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Large language models can help
boost food production, but be
mindful of their risks
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Coverage of ChatGPT-style large language models (LLMs) in the media has

focused on their eye-catching achievements, including solving advanced

mathematical problems and reaching expert proficiency in medical

examinations. But the gradual adoption of LLMs in agriculture, an industry

which touches every human life, has received much less public scrutiny. In

this short perspective, we examine risks and opportunities related to more

widespread adoption of language models in food production systems. While

LLMs can potentially enhance agricultural e�ciency, drive innovation, and inform

better policies, challenges like agricultural misinformation, collection of vast

amounts of farmer data, and threats to agricultural jobs are important concerns.

The rapid evolution of the LLM landscape underscores the need for agricultural

policymakers to think carefully about frameworks and guidelines that ensure the

responsible use of LLMs in food production before these technologies become

so ingrained that policy intervention becomes challenging.

KEYWORDS
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1 Introduction

In 2023, generative AI technologies such as large language models (LLMs) took the

world by storm due to the popularity of tools such as ChatGPT. Like other forms of artificial

intelligence, the capability of generative AI relies on training with vast amounts of data. It

is capable of generating new content—text, images, audio, videos, and even computer code

- instead of simply categorizing or identifying data like other AI systems (Foster, 2023).

Bold projections about the potential of generative AI such as those from institutions like

Sequoia Capital, which in late 2022 claimed that “every industry that requires humans to

create original work is up for reinvention”, helped AI startups attract one out of every

three dollars of venture capital investment in the U.S. the following year (GPT-3, 2022; Hu,

2024).

While media headlines have focused on eye-catching examples of the impact of

generative AI—such as Google’s Med-Palm 2 achieving clinical expert—level performance

on medical exams, Microsoft’s BioGPT reaching human parity in biomedical text

generation, and Unity Software’s enhancements of video game realism - emerging

applications of LLMs in the field of agriculture have received much less public attention

(Tong, 2023; Singhal et al., 2023; Luo et al., 2022). Examples which have mostly gone

unnoticed bymajor news outlets include research fromMicrosoft which demonstrated that

LLMs could outperform humans on agronomy examinations, and the gradual roll-out of

systems like KissanGPT, a “digital agronomy assistant” which allows farmers with poor
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literacy skills in India to interact with LLMs verbally to receive

tailored farming advice (Silva et al., 2023; Verma, 2024). These

early developments may be precursors to larger-scale applications

that could have considerable repercussions for an industry which

touches every human life: food production.

In this short perspective, we present a brief overview of the

opportunities and risks associated with increasing the use of large

language models across food systems. Given that this is a nascent

field, this perspective builds on insight from diverse sources,

including journalistic reports, academic preprints, peer-reviewed

literature, innovations in startup ecosystems, and lessons from the

outcomes of early LLM adoption in fields outside of agriculture.

2 Opportunities to boost food
production with LLMs

If used judiciously, LLMs may have a role to play in

addressing global food production challenges. There will be

10 billion people on Earth by 2050—around 2 billion more

people than there are today—and this may test the global

agricultural system and the farmers who comprise it (Searchinger

et al., 2019). Research has warned that agricultural production

worldwide will face challenges in meeting global demand for

food and fiber, with food demand estimated to increase by

more than 70% by 2050 (Ray et al., 2013; Valin et al., 2014;

Sishodia et al., 2020). Such challenges include climate-related

pressures and extreme weather, biotic threats such as pests and

diseases, decreasing marginal productivity gains, soil degradation,

water shortages, nutrient deficiencies, urban population growth,

rising incomes, and changing dietary preferences (Bailey-Serres

et al., 2019; FAO, 2018; National Academies of Sciences, 2019).

Here, we outline opportunities for stakeholders across the

food production ecosystem to use LLMs to address some of

these challenges.

2.1 Boosting agricultural productivity

On-demand agronomic expertise

Language models like GPT-4 could transform the way farmers

seek and receive advice in agricultural settings. These models

are capable of providing context-specific guidance to users

across various fields and convincingly portray specific roles

as agricultural experts. They achieve this by inquiring about

symptoms, conducting thorough questioning based on responses,

and providing useful support (Lai et al., 2023; Chen et al., 2023).

LLMs have already achieved high scores on exams for renewing

agronomist certifications, answering 93% of the exam questions

correctly in the United States’ Certified Crop Advisor (CCA)

certification (Silva et al., 2023).

