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One or two things we know
about concept drift—a survey on
monitoring in evolving
environments. Part A: detecting
concept drift

Fabian Hinder*†, Valerie Vaquet*† and Barbara Hammer

Faculty of Technology, Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany

The world surrounding us is subject to constant change. These changes,

frequently described as concept drift, influence many industrial and technical

processes. As they can lead to malfunctions and other anomalous behavior,

whichmay be safety-critical in many scenarios, detecting and analyzing concept

drift is crucial. In this study, we provide a literature review focusing on concept

drift in unsupervised data streams. While many surveys focus on supervised data

streams, so far, there is no work reviewing the unsupervised setting. However,

this setting is of particular relevance formonitoring and anomaly detectionwhich

are directly applicable to many tasks and challenges in engineering. This survey

provides a taxonomy of existing work on unsupervised drift detection. In addition

to providing a comprehensive literature review, it o�ers precise mathematical

definitions of the considered problems and contains standardized experiments

on parametric artificial datasets allowing for a direct comparison of di�erent

detection strategies. Thus, the suitability of di�erent schemes can be analyzed

systematically, and guidelines for their usage in real-world scenarios can be

provided.
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1 Introduction

The constantly changing world presents challenges for automated systems, for
example, those involved in critical infrastructure, manufacturing, and quality control.
Reliable functioning of automated processes andmonitoring algorithms requires the ability
to detect, respond, and adapt to these changes (Ditzler et al., 2015; Reppa et al., 2016; Chen
and Boning, 2017; Vrachimis et al., 2022; Gabbar et al., 2023).

Formally, changes in the data-generating distribution are known as concept drift (Gama
et al., 2014). These changes can be caused by modifications in the observed process,
environment, or data-collecting sensors. Detecting anomalies in the observed process is
essential for identifying faulty productions or other types of unwanted errors. Conversely,
detecting changes in sensors and the environment is crucial for automated processes to take
appropriate actions, such as replacing a faulty sensor or modifying the system processing
the collected data to fit a new scenario (Gama et al., 2004, 2014; Gonçalves et al., 2014).
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Typically, drift is studied in stream setups, where changes in
the underlying data distribution necessitate model adaptation or
alerting a human operator for corrective action (Ditzler et al.,
2015; Lu et al., 2018; Delange et al., 2021). This is closely linked
to the evolution of concepts in continual learning, a widespread
subject in deep learning where concepts can arise or vanish. Drift
extends beyond data streams and appears in time-series data with
interdependent observations. Such drift usually manifests itself as
trends, and its absence is known as stationarity (Esling and Agon,
2012; Aminikhanghahi and Cook, 2017).

In settings where data are observed over time, such as
manufacturing and quality control, data are frequently gathered
across multiple locations and subjected to federated learning

techniques (Zhang et al., 2021). Instead of consolidating all data
on a global server, local processing is implemented, and outcomes
are integrated into an overarching model. Similar to stream
learning, it is crucial to address differences or drift in data from
various locations to build a strong global model (Liu et al., 2020).
Furthermore, drift must be taken into account in transfer learning,
a deep learning technique (Pan and Yang, 2010) in which the model
is pre-trained on a similar task with a more extensive dataset before
being fine-tuned on the target task using a limited dataset. Although
the main focus of this study is on data streams, the strategies
presented herein apply to other tasks.

Processing drifting data streams involves two major tasks:
establishing a robust model for predictive tasks, that is, online or
stream learning, and monitoring systems for unexpected behavior.
In the former, the focus is on a label and its relation to other
features, while the latter is concerned with any change indicating
unexpected system behaviors or states. Drift detection, therefore,
focuses on different goals, in analogy to general learning termed
supervised for the former and unsupervised for the latter. This study
omits online learning as it has been extensively explored in previous
surveys (Ditzler et al., 2015; Losing et al., 2018; Lu et al., 2018) and
toolboxes (Bifet et al., 2010; Montiel et al., 2018, 2021).

Instead, this study centers on unsupervised drift detection and
monitoring situations where drift is anticipated due to sensor usage
or sensitivity to environmental changes. Specifically, the focus is
on unsupervised drift detection, which is vital for monitoring and
comprehending drift phenomena. Some exemplary applications are
the detection of drift for security applications (Yang et al., 2021)
and the usage of drift detection for the detection of leakages in
water distribution networks (Vaquet et al., 2024a,b). In addition,
there are techniques for further analyzing drift (Webb et al., 2017,
2018; Hinder et al., 2023a), which we will not cover in detail in this
study. For the interested reader, we provide an extended version
that covers these topics as well as the content of this study (Hinder
et al., 2023b). Note that approaches for unsupervised drift detection
discussed here differ from those designed for online learning, as
discussed by Gemaque et al. (2020). In Section 2.2, we describe the
contrast to supervised drift detection in more detail.

Monitoring entails observing a system and offering necessary
information to both human operators and automated tasks to
ensure proper system functionality. The required information
varies depending on the specific task (Goldenberg andWebb, 2019;
Verma, 2021). Generally, there are crucial inquiries to answer
regarding drift (Lu et al., 2018):

The first one pertains to the whether (and when) of drift
occurrence, which is addressed through drift detection (Gama et al.,
2014).When detecting drift, a precise assessment of its severity, that
is, the how much?, is crucial in determining appropriate measures.
Drift quantification, estimating the rates of change that trigger
alarms, often precedes detection, and although not the main focus,
this aspect will be briefly discussed later.

To take accurate action, it is essential to pinpoint drift more
precisely (Lu et al., 2018). While detecting and quantifying drift
addresses thewhen by identifying change points and rate of change,
drift localization and segmentation (Lu et al., 2018) focus on the
where by assigning drift-related information to the data space.
For example, identifying anomalous items, specifically drifting data
samples, is crucial in monitoring settings.

Addressing the aforementioned issues may not be sufficient in
some cases. Systems can experience drift, a malfunction resulting
in changes across multiple data points and features. For example,
a deteriorating sensor can produce altered measurements. Reliance
solely on drift location provides limited insight into the nature of
the event. However, it is crucial to provide detailed information
about what happened and how it occurred. In many cases, drift
explanations (Hinder et al., 2023a) provide relevant information to
human operators concerned with monitoring and manual model
adaptation. Finding appropriate explanations is crucial since the
complexity of the drift may go beyond the information obtained
by answering the previously raised questions.

This study is organized as follows: First, we formalize the
concept of drift (Section 2.1) and position our work in the
context of related research at the intersection of the stream setup,
supervised, and unsupervised approaches (Section 2.2). We then
turn our attention to drift detection: We begin by formalizing the
task (Section 3) and presenting a general scheme implemented
by most approaches (Section 4). We then discuss and categorize
several detection methods (Section 5) and perform an analysis
based on criteria specific to drift and streaming scenarios (Section
6). In the ArXive version (Hinder et al., 2023b), we also cover topics
that are closer related to the analysis of concept drift like drift
localization and drift explanation.

