (Rajpurkar et al., 2018). In terms of

data preprocessing, all characters were lowercased, the maximum

length of s1 was maximum (64), and the sliding step size was

stride = 128. The dropout probability of each layer was 0.1, the

softmax temperature was τ = 2, and the loss function weights were

λ = 0.5 and γ = 0.5. For training, the mini-batch size was 12,

and the maximum number of iterations was epochmax = 2. The

optimizer was Adam (Kingma and Ba, 2014), and the learning rate

was ǫ = 3e-5. The first 10% of the training samples were used

to warm up the learning rate and then decay linearly. In terms of

prediction, the maximum answer length n of the two datasets was

different: 17 for CoQA and 30 for QuAC.
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Initialize the KTM with a small model fine-tuned using SQuAD with the initial state parameter

20;

i← 0;

foreach α in {CoQA, QuAC} do

Divide the training samples of dataset α into mini-batches: Da;

end

Merge a mini-batch of two datasets: D← DCoQA ∪DQuAC;

for epoch = 1 to epochmax do // epochmax is the maximum number of training rounds

shuffle D;

foreach ba in D do // bais a mini-batch of dataset α

Input ba into the large model fine-tuned by dataset α and output the soft label;

Input ba into the KTM and output the soft and hard predicted values.

Calculate the loss value using the soft and hard labels and the predicted values:

Lα(2i);

Calculate the gradient: ∇(Θi);

Update the KTM: 2i+1 ← 2i − ε∇(2i)

tcp ∗ ε is the learning rate.

i← i+ 1;

end

end

Algorithm 1. KTM training.

4.2 Metrics

CoQA and QuAC use word level F1 as the main metric, which

is calculated as follows.

overlap = |Spred ∩ Sgold|, (23)

P =
overlap

|Spred|
, (24)

R =
overlap

|Sgold|
, (25)

F1 =
2× P × R

P + R
, (26)

where Spred and Sgold are the sequences of the predicted and

standard answers, respectively, and | · | is the length of the sequence.

We combined the two-word sequences, considered the overlapping

part, calculated its length as overlap, and divided it with the

predicted answer length and standard answer length, respectively.

The accuracy P and recall rate R were obtained, and Equation 26

was used to calculate F1.

In addition to F1, CoQA uses metric exact match (EM) to

measure the exact match between the predicted and standard

answers. If the two answers are exactly the same, EM= 1; otherwise,

EM = 0. QuAC introduced the human equivalence score (HEQ)

to judge whether the model prediction reached the human average

level, that is, whether modeled F1 exceeded or was equal to

Human F1, which was measured in percentage. QuAC designed

two evaluation metrics, HEQ-Q and HEQ-D, based on questions

and dialogs. HEQ-Q andHEQ-D count the proportion of questions

and dialogs, respectively, that meet the aforementioned conditions

in each round.

4.3 Main results

Table 3 lists the experimental results of the background

understanding of the Q&A system for the Bert-Base, Distilbert-

Base, and KTM models. The first two models are fine-tuned,

whereas KTM uses Bert-Base as a large model and Distilbert-Base

as a small model. It was trained using the proposed knowledge

transfer method. Because neither CoQA nor QuAC disclosed test

sets, Table 1 lists only the experimental results of the validation sets.

As BERT-Base possesses twice as many transformer coding

layers as Distilbert-Base, the performances of the two models differ

substantially. The proposed knowledge transfer method attempts

to bridge this gap by enabling small models to perform better than

large models, even with fewer parameters. As listed in Table 3,

KTM narrowed the gap between the CoQA validation sets from

5.5 F1 to 1.7 F1. In the QuAC verification set, KTM exceeded

BERT-Base, thereby increasing the F1 value by 0.8 and the HEQ-

Q value by 1.0; HEQ-D is equal to BERT-Base. By comparing

KTM and Distilbert-Base models, which have the same structure

but different training methods, we found that the indices of

KTM are better than DistilBERT-Base, and the gap is evident.

The knowledge transfer method is much better than the direct

fine-tuning method.