This ability to simulate expert roles has led to commercial

chatbot-based products that emulate agronomists or crop scientists,

providing farmers with on-demand advice. Early examples

include KissanGPT (Verma, 2024), a chatbot which assists

Indian farmers with agricultural queries such as “how much

fertilizer should I apply to my fields?”; Norm (Marston, 2023),

a chatbot which provides guidance on topics such as pest

mitigation strategies and livestock health; Bayer’s LLM-powered

agronomy advisor, which answers questions related to farm

management and Bayer agricultural products (Bayer, 2024); and

FarmOn (Pod, 2024), a startup which aims to provide an LLM-

augmented hotline that provides agronomic advice on areas

such as regenerative farming. Farmers can interact with some

of these digital advisors via web-based platforms, or mobile

messaging tools like WhatsApp, in a number of supported

languages. When these chatbots have access to all of the world’s

agronomic texts in various languages–including farming manuals,

agronomy textbooks, and scientific papers, “digital agronomists”

could place the entirety of the world’s agronomic data at

farmers’ fingertips.

There is emerging evidence that farmers may be willing

to engage with such digital tools for farming advice in both

developed and developing agricultural regions. One study found

that farmers in Hungary and the UK are increasingly leveraging

digital information sources—such as social media, farming forums,

and online scientific journals—over traditional expert advice on

topics such as soil management (Rust et al., 2022). In Nigeria,

researchers demonstrated that ChatGPT-generated responses to

farmers’ questions on irrigated lowland rice cultivation were

rated significantly higher than those from agricultural extension

agents (Ibrahim et al., 2024). One study involving 300 farmers in

India’s Karnataka state found that providing farmers with access

to agricultural hotlines with rapid, unambiguous information

by agricultural experts over the phone, tailored to time- and

crop-specific shocks, was associated with greater agricultural

productivity through the adoption of cost-effective and improved

farming practices (Subramanian, 2021). Farmers in India such as

Cropin are also providing farmers with insights to optimize sowing

times and respond to weather shocks (Bhattacharjee, 2024).

While these examples offer evidence that LLM-based tools

can impact agricultural productivity, there may be additional

opportunities to improve them by connecting them with real-

time information from sources such as satellite imagery, sensors,

or market price data. Such integration could enable them to

answer not just straightforward questions like “howmuch fungicide

should I apply to my corn crop,” but also more context-specific

queries such as “how much fungicide should I apply to my crop,

considering the rainfall and wind conditions that have affected

my fields in the past two weeks and my expected income at

current market prices?” An early example in this vein is LLM-

Geo (Li and Ning, 2023), a system which allows the user to

interact with earth observation data, such as satellite imagery and

climate data, in a conversational manner. Such advancements may

be particularly valuable for farmers, as collecting and analyzing

satellite and climate data has typically been a task requiring

specialized skills in software or programming (Herrick et al., 2023).

Moreover, agronomic advice that is time-sensitive and location-

specific tends to be viewed more favorably by farmers than more

general responses about agronomy (Ibrahim et al., 2024; Kassem

et al., 2020). Similarly, in the aquaculture sector, integrating LLMs

with real-time data may enhance productivity by offering natural

language alerts for fish health monitoring and disease warning.

LLMs could help provide real-time suggestions on adapting fishery

operations, optimizing breeding plans, and managing aquaculture

environments more effectively (Lid, 2024).
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In addition to providing information that is both location-

specific and time-sensitive, “digital agronomists” powered by LLMs

could also be enhanced with the ability to reason across multiple

modes of data, such as images, video, and audio. A farmer could,

for instance, upload images of crops affected by pests and engage

in verbal dialogue with an LLM to explore potential solutions. For

example, one study demonstrated the ability of such a system to

understand and engage in discussions about images of pests and

diseases affecting Chinese forests. This system showcased the ability

to conduct dialogue and address open-ended instructions to gather

information on pests and diseases in forestry based on multiple

types of data (Zhang et al., 2023a).

Agricultural extension services

While agronomic knowledge can be directly imparted to

farmers via services like KissanGPT, some studies have also

highlighted the potential of LLMs in enhancing existing agricultural

extension services. Agricultural extension services, which serve

as a bridge between research and farming practices, typically

involve government or private agencies providing training and

resources to improve agricultural productivity and sustainability.

Across different countries, these services are administered through

a mix of on-the-ground workshops, personalized consulting,

and digital platforms, adapting to local needs and technological

advancements. Tzachor et al. (2023) highlight the limitations

of traditional agricultural extension services, such as their

limited reach, language barriers, and the lack of personalized

information. They propose that LLMs can overcome some of these

challenges by simplifying scientific knowledge into understandable

language, offering personalized, location-specific, and data-driven

recommendations.