2 Concept drift—defining the setup

In this section, we first formally define drift. Then, we
explore various setups for dealing with drift before delving into a
detailed examination of the body of work covering drift detection
approaches in the later sections.

2.1 A formal description of concept drift

In classical batch machine learning, one assumes that the
distribution remains constant during training, testing, and
application. We denote this time-invariant data-generating
distribution by D and consider a sample of size n is a collection of
n i.i.d. random variables X1, . . . ,Xn ∼ D.

However, real-world applications, particularly stream learning,
often violate the assumption of time-invariant distributions. To
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address this formally, we introduce time into our considerations,
allowing each data point to follow a potentially distinct distribution
Xi ∼ Dti linked to the observation time ti. Given the rarity of
observing two samples simultaneously, that is, ti 6= tj for all i 6= j,
it is common to use Di instead of Dti for simplicity (Gama et al.,
2014).

This setup aligns with the classical scenario if all Xi share the
same distribution, that is, Di = Dj for all i, j. Concept drift takes
place when this assumption is violated, that is, Di 6= Dj for some
i, j (Gama et al., 2014).

As argued by Hinder et al. (2020), this definition of concept
drift depends on the chosen sample and not the underlying process.
This makes drift a non-statistical problem, as one sample may
have concept drift while another does not, even though they were
generated by the same process within the same time period, but
with different sampling frequencies. To address this issue, Hinder
et al. (2020) suggest incorporating the statistical properties of time.
This is done by using a model of time, denoted as T, instead of a
simple index set. The framework assumes a distribution PT on T

that characterizes the likelihood of observing a data point at time
t, together with a collection of distributions Dt for all t ∈ T, even
though only a finite number of time points are observed in practical
terms. The combination of PT and Dt forms a distribution process

(in the literature, this is also referred to as drift process).

Definition 1. Let T = [0, 1] and X = Rd. A (post-hoc) distribution

process (Dt , PT) from the time domain T to the data space X is a
probability measure PT on T together with a Markov kernel Dt

from T to X, that is, for all t ∈ T, Dt is a probability measure on
X and for all measurable A ⊂ X the map t 7→ Dt(A) is measurable.
We will just write Dt instead of (Dt , PT) if this does not lead to
confusion.1

Distribution processes are formal models for data streams,
which consist of independent observations with the only restriction
that simultaneous observations follow the same distribution. This
differs from a time series or stochastic process which are randomly
sampled functions from time to data where observations can
depend on each other, but each time point has only one definite
value. Although both describe data and time interdependencies,
and observed data can usually be modeled in both setups, their
interpretation and areas of application differ significantly (Hinder
et al., 2024). For instance, measuring the temperature of an
object over time is a time series, yielding a single value per time.
Conversely, a stream of ballots qualifies as a distribution process
because the distribution is more interesting than an individual vote.

Two particularly relevant types of distributions can be derived
from a distribution process: First, by appending a time-stamp to
each sample from its arrival, the data follow what we call the
holistic distributionD. Second, by aggregating all samples observed
within a specific time window W ⊂ T, the data conform to the
mean distribution DW duringW. Formally, these distributions are
defined as follows:

1 All considerations below also work in a very similar way for more general

measure spaces. However, for reasons of clarity, we will stick with this special

case. This also holds for the restriction of PT to be a probabilitymeasurewhich

is usually specified by the term "post-hoc."

Definition 2. Let (Dt , PT) be a distribution process from T to
X. We refer to the distribution D on X × T which is uniquely
determined2 by the property D(A × W) =

∫

W Dt(A)dPT(t) for
all A ⊂ X, W ⊂ T as the holistic distribution of Dt . Furthermore,
we call a PT non-null set W ⊂ T a time window and denote by
DW(A) =

∫

W Dt(A)dPT(t | W) = D(A ×W | X ×W) the mean

distribution duringW.

A distribution process provides the benefit of data sampling.
In contrast, a sample-based arrangement does not allow the
creation of a new sample from old ones. Two techniques exist
for generating new data from a distribution process. One method
involves obtaining i.i.d. samples from the holistic distribution D.
These time-stamped data points (X,T) are commonly obtained by
first randomly selecting an observation time (T ∼ PT) and then
drawingX from the distributionDt with the assumption thatT = t,
that is, X | [T = t] ∼ Dt . Another frequently employed method is
generating i.i.d. samples from DW within a specified time window
W. Importantly, observations within a time windowW based onD

perfectly replicate the distribution described byDW . Both methods
are formal procedures for obtaining data over time.

Building on the aforementioned definition, we define drift as
a property of a data-generating process, not just a sample drawn
from it. To account for the statistical nature, a slight adaptation
is necessary. We assert that Dt exhibits drift if there is a non-
zero probability of obtaining a sample with drift. In other words,
a sample X1,X2, . . . will have indices i and j where

PXi

def. Xi
= DTi 6= DTj

def. Xj
= PXj

with a probability that is greater than zero. The number of samples
does not impact this, due to measure-theoretical considerations,
enabling the examination of only two samples for this definition.

Definition 3. Let (Dt , PT) be a distribution process. We say thatDt

has drift iff

PT,S∼PT [DT 6= DS] = P2T({(t, s) ∈ T 2 | Dt 6= Ds}) > 0.

Here, P2T denotes the product measure of PT with itself, that
is, the measure on T 2 = T × T that is uniquely determined by
P2T(W1 ×W2) = PT(W1)PT(W2).

It may be questioned how far this is distinct from having s and
t in T, whereDt 6= Ds. This formally is due to PT null sets, that is, it
is possible that different distribution only occurs at a single point in
time, such that we are unable to observe any samples from the other
distribution, making it impossible to detect the drift. Therefore, it
is a quirk of the formal model rather than a reflection of the actual
process.

As mentioned before, we can also use different choices for
T. While T = [0, 1] might be the best model for clock-time,
T = {1, . . . , n} can be used to model different computational
nodes, etc. (Hinder et al., 2023c). In particular, if T is at most
countable, then drift is equal to the existing of s, t ∈ Twith different
distributionsDt 6= Ds (Hinder et al., 2020).

2 Both existence and uniqueness of D are assured by the Fubini-Tonelli

theorem.
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There are different yet equivalent formalizations of
drift (Hinder et al., 2020). These involve situations where
there is a non-equality to a standard distribution (PT[Dt 6= P] > 0
for all distributions P on X), non-equality to the mean distribution
(PT[Dt 6= DT] > 0), and distinct distributions for two separate
time windows (DW 6= DW′ for someW,W′ ⊂ T). However, a very
important way to phrase drift is to express it as the dependence
between data X and time T.

Theorem 1. Let (Dt , PT) be a distribution process from T to X and

let (X,T) ∼ D be distributed according to the holistic distribution.