In Table 3, the sum of the time for one round of training on

both datasets is 27 h for BERT-base and 13.25 h for DistilBERT-

base. KTM is trained for both datasets together, and the time

for one iteration is 13.5 h, which is close to DistilBERT-base but

only half of the BERT-base. It can be observed that in terms of

training time, knowledge transfer is the same as direct fine-tuning,

without increasing the complexity of training. In addition, KTM

is consistent with Distilbert-Base but lower than BERT-Base in
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TABLE 3 Experimental results with regard to background understanding.

Model Params Training CoQA QuAC

(M) (Hour) F1 EM F1 HEQ-Q HEQ-D

BERT-base 110 27.00∗ 80.5 71.5 64.5 60.4 6.7

DistilBERT-base 66 13.25∗ 75.0 65.8 59.7 55.5 4.7

KTM 66 13.50 78.8 69.5 65.3 61.4 6.7

∗ is the sum of training duration of CoQA and QuAC datasets.

The training and prediction time is the time required to complete the corresponding operation of the model on a single Tesla K40m graphics card.

Bold indicates best results.

TABLE 4 Background understanding ablation experiment results.

Model CoQA QuAC

F1 1F1 F1 1F1

KTM 78.8 — 65.3 —

− Knowledge Distillation (KTM w/o KD) 77.4 −1.4 63.3 −2.0

− Co-learning with Homogeneous Datasets 78.8 −0.0 64.9 −0.4

− Similar Task Fine-tuning (KTM w/o SQuAD) 75.9 −2.9 63.5 −1.8

Underline indicates best results.

terms of memory footprint and predicted speed owing to the same

model structure.

In summary, the performance of the knowledge transfer model

is close to or better than that of the large model, whose scale is

approximately twice as large under the condition of low resource

consumption, thereby achieving an effective situation of resource

consumption and performance.

5 Analysis and discussion

To deeply analyze the utility of knowledge transfer, first, the

ablation experiment analyzed the contribution of various strategies

to the performance of the knowledge transfer model. Subsequently,

the impact of knowledge distillation and fine-tuning of similar tasks

were analyzed. Finally, the advantages and disadvantages of the

knowledge transfer methods were summarized by comparing the

four aspects: question type, answer type, answer span length, and

dialog rounds.

5.1 Ablation study

The main idea of the ablation experiment is to remove one

of the above strategies for model training, thereby obtaining

KTM w/o KD, KTM w/o QuAC (training CoQA separately),

KTM w/o CoQA (training QuAC separately), KTM w/o Four

models, such as SQuAD, and then compare the F1 value

with KTM. The larger the gap, the greater the impact and

contribution are.

The ablation results are listed in Table 4. We found that

knowledge distillation considerably affects QuAC, CoQA is

influenced primarily by SQuAD fine-tuning, and the effect

of co-learning between the two datasets is negligible. After

analysis, the reason for the small effect of co-learning may be

TABLE 5 Statistics of the number of questions whose F1 is improved

owing to knowledge distillation.

CoQA QuAC

Number of questions

with increased F1

205 244

And answer exactly

(F1= 1)

125 112

that the two data sets differently deal with general questions:

CoQA uses “yes” and “no” for answers, whereas QuAC uses

background text for answers. The different processing modes

of the two models lead to the failure of unified cognition in

the learning process but increase the noise during training.

Thus, by skipping co-learning, the model can still achieve

better performance.

5.2 Influence analysis of knowledge
distillation

To analyze the impact of knowledge distillation on the model,

we compared the F1 of the three models of BERT-base, KTM,

and KTM without KD for each question in the validation set. The

former ones, that is, BERT-base and KTM, are larger than the

latter one. The results are listed in Table 5, and the last row of

the table lists the number of questions for which F1 was raised

from l<1 to 1. However, compared to the problem of F1 = 1,

both CoQA and QuAC have a large gap. Knowledge distillation

can transfer answer-related knowledge from a large model to a

small model; however, this transfer can only improve the part of

the performance.

Figures 4, 5 show the attention matrices of Q1 and some

background text on the three models (BERT-base, KTM w/o KD,
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FIGURE 4

Attention matrix of QuAC example Q1 and part of background text before and after knowledge distillation. (a) Fifth layer of BERT-base. (b) Sixth layer

of BERT-base. (c) Third layer of KTM w/o KD. (d) Third layer of KTM.

and KTM) and the predicted probabilities of the start and end

positions of the answer. The “when” in Q1 is a time-related

problem; in Figure 4, KTM w/o KD and KTM focus on “1988”,

whereas BERT-base focuses more on “brando” and “to new york.”