Conversational interfaces for on-farm agricultural

robotics

Roboticists have highlighted the potential of LLMs to impact

human-robot interaction by providing robots with advanced

conversational skills and versatility in handling diverse, open-

ended user requests across various tasks and domains (Kim

et al., 2024; Wang et al., 2024). OpenAI has already teamed

up with Figure, a robotics company, to build humanoid robots

that can accomplish tasks such as making coffee or manipulating

objects in response to verbal commands (Figure, 2024). For food

production specifically, Lu et al. (2023) argue that LLMs may

play a role in helping farmers control agricultural machinery on

their farms, such as drones and tractors. LLMs might act as

user-friendly interfaces that translate human language commands

into machine-understandable directives (Vemprala et al., 2023).

Farmers could, for instance, provide intuitive and context-specific

instructions to their agricultural robots via dialogue, reducing

the need for technical expertise to operate machinery. LLMs

could then guide robots to implement optimal farming practices

tailored to the specific conditions of the farm, such as directing

drones to distribute precise amounts of pesticides or fertilizers, or

guiding tractors in optimized plowing patterns, thereby improving

crop yields and sustainability. In addition, farmers may be

able to leverage the multimodal capabilities (i.e., processing and

integrating different types of information like text, images, and

numerical data) of LLMs to engage in dialogue about data collected

from agricultural machinery, such as imagery from drones and soil

information from harvesting equipment.

While many studies have placed emphasis on guiding robots

on what actions to perform in real-world planning tasks, Yang et al.

(2023) highlight the equal importance of instructing robots on what

actions to avoid. This involves clearly communicating forbidden

actions, evaluating the robot’s understanding of these limitations,

and crucially, ensuring adherence to these safety guidelines. This

may be critical to ensure that LLM-powered agricultural robots can

make informed decisions, avoiding actions that could lead to unsafe

conditions for crops and human workers.

2.2 Accelerating agricultural innovation

Throughout history, advancement in agriculture has been

vital for economic development by boosting farm productivity,

improving farmers’ incomes, and making food increasingly

plentiful and affordable (Alston and Pardey, 2021). Agricultural

innovation has many features in common with innovation

more broadly, but it also has some important differences. First,

unlike innovation in manufacturing or transportation, agricultural

technology must consider site-specificity due to its biological

basis, which varies with climate, soil, and other environmental

factors, making technology and innovation returns highly localized.

Secondly, industrial technologies are not as susceptible to the types

of climatic, bacterial, or virological shocks that typify agriculture

and drive obsolence of agricultural technology (Pardey et al., 2010).

Large language models may present opportunities to address the

specific needs of agricultural innovation with these differences in

mind.

2.2.1 Agricultural research and development
In the context of a field where innovation involves software,

hardware, biology, and chemistry, there are several avenues

through which agricultural innovation may be accelerated.

“Coding assistants” powered by LLMs are impacting the

agricultural software development landscape by enabling software

developers to produce more quality code in less time. GitHub

Copilot—Microsoft’s coding assistant–is a prominent example

of these tools. One study revealed that developers using

Copilot completed their coding tasks over 50% faster than their

counterparts who did not have access to the tool (Peng et al.,

2023). Another example is Devin, a software development assistant

which can finish entire software projects on its own (Vance,

2024). Such tools may accelerate the pace of innovation not

only for employees in the private sector, but also for researchers

in the agricultural sciences who do not possess a background

in computer science or software design (Chen et al., 2024).

LLM-enabled coding assistants can help produce well-structured

and documented code which supports code reuse and broadens

participation in the sciences from under-represented groups.

Even if the LLM does not generate fully functional code, tools

that suggest relevant APIs, syntax, statistical tests, and support

experimental design and analysis may help improve workflows,

help manage legacy code systems, prevent misuse of statistics,
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and ultimately accelerate reproducible agricultural science (Morris,

2023).

Petabytes of data relevant to agrifood research are generated

every year, such as satellite data, climate data, and experimental

data (Mohney, 2020; Hawkes et al., 2020) and this sheer volume can

make data wrangling work an important bottleneck to producing

agricultural research (Xu et al., 2020). The ability to issue data

queries in natural language to an AI model that would allow it to

perform some or all of the steps involved in dataset preparation

(or at least to generate code that would handle data processing

steps) may provide a boost to the speed of agricultural research that

depends on vast earth observation datasets. Research teams from

NASA and IBM have started to explore the use of generative AI to

tackle earth observation challenges by building Privthi, an open-

source geospatial foundation model for extracting information

from satellite images such as the extent of flooding area (Li

et al., 2023). These models have also shown promise in location

recognition, land cover classification, object detection, and change

detection (Zhang and Wang, 2024).