Then, Dt has drift if and only if T 6⊥⊥ X are not statistically

independent, that is, there exist W ⊂ T and A ⊂ X such that

P[T ∈W,X ∈ A] 6= P[T ∈W]P[X ∈ A].

This concept was pivotal in shaping the development of new
methods, for example, it was used to reduce the problem of drift
detection to independence X ⊥⊥ T testing without the necessity of
using two windows (Hinder et al., 2020); it was used to describe the
location of drift through temporal homogeneity using conditional
independence X ⊥⊥ T | L(X) where L are the homogeneous
components (Hinder et al., 2021a, 2022a); explaining drift was
reduced to the explanation of models that estimate X 7→ T (Hinder
et al., 2023a); the position of anomalies in critical infrastructure
was identified as those features Xi that have a particularly strong
correlation with time T (Vaquet et al., 2024a,b).

2.2 Concept drift in supervised and
unsupervised setups

In the previous section, we defined drift in the context of
data generation. Typically, drift is classified based on its temporal
qualities. An abrupt drift refers to a sudden change in distribution
at a specific time referred to as change point, while changes
gradually occurring over an interval signify gradual drift. During a
changing period in incremental drift, samples are drawn from both
distributions with varying probabilities. Recurring drift refers to the
reappearance of past distributions, usually due to seasonality. Some
authors use alternative nomenclatures, for example, abrupt drift is
sometimes referred to as "concept shift," and gradual or incremental
drift as "concept drift." However, unless specified, we will refer to all
those notions simply as "drift."

Moreover, drift is further categorized based on the
modifications made to data and label space distributions. In
a data stream of labeled pairs (X,Y) within X × Y, where Y

represents the label, changes in the conditional distribution
Dt(Y | X) are referred to as real drift, while changes within the
marginal Dt(X) are known as virtual drift or occasionally data

drift.
From a statistical perspective, drift in the marginal distribution

of X and time T and the joint distribution of (X,Y) and time
T can be modeled within a common framework despite different
interpretations. Real drift can equivalently be described as the
conditional statistical dependence of Y and T, given X, that is,
Y 6⊥⊥ T | X (Hinder et al., 2023d).

Analogous to general machine learning tasks, drift detection
can be considered in the supervised settings, that is, those that

model-guided

FIGURE 1

Display of the drift analysis categorization according to the goal and

the applied strategy.

are concerned with conditional distributions usually with respect
to a label or target, and unsupervised tasks, that is, those that
are concerned with the joint or marginal distributions. While in
supervised settings both real and virtual drift might be present, in
unsupervised settings only virtual drift has to be considered.

Dealing with drifting data streams involves two key objectives:
maintaining an accurate learning model despite drift (model
adaption) and accurately detecting and characterizing drift in the
data distribution (monitoring). In supervised settings, the emphasis
is on analyzing model losses and assessing the model’s ability to
perform prediction tasks (prediction loss-based). In unsupervised
settings, more attention is given to the data distribution or
data reconstruction (distribution-based). These goals align with
two overarching approaches of model adaption and monitoring,
resulting in the categorization illustrated in Figure 1.

In supervised environments, model adaptation is typically
attained through loss-based tactics, in which updates are guided
by the model’s capacity to execute tasks. By considering
reconstruction losses, such detection strategies can also be used
for the unsupervised setup. Many studies examine this supervised
strategy (Ditzler et al., 2015; Losing et al., 2018; Lu et al., 2018).
However, the connection between model loss, model adaption, and
actual drift is rather vague and heavily reliant on the selected model
class, the specific properties of the drift, and the setup (Hinder
et al., 2023c,d). Therefore, employing loss-based approaches for
drift detection in monitoring setups is typically unsuitable.

Unsupervised distribution-based techniques are available
for both model fitting and monitoring. We focus on those
unsupervised drift detection methods for monitoring tasks, which
we discuss further in the following sections. Notably, there is
currently no comprehensive survey of drift analysis specifically
tailored to the monitoring task, although surveys such as the one
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by Gemaque et al. (2020) have covered unsupervised drift detection
for model adaptation. In addition, Aminikhanghahi and Cook
(2017) explore unsupervised change point detection, which is a
related problemwithin the domain of time-series data but is beyond
the scope of this discussion.

3 Drift detection—setup and
challenges

As discussed before, the first important question when
monitoring a data stream is whether (and when) a drift occurs.
The task of determining whether or not there is drift during a time
period is called drift detection. A method designed to perform that
task is referred to as drift detector. Surprisingly, most surveys do
not provide a formal mathematical definition of drift detectors, so
we provide a formalization, first.

One can consider drift detectors as a kind of statistical analysis
tool that aims to differentiate between the null hypothesis “for all
time points t and s we have Dt = Ds” and the alternative "we may
find time points t and s with Dt 6= Ds." More formally, a drift
detector is a map or algorithm that, when provided with a data
sample S drawn from the stream, tells us whether or not there is
drift.

We can formalize that such a drift detection model is accurate
or valid, respectively, in the following way: (a) the algorithm will
always make the right decision if we just provide enough data, or
(b) we can control the chance of false positives independent of the
stream. This leads to the following definitions:

Definition 4. A drift detector is a decision algorithm on data-time-
pairs of any sample size n, that is, a (sequence of) measurable maps
An :(T× X)n → {0, 1}.

A drift detector A is surely drift-detecting if it raises correct
alarms in the asymptotic setting, that is, for every distribution
process Dt and every δ > 0 there exists a number N such that for
all n > N we have

PS∼Dn

[

An(S) = 1[Dt has drift]
]

> 1− δ.

Notice that the definition is not uniform across multiple
streams (or drifts if the method is local in time), that is, for some
streams it suffices to have 100 samples to correctly identify drift, for
others 10,000 are not enough because the effect is too small. This is
not a shortcoming of drift detection but a common scheme for all
statistical tests. To cope with that problem we have to take the two
kinds of errors into account: A type I error occurs if there is no drift
but we detect one (false alarm), and a type II error occurs if there
is drift but we do not detect it. As discussed above, avoiding type II
errors is not feasible. In addition, as the effect of very mild drifts is
usually less severe, missing one might as well be less problematic in
practice. Thus, we focus on controlling the type I error.

Controlling the number of false alarms can be stated as follows:
Once we provide a certain number of samples, the chance of a
false alarm falls below a certain threshold. That number of samples
must not depend on the data stream we consider. As this is also
fulfilled for the trivial drift detector that never raises any alarms
and thus never detects drift, we require that the chance of detecting
drift in case there actually is some to be larger than this threshold
provided enough data from the stream is available. Here, the

amount of required data is stream-specific as discussed above. If
a drift detector fulfills these properties at least for some streams, we
say that it is valid. If this holds for all streams, then we call the drift
detector universally valid. Formally:

Definition 5. A drift detector A is valid on a family of distribution
processesD, if it correctly identifies drift in the majority of cases:

lim sup
n→∞

sup
Dt∈D,Dt has no drift

PS∼Dn [An(S) = 1]

< inf
Dt∈D,Dt has drift

lim inf
n→∞

PS∼Dn [An(S) = 1].