KTM learned this feature through knowledge distillation; therefore,

it increased the attention weight of “brando.” Finally reflected

in the span probability k̂ + l̂ predicted in Figure 1, the KTM

w/o KD model lacks attention to “brando” to ensure that the

correct answer is in the span “brando ... school,” has a probability

value of only 0.391, which is slightly smaller than the probability

value of the fragment “1988,” which is 0.392, and finally outputs

the wrong answer “1988.” The probabilities of BERT-base with

regard to these two spans are 0.910 and 0.153, respectively, which

express sufficient affirmation for the correct answer and avoiding

the wrong answer. KTM learns this from BERT-base; therefore,

it increases the probability value of the span where the correct

answer is located at 0.502, whereas the probability value of the span

“1988” does not change much to 0.415. As 0.502 > 0.415, KTM,

like BERT-base, outputs the correct answer fragment “brando ...

school.” Knowledge distillation uses the large model to correct the

misunderstanding of the small model.

5.3 Analysis of the impact of fine-tuning on
similar tasks

Similar to the impact analysis of knowledge distillation,

we compared the F1 of each question in the verification

set of KTM and KTM W/O SQuAD models, counted the

number of the former ones that are greater than the latter

ones, and divided them according to the types of answers

(Table 6). The purpose of introducing SQuAD fine-tuning in

this study was to allow the model to learn in advance how
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FIGURE 5

Probability distribution of answer spans for Q1 in QuAC examples before and after knowledge distillation. (a) BERT-base. (b) KTM w/o KD. (c) KTM.

TABLE 6 Statistics of the number of questions whose F1 has been

improved owing to fine-tuning of similar tasks.

SPAN
answer

(percentage)

Others Total

CoQA 435 (86.1%) 70 505

QuAC 410 (88.7%) 52 462

to extract answer spans from the background text; Table 6 lists

the SPAN types separately. Thus, we found that SQuAD fine-

tuning contributes the most to the SPAN class answer in terms

of performance improvement. This demonstrates that SQuAD

fine-tuning can allow small models to learn in advance how

to extract background snippets from similar machine-reading

comprehension tasks, which renders it an indispensable step in

knowledge transfer methods.

Herein, we demonstrate the impact of SQuAD fine-tuning

on model decisions using Q1 in CoQA (Table 1). Figures 6, 7

show the attention matrices of Q1 and part of the background

text on the KTM without SQuAD and KTM models, and the

predicted probabilities of the start and end positions of the answer.

The “who” in Q1 is a person-related question; thus, as shown in

Figure 6, KTM focuses the “who” attention on the person named

entity “michael scott moore,” whereas the KTM w/o SQuADmodel

on the segment “michael scott moore” and “somali pirates” has

concerns. Finally, while making a decision based on the span

probability k̂ + l̂, as shown in Figure 1, the KTM w/o SQuAD

model makes a judgment that both spans may be the answers,

and as the former probability value (0.864) is less than the

latter probability value (1.063); thus, the wrong answer “somali

pirates” is the output. As KTM learned the pattern of “who”

and person’s name from SQuAD, knowing “michael scott moore”

was the only correct answer, thereby giving this clip a very high

degree of confidence. This demonstrates the positive significance of

SQuAD fine-tuning, which makes the extraction of answer spans

more accurate.

5.4 Compare by type of problem

To analyze the impact of knowledge transfer on different

types of questions, we divide the questions into “what,” “who,”

“when,” “which,” “where,” “how,” “why,” “general” according to the

question words and “others” (nine categories). Herein, “general”

refers to a general interrogative sentence, and when the question

does not meet the first eight categories, it is assigned to the last

“others” category. The comparison results of the three models of

DistilBERT-base, KTM, and BERT-base on nine types of problems

are shown in Figures 8, 9. From the perspective of CoQA, KTM

surpasses DistilBERT-base of the same size in all the nine categories

of questions, and on “how” category questions, KTM is closest to

the large model BERT-base. However, in the “general” category, the

performance of KTM has not significantly improved, and Section

5.5 discusses more on this. In terms of QuAC, KTM outperformed

Distilbert-Base for all the problem types and BERT-Base for all

the types except for “which.” In conclusion, knowledge transfer

positively affects the problem types.