Language models for knowledge synthesis and trend

identification

Language models can help synthesize the state of the art in

agriculture-related topics to accelerate learning about new areas

(Zheng et al., 2023). A search on ScienceDirect for papers related

to “climate change effects on agriculture” since 2015, for instance,

returns more than 150,000 results. Tools like ChatGPT (and its

various plugins such as ScholarAI) and Elicit have demonstrated

a strong capacity for producing succinct summaries of research

papers. Some of these LLM-based tools are capable of producing

research summaries that reach human parity and exhibit flexibility

in adjusting to various summary styles, underscoring their potential

in enhancing accessibility to complex scientific knowledge (Fonseca

and Cohen, 2024).

In addition to knowledge synthesis, language models may also

help find patterns in a field over time and reveal agricultural

research trends that may not be apparent to newcomers, or even

more established scientists. This could help to pinpoint gaps in the

literature to signify areas for future research. For instance, emerging

LLM-powered tools such as Litmaps and ResearchRabbit are able to

generate visual maps of the relationships between papers, which can

help provide a comprehensive overview of the agricultural science

landscape and reveal subtle, cross-disciplinary linkages that might

be missed when agricultural researchers concentrate exclusively on

their own specialized fields (Sulisworo, 2023).

Lastly, LLMs can help aspiring researchers to engage in

self-assessment through reflective Q&A sessions, allowing them

to test their understanding of scientific concepts (Dan et al.,

2023; Koyuturk et al., 2023). This is especially valuable for

interdisciplinary research that combines agronomic science with

other fields such as machine learning, which can be laden with

jargon.

Accelerated hypothesis generation and experimentation

Language models like GPT-4 have been shown to possess

abilities in mimicking various aspects of human cognitive

processes, including abductive reasoning, which is the process

of inferring the most plausible explanation from a given set

of observations (Glickman and Zhang, 2024). Unlike statistical

inference, where a set of possible explanations is typically listed,

abductive reasoning typically involves some level of creativity to

come up with potential explanations which are not spelled out a

priori, much like a doctor who abductively reasons the likeliest

explanations of a patient’s symptoms before proposing treatment.

This capability is particularly relevant in fields like agricultural

and food system research, where synthesizing information from

diverse sources such as satellite, climate, and soil information

are key to generating innovative solutions. For instance, consider

a scenario in agriculture where a researcher observes a sudden

decline in crop yield despite no significant changes in farming

practices. An LLM could assist in abductive reasoning by generating

hypotheses based on the symptoms described by the researcher,

suggesting potential causes such as soil nutrient depletion, pest

infestation, or unexpected environmental stressors, even if these

were not initially considered by the researcher.

Fast hypothesis generation can help accelerate the shift toward

subsequent experimentation, which can also be aided by LLMs. One

study demonstrated an ‘Intelligent Agent system–that combines

multiple LLMs for autonomous design, planning, and execution

of scientific experiments such as catalyzed cross-coupling reactions

(Boiko et al., 2023). In the context of agriculture, if the goal is to

develop a new pesticide, for instance, such a system could be given

a prompt like “develop a pesticide that targets aphids but is safe

for bees.” The LLM would then search the internet and scientific

databases for relevant information, plan the necessary experiments,

and execute them either virtually or in a real-world lab setting. This

might significantly speed up the research and development process,

making it easier to innovate and respond to emerging challenges in

agriculture.

Bridging linguistic barriers in research

English is currently used almost exclusively as the language of

science. But given that less than 15% of the world’s population

speaks English, a considerable number of aspiring scientists and

engineers worldwide may face challenges in accessing, writing,

and publishing scientific research (Drubin and Kellogg, 2012).

LLMs can help address these disparities by making science

more accessible to students globally, regardless of their native

language. In addition, LLMs may help non-native English speakers

communicate their scientific results more clearly by suggesting

appropriate phrases and terminology to ensure readability for their

intended audience (Abd-Alrazaq et al., 2023), which could facilitate

the inclusion of broader perspectives in scientific research on food

systems.