We say that A is universally valid if it is valid for all possible
streams, that is,D is the set of all distribution processes.

Notice that validity does not imply that A makes the right
decision even if we make use of larger and larger sample sizes.
For a concrete case, it makes no statement about the correctness
of the output except that it is more likely to predict drift if there
actually is drift. This probability, however, holds across all streams
independent of the severity of the drift. Thus, for monitoring,
we need a drift detector that is universally valid and surely drift-
detecting.

One is frequently additionally interested in the time point of
the drift. This problem is usually addressed indirectly: If drift is
observed in a certain time window, the algorithmwill raise an alarm
which is then considered as the time point of drift.

4 A general scheme for drift detection

As discussed before, the goal of drift detection is to investigate
whether or not the underlying distribution changes. As visualized
in Figure 2, drift detection is usually applied in a streaming
setting where a stream of data points is arriving over time. At
time t, a sample S(t) containing some data points which are
observed during W(t) and thus are generated by DW(t) becomes
available. On an algorithmic level, existing drift detectors can
be described according to the four-staged scheme visualized in
Figure 2 following the ideas of Lu et al. (2018).

In this section, we discuss some of the most prominent choices
for the stages 1-4 of this drift detection scheme.

4.1 Stage 1: acquisition of data

input: data stream
output: window(s) of data samples, for example, one

reference window and one containing the most
recent samples

As a first step, a strategy for selecting which data points are
used for further analysis needs to be selected. Depending on the
strategy used (we will discuss those in Section 5) either one or
two windows of the data are selected. Most approaches rely on
sliding windows (Lu et al., 2018). As visualized in Figure 3, there are
four main categories which differ in how the reference window is
updated, for example, fixed until an event, growing, or sliding along
the stream or implicit as a summary statistic using a model. We
refer to Lu et al. (2018) for a more detailed description. There also
exist approaches using preprocessing such as a deep latent space
embedding (Vaquet et al., 2021).
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FIGURE 2

Visualization of drift detection on a data stream: data point xi was

observed at time ti. Given a data stream, for each time window W(t),

a distribution DW(t) generates a sample S(t). In this case,

W(t) = [t− l, t] has a length l and thus S(t) = {xk | tk ∈W(t)}

= {xi, . . . , xi+n}. A drift detection algorithm estimates whether or not

S(t) contains drift by performing a four-stage detection scheme.

Illustrated drift detector uses two sliding windows (stage 1),

histogram descriptor (stage 2), total variance norm (stage 3), and

permutation-based normalization (stage 4).

4.2 Stage 2: building a descriptor

input: window(s) of data samples
output: possibly smoothed descriptor of window(s)

FIGURE 3

Illustration of reference window types. Area in brackets refers to

reference window W(t),W(s) for time point t < s. Border of W(t) is

marked in dark blue, border of W(s) in light green, and overlapping

borders in gray. Here, h is a learning model that implicitly stores the

data by learning it.

The goal of the second stage is to provide a possibly smoothed
descriptor of the data distribution in the window obtained in
stage 1.

Possible descriptors are grid- or tree-based binnings, neighbor-,
model-, and kernel-based approaches: Binnings can be considered
as one of the simplest strategies. The input space is split into
bins, and the number of samples per bin is counted. The bins
can be obtained as a grid or by using a decision tree. Decision
trees can be constructed randomly, according to a fixed splitting
rule (Dasu et al., 2006), or using a criterion that takes temporal
structure into account (Hinder et al., 2022b) which can result in
better performance.

One can also use a machine learning model’s compression
capabilities by training the model. This way, the data are stored
implicitly (Dwork, 2006; Shalev-Shwartz and Ben-David, 2014;
Haim et al., 2022). A query is then used to access the data. Common
strategies are discussed in Section 5.

Other versatile, robust, and non-parametric families of
methods are offered by a large variety of neighborhood- or kernel-
based approaches (Gretton et al., 2006; Harchaoui and Cappé, 2007;
Pérez-Cruz, 2009; Liu et al., 2017). In those cases, the information
is encoded via (dis-)similarity matrices like the adjacency matrix or
kernel matrix.

4.3 Stage 3: computing dissimilarity

input: descriptor of window(s)
output: dissimilarity score

The goal of this stage is to compute a dissimilarity score.
Here, different descriptors can be used to compute the same
score, and vice versa. Popular choices are the total variation
norm (Webb et al., 2017), Hellinger distance (Ditzler and Polikar,
2011; Webb et al., 2016), MMD (Gretton et al., 2006; Rabanser
et al., 2019), Jensen-Shannon metric (Salem et al., 2012), Kullback-
Leibler divergence (Dasu et al., 2006; Hinder and Hammer, 2023),
model loss (Liu et al., 2017; Rabanser et al., 2019), neighborhood
intersection (Liu et al., 2017), Wasserstein metric (Zhao and
Koh, 2020; Hinder et al., 2022b, 2023a), and mean and moment
differences (Hinder et al., 2022b, 2023a). Suitable combinations of
dissimilarity measures and descriptors are summarized in Table 1
and will be discussed later.
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TABLE 1 Overview of unsupervised drift analysis methods from the literature.

Strategy Type Method Stage 1
(reference
window)

Stage 2 Stage 3 Stage 4 DD DP DL DE

Two-Sample MB D3 (Gözüaçık et al.,
2019)

Sliding Window Virtual-Classifier ROC-AUC – ✓a ✗ ✗ ✗

ST Window-KS (Dos Reis
et al., 2016; Raab et al.,
2020)

Sliding/Fixed Window Feature-wise
Empirical CDF

KS-Statistic KS-Distribution ✓ ✗ ✗ ✗

ST MMD (Gretton et al.,
2006; Rabanser et al.,
2019)

Sliding Window Kernel Matrix MMD Bootstrap /
Permutation Test
(or Pearson
Statistic)

✓ ✗ ✗ ✗

ST HDDDM (Ditzler and
Polikar, 2011)

Histogram of Growing
Window

Feature-wise
Histogram

Hellinger Distance Adaptive Threshold ✓ ✗ ✗ ✗

ST PCA-CD (Qahtan et al.,
2015)

Fixated Window KDE and
Histograms on
PCA-projection

Maximum
Symmetrised
Kullback-Leibler
Divergence

Page-Hinkley Test ✓ ✗ ✗ ✗

ST Drift Magnitude (Webb
et al., 2016, 2017)

Sliding Window Gird Histogram Total Variation /
Hellinger Distance

– ✗ ✗ ✗ ✓

ST kdq-Tree (Dasu et al.,
2006)