5.5 Comparison by type of answer

Based on whether the answer exists and general question is

answered in the form of yes/no, this study divides CoQA answers

into SPAN, YES, NO, andUNANS types and divides QuAC answers

into SPAN and UNANS types. When making predictions, the

model first determines the answer type and then generates a specific

answer text. Therefore, it is necessary to analyze the impact of

knowledge transfer on performance by classifying answer types.
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FIGURE 6

Attention matrix of CoQA example Q1 and some background text before and after fine-tuning on similar tasks. (a) Third layer of KTM w/o SQuAD. (b)

Fifth layer of KTM.

FIGURE 7

Probability distribution of answer spans for CoQA examples before and after fine-tuning on similar tasks.

FIGURE 8

F1 of each problem type in CoQA.

First, we compared the results of the three models: DistilBERT-

base, KTM, and BERT-base onCoQA (Figure 10). The performance

of the KTM significantly improved based on the SPAN andUNANS

answers, followed by NO answers. For the YES answers, the

performance declined.

Therefore, we analyzed the confusion matrix of answer

type discrimination (Figure 11) and found that BERTert-Base

misjudged YES as UNANS for a higher number of samples than

Distilbert-Base. The KTM retained this feature and misjudged a

similar number of YES samples to UNANS. As the YES samples in

the training set are fewer than the NO samples, the model is biased,

thereby causing another part of the YES samples in the validation

set to be misjudged as NO. Therefore, the performance of the KTM

with regard to the YES class answer of the CoQA validation set is

not at par with DistilBERT-base.

Figure 12 shows a comparison of the results of the three

models with regard to QuAC. The overall performance of the KTM

surpassing the BERT-base is owing to the improvement in the

performance of the SPAN-type answers, whereas for the UNANS-

type answers, the situation is the same as that of the YES-type

answers with regard to CoQA, thus degrading the performance.

Further analysis of the answer-type discriminant confusion matrix,

as shown in Figure 13, demonstrates that the performance drop

is caused by the misclassification of UNANS samples as SPAN.

The underlying reason may be that the sample imbalance causes

the model prediction to be biased toward SPAN, which is evident
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FIGURE 9

F1 of each problem type in QuAC.

FIGURE 10

Experimental results of each answer type in CoQA. (a) F1. (b) EM.

FIGURE 11

Confusion matrix for answer type discrimination in CoQA. (a) DistilBERT-base. (b) KTM. (c) BERT-base.

from the misjudgment rate (the UNANS misjudgment rate is

approximately two times that of SPAN).

Compared with direct fine-tuning, knowledge transfer

is beneficial to the performance improvement of different

answer types. However, owing to the misjudgment of the

large model and the problem of unbalanced samples, in

few cases, the performance of a certain type of answer

will slightly decrease; however, the overall impact will

be negligible.

5.6 Compare by length of span

The SPAN-type answers in the CoQA andQuAC validation sets

were filtered out, and the F1 of the threemodels of DistilBERT-base,

KTM, and BERT-base was aggregated by span length; the results

are shown in Figures 14, 15. As each question in the validation

set corresponds to multiple optional answers, when calculating the

length of the answer span for each question, the average is rounded

off. After processing, the CoQA and QuAC answer span lengths
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FIGURE 12

Experimental results of each answer type with regard to QuAC. (a) F1. (b) HEQ-Q.

FIGURE 13

Confusion matrix for answer type discrimination in QuAC. (a) DistilBERT-base. (b) KTM. (c) BERT-base.

FIGURE 14

F1 for di�erent answer span lengths in CoQA.

ranged from 1 to 19 and from 1 to 28, respectively. Although the

maximum length of CoQA answer fragments can reach 19, the

median is only 2, and text spans with a length of i <12 account

for 99.7%. Figure 14 shows the comparison of the results. Similarly,

99.7% of the answer spans in the QuAC validation set were <25 in

length, and only these results were compared (Figure 15).