Leveraging language models for feedback

Scientists and engineers may be able to leverage LLMs to

receive feedback on the quality of their innovations. One study

introduced “Predictive Patentomics”, which refers to LLMs that

can estimate the likelihood of a patent application being granted

based on its scientific merit. Such systems could provide scientists

and engineers with valuable feedback on whether their innovations

contain enough novelty to qualify for patent rights, or if they need

to revisit and refine their ideas before submitting a new patent

application Yang (2023). Other studies have shown similar potential
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for LLMs to provide feedback on early drafts of scientific papers Liu

and Shah (2023); Liang et al. (2023); Robertson (2023).

2.3 Improving agricultural policy

“Second opinions” on the potential outcomes of

agricultural policies

Using software andmodels thatmimic realistic human behavior

can provide public servants with clearer insight into the potential

repercussions of their policy choices (Steinbacher et al., 2021). For

instance, one study used LLMs to incorporate human behavior in

simulations of global epidemics, finding that LLM-based agents

demonstrated behavioral patterns similar to those observed in

recent pandemics (Williams et al., 2023). Another study introduced

“generative agents”, or computational software agents that simulate

believable human behavior, such as cooking breakfast, heading to

work, initiating conversations, and “remembering and reflecting on

days past as they plan the next day.” (Park et al., 2023) Simulations

using LLMs have also exhibited realistic human behavior in

strategic games (Guo, 2023).

Such examples offer early evidence that LLMs may enable

public servants to “test” agricultural policy changes by simulating

farmer behavior, market reactions, and supply chain dynamics,

allowing them to refine their ideas before putting them into

practice. Some governments around the world have already

started to investigate the incorporation of generative AI in

public sector functions. Singapore launched a pilot program

where 4,000 Singaporean civil servants tested an OpenAI-powered

government chatbot as an “intellectual sparring partner”, assisting

in functions like writing and research (Min, 2023). Meanwhile,

the UK government’s Central Digital and Data Office has

provided guidelines encouraging civil servants to “use emerging

technologies that could improve the productivity of government,

while complying with all data protection and security protocols.”

(Gen, 2024)

Enhanced engagement with government services

Some governments have started to leverage LLMs in

government-approved chatbots that allow citizens to query

government databases and report municipal issues via WhatsApp

(One, 2024; Eileen, 2024). Applied to agriculture, such chatbots

could enable farmers to ask questions related to subsidy eligibility,

legal compliance, or applications for licenses to produce organic

food.

Moreover, government agencies might use chatbots as an

interface for receiving feedback from citizens about agricultural

policies, programs, or services. This can be done in a conversational

manner, making it easier for individuals to voice their opinions or

concerns and for public servants to better understand farmers’ pain

points based onmillions of queries (Small et al., 2023). For example,

an agricultural economist at a government agency might use LLMs

to assist with engaging in dialogue with a group of farmers, rather

than just asking participants to fill out surveys. This may yield

socio-agronomic data that is more reflective of real-world scenarios

(Jansen et al., 2023).

Monitoring agricultural shocks

Language models may prove valuable for governments seeking

to monitor and respond to shocks in agricultural production

and food supply. LLMs are proficient in parsing through vast

quantities of news text data and distilling them into succinct,

relevant summaries that are on par with human-written summaries

(Zhang et al., 2023b).

This human-level performance could help warn about

global food production disturbances to issue early warnings to

populations at risk or guide humanitarian assistance to affected

regions. One study analyzed 11 million news articles focused

on food-insecure countries, and showed that news text alone

could significantly improve predictions of food insecurity up

to 12 months in advance compared to baseline models that

do not incorporate such text information (Balashankar et al.,

2023). Another study built a real-time news summary system

called SmartBook, which digests large volumes of news data to

generate structured “situation reports”, aiding in understanding

the implications of emerging events (Reddy et al., 2023). If used

to monitor shocks to food supply due to droughts or floods, such

systems could provide intelligent reports to expert analysts, with

timelines organized by major events, and strategic suggestions to

ensure effective response for the affected farming populations.

3 Potential risks for food systems as
LLM use spreads

Despite the excitement around the potential uses of generative

AI across various industries, some offer a more sober assessment

of its impact, suggesting that the world’s wealthiest tech companies

are seizing the sum total of human knowledge in digital form, and

using it to train their AImodels for profit, often without the consent

of those who created the original content. And by the time the

implications of these technologies are fully understood, they may

have become so ubiquitous that courts and policy-makers could

feel powerless to intervene (Klein, 2023). More general concerns

have been raised about generative AI, such as errors in bot-

generated content, fictitious legal citations Merken (2023), effects

on employment due to the potential automation of worker tasks

(Woo, 2024; Eloundou et al., 2023), and reinforcement of societal

inequalities (Okerlund et al., 2022).