Sliding Window kdq-Tree Bins Kullback-Leibler
Divergence

Bootstrap Test ✓ ✗ ✓ ✗

ST LDD-DIS (Liu et al.,
2017)

Growing with
Resampling

k-neighborhood neighborhood Ratio
(LDD)

Parametric with
Permutation-based
Estimate

✓ ✗ ✓ ✗

ST LSDD (Bu et al., 2016,
2017)

Growing Window Density Estimator L2-Distance of
Densities

Parametric with
Bootstrap-based
Estimate Test

✓ ✗ ✗ ✗

ST MB-DL (Hinder et al.,
2023a)

Sliding Window Random Forest Kullback-Leibler
Divergence to Time
Independent Model

Permutation Test ✓ ✗ ✓ ✓b

MB Neighbor Density
Comparison (Pérez-
Cruz, 2009; Hinder et al.,
2022b)

Sliding Window k-Neighbohood Kullback-Leibler
Divergence

– ✓ ✗ ✗ ✗

MB Random Proj.
Bin. (Rabanser et al.,
2019; Hinder et al.,
2022b)

Sliding Window Histogram on
Random Projection

Total Variation – ✓ ✗ ✗ ✗

Meta-Statistic LB Model+AdWin (Vaquet
et al., 2021)

ML Model – Model-Loss AdWin Statistic (✓)c ✓ ✗ ✗
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4.4 Stage 4: normalization

input: dissimilarity score
output: normalized dissimilarity

Usually, the scores suffer from estimation errors. This is
counteracted by a suitable normalization similar to the p-value in
a statistical test (Gretton et al., 2006; Liu et al., 2017; Rabanser et al.,
2019; Hinder et al., 2020; Raab et al., 2020). Other examples of
normalized scales are accuracy or the ROC-AUC (Gözüaçık et al.,
2019).

4.5 Ensemble and hierarchical approaches

Some authors suggest combining multiple drift detectors (Lu
et al., 2018). They are usually arranged in an ensemble,
for example, by combining multiple p-values after stage 4
into a single one, or hierarchical, for example, by combining
a computationally inexpensive but imprecise detector with a
precise but computationally expensive validation. Although those
approaches differ on a technical level, they do not from a theoretical
perspective, as the suggested framework is sufficiently general.

5 Categories of drift detectors

So far, we formally defined the properties a drift detection
algorithm should fulfill and described on an algorithmic level how
different approaches can be implemented. In this section, we focus
on concrete approaches. We propose a categorization according
to the main strategies of the approaches, relying either on an
analysis of two samples, meta-statistics, or a block-based strategy.
We present methods organized according to the taxonomy in
Figure 4. An overview of the approaches considered in this survey
is presented in Table 1.

5.1 Two-sample analysis based

The most common type of drift detector exploits that drift is
defined as the difference between two time points which can be
tested for by statistical two-sample tests. To perform such a test,
we split our sample S(t) into two samples S−(t) and S+(t) and then
apply the test to those. The construction of the descriptor, distance
measure, and normalization (stages 2–4) are then left to the used
testing scheme. In addition to classical statistical tests, there also
exist more modern approaches that make use of advanced machine
learning techniques.

As stated above, to apply this scheme, we need to split the
obtained sample into two sub-samples which are then used for the
test. This step is crucial as an unsuited split can have a profound
impact on the result. In severe cases, choosing an unsuited split can
make the drift vanish and thus undetectable as we consider time
averages of the windows. However, there exist theoretical works
that suggest that the averaging out does not pose a fundamental
problem (Hinder et al., 2021b).

From amore algorithmic perspective, there are essentially three
ways the testing procedure is approached. Loss-based and virtual
classifier-based approaches rely on machine learning techniques,
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FIGURE 4

Taxonomy of drift detection approaches discussed in this study. Methods marked in gray are rely on model performance.

while statistical test-based approaches rely on statistical tools. We
will discuss those in the following.

5.1.1 Loss-based approaches
A large family of loss-based approaches uses machine learning

models to evaluate the similarity of newly arriving samples to
already received ones. Such models are typically unsupervised
or applied without relying on external labels, thus differing
from the supervised approach discussed in Section 2.2. However,
being reliant on model performance, they face similar pitfalls as
prediction loss-based methods (Hinder et al., 2023c). Here, we find
it necessary to discuss them due to their widespread popularity.
In this case, the reference window (stage 1) is implicitly stored in
a machine learning model which is also used as a data descriptor
(stage 2). The dissimilarity is usually given by the model loss.
It is further analyzed using drift detectors which are commonly
used in the supervised setup (Basseville and Nikiforov, 1993; Gama
et al., 2004; Baena-Garcıa et al., 2006; Bifet and Gavaldà, 2007;
Frias-Blanco et al., 2014) and serve as a normalization (stages 3
and 4).

Several candidates are implementing this strategy. One of the
most common model choices are auto-encoders which compress
and reconstruct the data (Rabanser et al., 2019). Other popular
model choices are models like 1-class SVMs or Isolation Forests.
Originating from anomaly detection, they provide an anomaly
score that estimates how anomalous a data point is. Finally,
density estimators, which are designed to estimate the likelihood of
observing a sample, can be applied to detect drift. Here, the idea
is that a sample from a new concept is assumed to be unlikely
to be observed in the old concept, resulting in a low occurrence
probability, high reconstruction error, or anomaly score. Thus, a
change in the mean score indicates drift (Yamanishi and Takeuchi,
2002; Kawahara and Sugiyama, 2009).

These methods are quite popular as they are closely connected
to supervised drift detection, but they also face similar issues. On
a theoretical level, Hinder et al. (2023c,d) showed that for many
important models, one can construct streams where the drift is not
correctly detected because it is irrelevant to the decision boundary
learned by the model class. This claim was further substantiated
by empirical evaluations (Hinder et al., 2023c,d; Vaquet et al.,
2024a). Thus, such approaches are unsuited for discovery tasks or

the monitoring setup. We will therefore only focus very shortly
on them.

5.1.2 Virtual-classifier-based
A different approach using machine learning models is based

on the idea of virtual classifiers (Kifer et al., 2004; Hido et al., 2008):
If a classifier performs better than random guessing, then the class
distributions must be different.

This idea can be employed for drift detection as follows (see
Figure 5 for an illustration): Store all samples explicitly in two
windows (stage 1). Define labels according to reference or current
sample, that is, label x ∈ S−(t) as y = −1, x ∈ S+(t) as y = 1. Use
that to train a model (stage 2). The test score then serves as a drift
score (stage 3) which is commonly a normalized score (stage 4).