The KTM curve in Figure 14 is close to the BERT-base, and

after the length span of eight, KTM surpasses the BERT-base.

For this phenomenon, we explain that QuAC answer spans are

longer than CoQA, and KTM masters the answering skills of long

spans based on the joint learning of the two datasets. For 8–11 in

Figure 15, KTM surpasses BERT-base, which further proves that

KTM possesses advantages in answering long spans. In addition,

the overall KTM curve in Figure 15 is above BERT-base. On QuAC,

the overall performance of KTM surpasses that of the large-model

BERT-base and is valid for answer spans of all lengths. As shown

in Figures 14, 15, we can conclude that compared with direct

fine-tuning, knowledge transfer improves the performance of all

answer spans of length, particularly for answer spans of 8–11, which

exceeds the large model and significantly improves.

5.7 Compare by dialogue rounds

A complete interactive Q&A comprises multiple rounds of

questioning and answering; therefore, this section attempts to

analyze the knowledge transfer utility based on the perspective of

dialogue rounds and intends to answer the following questions. (1)
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FIGURE 15

F1 for di�erent answer span lengths in the QuAC.

FIGURE 16

F1 for di�erent dialogue rounds in the CoQA.

Howdoes knowledge transfer occur in different rounds of dialogue?

Compared with direct fine-tuning, how much has the performance

improved? Howmuch is the difference compared to the big model?

(2) As the number of dialogue turns increases, thus gradually

decreasing the performance, can knowledge transfer improve this

problem?

We used the CoQA and QuAC validation sets to compare

the F1 of the DistilBERT-base, KTM, and BERT-base models for

different dialogue rounds, and the results are shown in Figures 16,

17. The CoQA dialogue rounds were distributed between 1 and 25,

with an average value of 15.97. There were 11 rounds with more

than 20 rounds, accounting for only 2.2% of the total. Therefore,

Figure 1 only compares F1 of rounds 1 to 20. The QuAC validation

set has 1,000 complete interactive Q&As, with all dialogue turns

distributed between 1 and 12. Figure 17 compares F1 for all the

rounds.

The KTM curve in Figure 16 is located between BERT-

base and DistilBERT-base. Compared with the direct fine-tuning

DistilBERT-base of the same scale, the performance of KTM is

considerably improved; however, compared with the large model

BERT-base, KTM still has a large gap. With an increase in dialogue

rounds, all three curves exhibit a trend of fluctuation and decline.

The performance of knowledge transfer is consistent with that of

direct fine-tuning and fails to address the problem of performance

degradation. Figure 17 shows different performances. The KTM

curve is slightly higher than that of BERT-base, and in the

later stage of interaction (10–12 rounds), when the performance

FIGURE 17

F1 for di�erent dialogue rounds in the QuAC.

of DistilBERT-base and BERT-base decreases, the KTM trained

by knowledge transfer maintains excellent performance. In the

QuAC validation set, knowledge transfer significantly improves the

performance of all the rounds, which renders it equivalent with or

allows it to surpass the large model. Moreover, knowledge transfer

has been successful in improving the performance of deep dialogue

rounds.

Based on the aforementioned analysis, we have the following

answers to the two questions raised at the beginning of this section.

In all the dialogue rounds, the models trained by knowledge

transfer are better than those trained by direct fine-tuning, and the

improvement is significant. With the gap with large models and

whether they can improve the performance degradation of deep

dialogue rounds, different datasets have different performances.

6 Conclusion

This study investigates small pre-trained models for

background understanding in automated Q&A. The main

work includes a comprehensive comparison of the computing time

and performance differences of mainstream pre-training models

in the task of Q&A background understanding. A small-scale

pre-training model suitable for interactive Q&A background

understanding is proposed, and strategies such as knowledge

distillation, co-learning of similar data sets, and fine-tuning of

similar tasks are used to realize a variety of knowledge transfer

and make the performance of small models with low resource

consumption, comparable or surpassed by large models. In general,

knowledge distillation, co-learning on similar datasets, and fine-

tuning on similar tasks play their respective roles in the process

of knowledge transfer and contribute to model performance to

varying degrees. In future work, we will continue to explore a

unified question processing method to enhance the influence of

co-learning.
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