Below, we present a number of risks that policy-makers may

need to consider as LLMs take root in agricultural systems. We

differentiate between risks that have a straightforward, immediate

impact (direct risks) and those whose effects are more diffuse,

long-term, or result from cascading consequences (indirect risks).

3.1 Direct risks of greater LLM use in food
systems

Agricultural workforce displacement

Generative AI, especially language models, may contribute to

job losses in the global agricultural workforce. One study shows

that AI advancements more broadly could necessitate job changes

for about 14 percent of the global workforce by 2030, and that
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agriculture, among other low-skilled jobs, is especially vulnerable

to automation (Lassébie and Quintini, 2022; Morandini et al.,

2023). This vulnerability may be compounded by the capabilities

of LLMs, which, according to another study, could enable up to 56

percent of all worker tasks to be completed more efficiently without

compromising quality (Eloundou et al., 2023). The agricultural

sector has already seen a reduction of approximately 200 million

food production jobs globally over the past three decades. Without

intervention, the current trend may lead to an additional loss of at

least 120 million jobs by 2030, predominantly affecting workers in

low- and middle-income countries (Brondizio et al., 2023).

Despite these trends, the full effects of LLMs on agricultural

jobs are still not fully understood. One recent study suggests

significant variance in the impact of generative AI across different

income countries: in low-income countries, only 0.4 per cent of

total employment is potentially exposed to automation effects,

whereas in high-income countries the share rises to 5.5 percent.

For professionals in agriculture, forestry, and fishing, the study

reveals that up to 8 percent of their job tasks are at medium-to-

high risk of undergoing significant changes or replacements due to

advancements in generative AI technologies, particularly language

models (Gmyrek et al., 2023). Some studies suggest that high-wage

white-collar roles involving specialized knowledge of accounting,

finance, or engineering may also be increasingly vulnerable to

the disruptive potential of LLMs, given that language models can

be “excellent regurgitators and summarisers of existing, public-

domain human knowledge” (Burn-Murdoch, 2023). This may

potentially reduce the premium paid to those applying cutting-edge

expertise to agricultural topics (Eloundou et al., 2023).

Increased collection of personal agronomic data

Despite their potential to advise farmers on challenging

agronomic topics, LLM-powered chatbots may also enable

corporations to gather increasing amounts of personal data about

farmers. Farmers might input increasing amounts of personal

information into these chatbots, including agronomic “trade

secrets”, such as what they grow, how they grow it, and personal

information such as age, gender, and income. OpenAI’s 2,000-word

privacy policy stipulates that “we may use Content you provide us

to improve our Services, for example to train the models that power

ChatGPT” (Ope, 2024). But in the event of security breaches in

the infrastructures that run such models, this may be a cause for

concern. Privacy leaks have already been observed in GPT-2, which

has provided personally identifiable information (phone numbers

and email addresses) that had been published online and formed

part of the web-scraped training corpus (Weidinger et al., 2022).

3.2 Indirect risks of greater LLM use in food
systems

Increased socio-economic inequality and bias

Socio-economic disparities could be inadvertently amplified

by unequal access to LLMs, leading to so-called “digital divides”

among farmers (Sheldrick et al., 2023). For instance, farmers

in lower-income regions may face barriers like limited digital

infrastructure and lack of digital skills, restricting their ability to

fully leverage LLMs to improve farming practices.

Moreover, biases in LLM training data could lead to the

exclusion or misrepresentation of specific farmer groups. For

instance, a generative AI system trained mainly on agronomic data

from industrialized countries might fail to grasp the unique needs

of small-scale farmers in developing countries accurately. This

failure arises from the model’s potentially unfaithful explanations–

where it may provide reasoning that seems logical and unbiased

but actually conceals a reliance on data that lacks representation

of diverse soil types, weather patterns, crop varieties, and

farming practices. Such unfaithful explanations mirror issues

identified in other sectors, where models can output decisions

influenced by implicit biases, such as race or location, without

transparently acknowledging these influences (Turpin et al., 2023).

Such misrepresentation of farmers groups can have consequences.

One study showed that using technology inappropriate for local

agricultural contexts reduces global productivity and increases

productivity disparities between countries Moscona and Sastry

(2022). If LLMs offer generic agronomic advice, they could

inadvertently widen existing disparities.