In practice, the usage of k-fold evaluation is advised for optimal
data usage (Hido et al., 2008; Gözüaçık et al., 2019). Furthermore,
statistical learning theory offers guarantees that can be used to
derive p-values (Kifer et al., 2004; Dries and Rückert, 2009) which,
however, are usually rather loose. The used model class is crucial
in terms of which drift can be detected and how much data
are necessary (Hinder et al., 2022b). It was also shown that for
valid split points, many learning models yield surely drift-detecting
algorithms and suggested that the resulting algorithms are also
universally valid. Furthermore, the chance of choosing an invalid
split point is essentially zero (Hinder et al., 2021b). As a candidate
of this class, we consider D3 (Gözüaçık et al., 2019).

5.1.3 Statistical-test-based
So far we considered intuitive ad hoc approaches. More theory-

driven approaches can be derived by considering drift detection as
a two-sample testing problem for which formal justification usually
exists.

Classical statistical tests commonly focus on one-dimensional
data. The Kolmogorov-Smirnov (KS) test might be the most
prominent classical two-sample test (see Figure 6 for an
illustration): The test requires two samples (stage 1). It then
computes the empirical cumulative distribution function (CDF)
(stage 2):

F̂S±(t)(x) : =
1

|S±(t)|

∑

s∈S±(t)

1[s ≤ x]
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FIGURE 5

Visualization of virtual classifier-based drift detection. 1. Collect data (moment of arrival is color-coded: dark blue to green), 2. Mark all samples

arrived before a certain time as class -1 (cross) and after as class +1 (plus), 3. Train model to distinguish class -1 and +1, and 4. Evaluate model, if

performance is better than random chance then there is drift.

FIGURE 6

Visualization of Kolmogorov-Smirnov test for drift detection. 1. Collect data (two windows; S−(t) blue and S+(t) green), 2. Feature-wise CDF, 3.

Compute largest di�erence (red line) between CDFs (F̂t− of S−(t) and F̂t+ of S−(t)) of feature-wise before and after distribution, and 4. Use analytic H0

distribution to obtain p-value.

The test statistic is given by the maximal distance of the two
CDFs (stage 3).

d̂(S−(t), S+(t)) : = sup
x

∣

∣

∣
F̂S+(t)(x)− F̂S−(t)(x)

∣

∣

∣
.

Under H0 the distribution of d̂ does not depend on the data
distribution (Massey, 1951) and we can compute the p-value
analytically, serving as a normalized scale (stage 4). All steps can
be computed incrementally (Dos Reis et al., 2016).

Applying the test dimension-wise and then taking the
minimum extends the method to multiple dimensions (see
Algorithm 1). This does not take drift in the correlation into
account. It was suggested to use random projection to cope with
this problem (Rabanser et al., 2019; Hinder et al., 2022b) which,
however, might not work well in practice (Hinder and Hammer,
2023).

The kernel two-sample test (Gretton et al., 2006; Rabanser et al.,
2019) is another important candidate. It is based on the Maximum
Mean Discrepancy (MMD) which is similar to virtual classifiers:

MMD(P,Q) : = max
‖f ‖H≤1

∣

∣EX∼P[f (X)]− EX∼Q[f (X)]
∣

∣ .

In contrast to virtual classifiers, the MMD is computed
implicitly using kernel methods. For samples X1, . . . ,Xm ∼

P, Xm+1, . . . ,Xm+n ∼ Q and a kernel k, we have the estimate
M̂MDb = w⊤Kw where Kij = k(Xi,Xj) is the kernel matrix and
w = ( 1m , . . . , 1

m ,− 1
n , . . . ,−

1
n )
⊤ a weight vector.

Using the kernel two-sample test for drift detection, we again
use raw data (stage 1) coming from an arbitrary space. The
descriptor is given by the kernel matrix K (stage 2) and the score by
the MMD (stage 3). For normalization, permutation, or bootstrap

testing schemes can be used. Another approach is to use a Pearson
curve that is fitted using higher moments. Several more approaches
follow similar lines or arguments based on various descriptors or
metrics (Rosenbaum, 2005; Harchaoui and Cappé, 2007; Harchaoui
et al., 2008, 2009; Chen and Zhang, 2015; Bu et al., 2016, 2017).

As we make use of statistical tests which are valid the
drift detector is valid as well (under the same assumptions;
see Section 6). Choosing a valid split point is critical but
likely from a theoretical point of view (Hinder et al., 2021b,
2022b).

The aforementioned approaches have two main problems:
(1) the split point relative to the change point has a huge
influence on performance and (2) we face multi-testing problems,
that is, the chance of a false positive increase for more
tests. Both problems can be addressed by making use of
meta-statistics.

5.2 Meta-statistic based

So far we have been dealing with two-sample approaches.
In a sense, those are the simplest approaches as they consider
every time point in the stream separately. This leads to issues
such as the multiple testing problem, sub-optimal sensitivity, and
high computational complexity. Meta-statistic approaches try to
deal with some of these issues by not considering each estimate
separately but rather combining the values of several estimates to
get better results. To the best of our knowledge, there are only very
few algorithms that fall into this category. We will describe two
algorithms in detail.
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1: procedure KSWIN(S d-dimensional data

stream, nmax 2 current window size,

nmax 1 reference window size, nmin

minimal window size, pdetect detection

threshold)

2: Initialize Windows W1 ← [],W2 ← []
3: while Not at end of stream S do

4: x← GETNEXTSAMPLE(S)
5: W2 ←W2 + [x] ⊲ Add new sample

6: if |W2| > nmax 2 then

7: x← POP(W2) ⊲ Move sample from

current to reference window

8: W1 ←W1 + [x]
9: end if

10: if |W1| > nmax 1 then

11: POP(W1) ⊲ Drop oldest sample

12: end if

13: if |W1| > nmin then

14: p← 1
15: W′1 ← UNIFORMSUBSAMPLE(W1, nmax 2)
16: for i ∈ {1, . . . , d} do
17: w1 ← {xi | x ∈ W′1} , w2 ← {xi | x ∈ W2}

⊲ Extract i-th feature from each sample

18: pd ← TESTKS(w1,w2)
19: p← min(pd, p)
20: end for

21: if p < pdetect/d then

22: W1 ←W2

23: W2 ← [] ⊲ Reset window

24: Alert drift

25: end if

26: end if

27: end while

28: end procedure

Algorithm 1. Feature-wise Kolmogorov-Smirnov test on sliding

window (Raab et al., 2020).

5.2.1 AdWin
AdWin (Bifet and Gavaldà, 2007) stands for ADaptive

WINdowing and is one of the most popular algorithms in
supervised drift detection. It takes individual scores like model
losses or p-values as input to estimate the actual change point
(see Figure 7). The values are stored in a single growing or sliding
window S(t) (stage 1). Then for every time point s ∈ W(t), the
maximal (variance normalized) difference of means is used as a
score (stage 2 and 3):

d̂(t) = sup
s∈W(t)

∣

∣µs+(t)− µs−(t)
∣

∣ .

For Bernoulli random variables, corresponding to right and
wrongly classified, a p-value for the H0 hypothesis "classification
performance only increases" is computed (stage 4). In case
of rejection, the moment of drift is the moment of largest
discrepancy. Efficient, incremental implementations of this scheme
exist. Yet, the connection between model loss and drift is rather
vague (Hinder et al., 2023c,d) so it is questionable whether the
method is surely drift-detecting or valid.

5.2.2 ShapeDD
The Shape Drift Detector (ShapeDD; Hinder et al., 2021b) is

another meta-statistic-based drift detector. In contrast to AdWin,
it focuses on the discrepancy of two consecutive time windows, a
quantity referred to as drift magnitude (Webb et al., 2017):

σd,l,D· (t) = d(D[t−2l,t−l],D[t−l,t]).

Several choices of distances d are allowed making the method
widely applicable. Here, we will focus on MMD. The core idea is
that in the case of drift, σ not only takes on values larger than 0 but
it has a characteristic shape that depends on model parameters only
and thus can be detected more robustly (see Figure 8).

Algorithmically, the MMD is computed on two consecutive
sliding windows (stages 1–3). Then, the shape function is computed
by taking the convolution of σ̂ with a weight function w which is
given by w(t) = −1/l for−2l ≤ t < −l, w(t) = 1/l for−l ≤ t < 0
and w(t) = 0, otherwise. The points where the shape function
changes sign from positive to negative are candidate change points
which can then be checked using the usual MMD test (stage 4). All
steps can be computed efficiently in an incremental manner. As a
consequence of the shape match, most potential split points are not
considered in the first place and the candidate points are usually
far apart. This reduces the average computational complexity of the
method and the chance of encountering false alerts due to multi-
testing while also preventing finding the same drift event twice.
Furthermore, as the candidate points coincide with the change
points up to a known shift, ShapeDD also provides the precise
change point (Hinder et al., 2021b) which increases the statistical
power of the validation step. This is in contrast to most other
two-window approaches. Together with the validity of the kernel
two-sample test, this shows that themethod is valid and surely drift-
detecting for all distribution processes with abrupt drifts that are
sufficiently far apart.

However, the characteristic shape is, in fact, an artifact that
results from the way the sampling procedure interacts with a single
drift event. Thus, it is no longer present if we consider a different
windowing scheme (stage 1), several drift events in close succession,
or gradual drift. One way to solve the latter issue is to make use
of even more advanced meta-statistics that analyze the entire data
block at once.

5.3 Block-based

In contrast to all other drift detectors considered so far, block-
based methods do not assume a split of the data into two windows
at any point. Instead, they take an entire data segment into account
and analyze it at once.

5.3.1 Independence-test-based
Dynamic Adaptive Window Independence Drift Detection

(DAWIDD; Hinder et al., 2020) is derived from the formulation
of concept drift as statistical dependence of data X and time T and
thus resolves drift detection as a test for statistical independence.
Here, we will make use of the HSIC test (Gretton et al., 2007) which
is a kernel method similar to MMD. However, instead of searching
for a map that discriminates the two datasets, it searches for a pair

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1330257
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Hinder et al. 10.3389/frai.2024.1330257

FIGURE 7

Visualization of AdWin drift detection. 1. Collect data (S(t) values between 0 and 1; red line marks drift), 2. Compute moving means (µs−(t) blue µs+(t)

green), 3. Find the largest di�erence, and 4. Use analytic H0 distribution to obtain p-value.

Permutation

FIGURE 8

Visualization of ShapeDD. 1. Compute MMD for all time points (σ̂ , dotted line shows theoretically expected shape σ , red line indicated time point of

drift), 2. Match obtained shape with theoretically expected one (σ̂ ∗w), 3. Candidate points are where the match score changes from positive to

negative (black line is 0, dots mark candidates), and 4. Compute p-values using MMD test at candidate points.

of maps that align well, that is, supf :T→R,g :X→R
cov(f (T), g(X))

where f and g are found using kernel methods. The test requires a
single collection of data points and thus a sliding window (stage 1).
If available, the real observation time points can be used; otherwise,
it was suggested using the sample id, that is, sampleXi was observed
at time Ti = i. Using HSIC we compute the kernel matrix of
data KX and time KT as descriptor (stage 2). The HSIC statistic
is then a measure of the dependence of data X and time T and
is estimated by trace(KXHKTH), where H = I − n−111⊤ is the
kernel-centering matrix (stage 3). Similar to MMD, the HSIC can
be normalized using higher moments which allow fitting a Gamma
distribution (Gretton et al., 2007) or a permutation test approach
(stage 4). Due to better performance, we make use of the latter.
Notice that if the actual observation time is not available, we can
use the same time kernel matrix KT and thus precomputeHKTH as
well as the permutated versions resulting in a drastic reduction in
computation time.

DAWIDD makes the fewest assumptions on the data
or the drift. This allows for detecting more general drifts
but comes at the cost of needing more data—a usual
complexity-convergence trade-off. As DAWIDD is again
a statistical test, it is also universally valid and surely
drift-detecting.

5.3.2 Clustering-based
Clustering offers another block-based approach that

structurally falls between independence-test-based and two-
sample-test-based approaches. Such methods cluster time points
into intervals such that the corresponding data points also form
clusters. For the HSIC test, one considers kernalized correlation
which can be thought of as fuzzy cluster assignments. In contrast,
in clustering, each data point is assigned to a single cluster, which,

however, is not predefined by the windows as in the two-sample
case. Using a distributional variance measure V , such algorithms
solve the following optimization problem for a predefined
number n:

arg min
t0<···<tn

n−1
∑

i=0

w(ti+1 − ti)V(D(ti ,ti+1]),

where T = (t0, tn] and w is a weighting function.
An instantiation of this approach was proposed

by Harchaoui and Cappé (2007) using kernel-variance
V(P) = sup‖f ‖H≤1 varX∼P(f (X)) which can be estimated by
n−1trace(KXH) (Arlot et al., 2019). The clustering problem
can then be solved using dynamic programming. The resulting
algorithm is commonly called Kernel Change-point Detection
(KCpD). Later on, Arlot et al. (2019) introduced a heuristic to
estimate the number of change points n using model selection,
that is, separating two clusters decreases the objective significantly
while splitting one cluster does not.

From a more algorithmic point of view, KCpD searches for
blocks along the main diagonal of the kernel matrix so that the
mean value of the entries inside the blocks is maximized. The
number of blocks is then chosen such that more blocks no longer
increase that value significantly. Other algorithms implement
similar ideas, for example, Keogh et al. (2001).

Since KCpD is a mainly heuristic method, it is hard to make
any statement about its limiting behavior. However, the statistic
of the 1-split point case is very similar to the one considered
by Hinder et al. (2022b). Furthermore, it is well known that in
many cases, kernel estimates have uniform convergence rates. It
is thus reasonable that one can derive universally valid surely
drift-detecting methods that make use of the same ideas.
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FIGURE 9

Illustration of used datasets (default parameters, original size). Concepts are color-coded (Before drift: blue, after drift: green).