Language barriers can further compound the problem. If

the LLM is trained mostly on English language data, it might

struggle to generate useful advice in other languages or dialects,

potentially excluding non-English speaking farmers (Wei et al.,

2023). Studies have already shown that global languages are not

equally represented, indicating that they may exacerbate inequality

by performing better in some languages than others (Nguyen

et al., 2023). These language-related biases in LLMs have already

received attention from various governments. An initiative led by

the Singapore government is focused on developing a language

model for Southeast Asia, dubbed SEA-LION (“Southeast Asian

Languages in One Network”). This model, trained on 11 languages

including Vietnamese and Thai, is the first in a planned series of

models which focuses on incorporating training data that captures

the region’s languages and cultural norms (SCM, 2024). Beyond

SEA-LION, researchers have also experimented with training

models to translate languages with extremely limited resources—

specifically, teaching a model to translate between English and

Kalamang, a language with fewer than 200 speakers, using just one

grammar book not available on the internet (Tanzer et al., 2023).

Other fields beyond agriculture offer early evidence into the

types of biases that languagemodels might perpetuate. For instance,

recent studies have found that some models tend to project higher

costs and longer hospitalizations for certain racial populations;

exhibit optimistic views in challenging medical scenarios with

much higher survival rates; and associate specific diseases with

certain races (Yang et al., 2024; Omiye et al., 2023). Agricultural

policy-makers may be well-advised to monitor types of biases that

arise in the use of LLMs in other sectors and anticipate how to

mitigate them in agriculture.

Proliferation of agronomic misinformation

While language models may have the capacity to enrich

farmers by providing insights on crop management, soil health,

and pest control, their guidance may occasionally be detrimental,

particularly in areas where the LLMs’ training data is sparse or

contains conflicting information. An illustrative case involved a
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simulation where individuals without scientific training used LLM-

powered chat interfaces to identify and acquire information on

pathogens that could potentially spark a pandemic (Soice et al.,

2023). This exercise illustrated how LLMs might unintentionally

facilitate access to dangerous content for those lacking the

necessary expertise, underscoring a need for enhanced guardrails

in matters of high societal consequence. In the agricultural domain,

this risk might translate to a scenario where farmers, relying

on advice from LLM-based agronomy advisors, could be led

astray. Misguided recommendations might result in ineffective

farming techniques, loss of crops, or promotion of mono-cultures.

Moreover, such problematic advice, if disseminated broadly—

either accidentally or through a targeted attack—could lead to

catastrophic outcomes.

A real-world example of such consequences can be seen in Sri

Lanka’s abrupt shift toward organic agriculture. The government’s

rapid prohibition of chemical fertilizers, motivated by health

concerns, precipitated a drastic decline in agricultural output and

a spike in food prices. This policy change, along with other

economic challenges, exacerbated the country’s fiscal difficulties

and heightened the risk of a food crisis (Ariyarathna et al., 2023;

Jayasinghe andGhoshal, 2022; Rashikala and Shantha, 2023).While

this crisis was not caused by LLMs, it is not unthinkable that

poorly informed policy-makers could be prone to implementing

disastrous ideas suggested by chatbots in a way that disrupts daily

life and the economy (Tang et al., 2024).

Malicious actors might be able to intentionally exploit security

vulnerabilities in LLMs to propagate agronomic misinformation.

For instance, users might ‘jailbreak’ an LLM, intentionally or

unintentionally coaxing it to divulge harmful or misleading

information such as how to sabotage a farming operation (Wei

et al., 2023; Jiang et al., 2024). This could happen through

sophisticated prompts that trick the model into bypassing its safety

features, as shown in Figure 1, and subsequently disseminating

the harmful information that is returned. Bad actors might also

engage in “data poisoning”, which involves injecting false or

malicious data into the dataset used to train an LLM, which can

lead to flawed learning and inaccurate outputs. In the context of

agriculture, an example could include infusing a training data set

with misinformation on how much pesticide to apply to certain

crops. A review by Das et al. (2024) provides additional examples

of security vulnerabilities that are present in LLMs.

Erosion of the digital agricultural commons

Proliferation of agronomic misinformation may be

compounded by the so-called “depletion of the digital agricultural

commons”. The rise of LLMs in agriculture risks creating a cycle

where the data feeding into models and decisions includes both

human and AI-generated content. This mix can dilute the quality

of information, leading to models that might produce less reliable

advice for farmers on critical issues like crop rotation and pest

control. Studies have already shown that “data contamination”

can lead to worsened performance of text-to-image models like

DALL-E (Hataya et al., 2022), creation of “gibberish” output from

LLMs (Shumailov et al., 2023), and infiltration of primary research

databases, potentially contaminating the foundations open which

new scientific studies are based (Máý et al., 2023). Additionally,

there are worries about ‘publication spam,’ where AI is used to

flood the scientific ecosystem with fake or low-quality papers to

enhance an author’s credentials. This could overwhelm the peer

review process, make it more difficult to find valuable results

amidst a sea of low-quality articles.

An early example of this can be found in the recent retraction

of the paper Cellular functions of spermatogonial stem cells in

relation to JAK/STAT signaling pathway in the journal Frontiers

in Cell and Developmental Biology. According to the retraction

notice published by the editors, “concerns were raised regarding

the nature of its AI-generated figures”. The image in question

contained imagery with “gibberish descriptions and diagrams of

anatomically incorrect mammalian testicles and sperm cells, which

bore signs of being created by an AI image generator” (Franzen,

2024).

Lastly, there is a risk that reviewers themselves may use LLMs

in ways that shape scientific research in an undesirable manner

(Hosseini and Horbach, 2023). Reviewers might, for instance, have

LLMs review papers and recommend AI-generated text to the

authors.

Over-reliance on LLMs and impaired critical thinking on

agronomy

While LLMs can produce numerous good ideas, there is a risk

that over-reliance on these models can also lead to problems. For

instance, one study showed that software developers are likely to

write code faster with AI assistance, but this speed can lead to

an increase in “code churn”—the percentage of lines of code that

are reverted or updated shortly after being written. In 2024, code

churn is projected to double compared to its 2021 pre-AI baseline,

suggesting a decline in code maintainability. Additionally, the

percentage of “added” and “copy/pasted” code is increasing relative

to “updated,” “deleted,” and “moved” code, indicating a shift toward

less efficient coding practices. These trends reflect a potential over-

reliance on LLMs in coding environments, raising concerns about

the long-term quality and sustainability of codebases (Harding and

Kloster, 2024).

The airline industry’s experience with “automation

dependency” also highlights potential risks for agriculture.

It refers to a situation where pilots become overly reliant on

automated systems for aircraft control and navigation, leading

to diminished situational awareness and passive acceptance of

the aircraft’s actions without actively monitoring or verifying

its performance (Gouraud et al., 2017). One analysis by

Purdue University found that out of 161 airline incidents

investigated between 2007 and 2018, 73 were related to autopilot

dependency, underscoring the importance of maintaining

manual oversight alongside automated systems (Taylor et al.,

2020).

Just as software engineers and pilots overly reliant on

technology may lose basic programming or flying skills, a

generation of farmers could also become overly reliant on LLMs

and make more passive agronomic decisions.

Legal challenges for LLM-assisted innovators

Over-reliance on LLMs may also cause legal concerns for

inventors. For instance, the use of coding assistants might

inadvertently lead to duplication of code snippets from repositories

with non-commercial licenses, leading to potential IP conflicts
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FIGURE 1

Agricultural users might ”jailbreak” an LLM, intentionally or unintentionally coaxing it to divulge harmful or misleading information.

(Choksi and Goedicke, 2023). In response, systems such as

CodePrompt have been proposed to automatically evaluate the

extent to which code from languagemodels may reproduce licensed

programs (Yu et al., 2023).

Countries are starting to wrestle with the legality of LLM-

assisted innovation, with implications starting to emerge. In

the United States, a recent Supreme Court decision made

clear that an LLM cannot be listed as an “inventor” for
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purposes of obtaining a patent (Brittain, 2024). Some have

also argued that inventions devised by machines should require

their own intellectual property law and an international treaty

(George and Walsh, 2022).

4 The path ahead

Every person in the world is a consumer of agricultural

products. The gradual adoption of LLMs in food production

systems will therefore have important implications for what ends

up on our plates. As the technology spreads, we recommend

that agricultural policy-makers actively monitor how LLMs are

impacting other industries to better anticipate their potential effects

on food production.

LLMs may accelerate research in fields such as drought-

resistant seeds that boost food system resilience and improve global

nutrition. However, companies may leverage chatbots to collect

vast amounts of data from farmers and exploit that knowledge

for commercial gain. LLM adoption in food production is still in

the early stages. But the rapidly evolving landscape underscores

the need for agricultural policymakers to think carefully about

frameworks and guidelines that ensure the responsible use of LLMs

in agriculture before these technologies become so ingrained that

policy intervention becomes challenging.
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