5.3.3 Model-based
In addition to the classical kernels which are predefined and not

dataset-specific, we can also construct new kernels using machine
learning models. In Hinder et al. (2022b), Random Forests with
a modified loss function that is designed for conditional density
estimation, so-called Moment Trees (Hinder et al., 2021c), are
used to construct such kernels. To do so, the model is trained to
predict the time of observation T from the observation X. The
resulting kernels show drastic improvements in drift detection
tasks (Hinder et al., 2022b). We can also apply this procedure
directly to obtain model-based block-based approaches that can
be thought of as an extension of the virtual-classifier-based two-
window approaches to continuous time by removing the time
discretization. The relation between the resulting approaches to
DAWIDD is then very similar to the relation of MMD to the
model-based two-window approaches like D3.

6 Analysis of strategies

So far, we categorized different drift detection schemes and
described them according to the four stages discussed in Section 4.
In this section, we will consider the different strategies on a more
practical level and investigate experimentally in which scenarios
which drift detection method is most suitable. For this purpose,
we identified four main parameters that describe the data stream
and the drift we aim to detect: We investigate the role of the
drift strength, the influence of drift in correlating features, the
data dimensionality, and the number of drift events. To cover
the strategies described in Section 5, we select one representative
technique per category. As these approaches are structurally similar,
from a theoretical viewpoint they carry the same advantages and
shortcomings. We will present and discuss our findings in the
remainder of this section.

6.1 Experimental setup

6.1.1 Datasets
For our experiments, we consider three 2-dimensional,

synthetic datasets with differently structured abrupt drift (see
Figure 9). We use modifications of these datasets to evaluate the
properties of the discussed drift detection methods.

1. Uniformly sampled from the unit square, drift is introduced
by a shift along the diagonal. Intensity is shift length; noise in
additional dimensions is uniform.

2. Data sampled from a Gaussian (normal) distribution with
correlated features, drift flips the sign of the correlation.
Intensity is correlation strength; noise in additional dimensions
is Gaussian.

3. Data sampled from two overlapping uniform squares, drift
rotates by 90o. Intensity is inverse to the size of overlap; noise
in additional dimensions is uniform.

Using these base datasets, we generate data streams consisting
of 750 samples with drift times randomly picked between t = 100
and t = 650 by varying the following parameters:

• Intensity, default is 0.125.
• Number of drift events, default is 1.
• Number of dimensions by adding non-drifting/noise

dimensions, default is 5, that is, 3 noise dimensions.

6.1.2 Methods3

Wemake use of D34 (usedmodel: Logistic Regression, Random
Forest), KS, MMD, ShapeDD, KCpD,5 and DAWIDD. For MMD,
ShapeDD, KCpD, and DAWIDD, we used the RBF kernel and 2,500
permutations. This way we cover every major type and sub-type
(see Section 5).

For KCpD, we use the extension proposed in Arlot et al. (2019)
and choose the smallest α-value to detect a drift as a score. All other
methods provide a native score.

The stream is split into chunks/windows of 150 and 250
samples with 100 samples overlapping. Two-sample (split point is
midpoint) and block-based approaches are applied to each chunk.
Meta-statistic approaches are applied to the stream; then, the
chunk-wise minimum of the score is taken.

3 The experimental code can be found at: https://github.com/

FabianHinder/One-or-Two-Things-We-Know-about-Concept-Drift.

4 We use the implementation provided by the authors: https://github.com/

ogozuacik/d3-discriminative-drift-detector-concept-drift.

5 We use the implementation provided by Jones and Harchaoui (2020) and

Jones et al. (2021).
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FIGURE 10

Drift detection performance for various intensities, number of dimensions, and number of drift events.

6.1.3 Evaluation
We run each setup 500 times. The performance is evaluated

using the ROC-AUC which measures how well the obtained scores
separate the drifting and non-drifting setups. The ROC-AUC is
1 if the largest score without drift is smaller than the smallest
score with, it is 0.5 if the alignment is random. Thus, the ROC-
AUC provides a scale-invariant upper bound on the performance
of every concrete threshold. Furthermore, the ROC-AUC is not
affected by class imbalance and thus a particularly good choice as
the number of chunks with and without drift is not the same for
most setups.

6.2 Results

6.2.1 Drift intensity
We evaluate the detectors’ capability to detect very small

drifts. From a theoretical perspective, we expect that smaller

drifts are harder to detect. However, the notion of small
here depends on the used detector, for example, the model
for D3 or the kernel for MMD, DAWIDD, and KCpD, as
well as potential preprocessing (Rabanser et al., 2019; Vaquet
et al., 2021; Hinder et al., 2022b; Hinder and Hammer,
2023).

Our results are visualized in Figure 10. As expected, all
methods improve their detection capabilities with increasing drift
strengths. ShapeDD performs particularly well. Since it makes
use of MMD to test for drift, this implies that the meta-
heuristic is quite important. Also for D3, we observe the predicted
interplay of model and dataset: For simple datasets, Logistic
Regression performs better, and for more complex datasets we
need a more advanced model. We will discuss both points later
on in more detail. DAWIDD and KCpD also perform quite
well, but KCpD requires larger intensities. The global variant
of KCpD outperforms all online algorithms closely matched
by ShapeDD.
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FIGURE 11

E�ect of total number of dimensions or choice of split point for various drift intensities and drift detectors. Graphic shows median (line),

25%− 75%-quantile (inner area), min−max-quantile (outer area), and outliers (circles).

Thus, we suggest incorporating as much domain knowledge
into the choice or construction of the descriptor as possible.
Furthermore, we recommend the usage of meta-statistic or block-
based methods.

6.2.2 Drift in correlating features
Drift can affect the correlation or dependency of several features

only, in which case it cannot be detected in the marginal features.
We captured this phenomenon in the Gauss and two-overlap
datasets. In these cases, KS shows a performance close to random
chance and D3 with Random Forests (an axis-aligned model)
shows similar issues that cannot be observed for the kernel-based
methods.

We thus advise only using methods that make heavy use of
feature-wise analysis if drift in the correlations only is either less
relevant or very unlikely. If this is not an option, ensemble-based
drift detectors that combine feature-wise and non-feature-wise
approaches may provide an appropriate solution.

6.2.3 Number of drift events
The number of drift events per time is another relevant

aspect in practice. Usually, this number per window is assumed
to be comparably small which need not be true in practice.
Figure 10 shows the results for different numbers of change points,

alternating between two distributions. All drift detectors suffer in
this case, which is particularly interesting for global KCpD.

We thus advise making use of block-based drift detectors if
several drift events are to be expected. In particular, we suggest
not to make use of meta-statistic-based methods unless they can
explicitly deal with the setup.

6.2.4 High dimensional data streams
In practice, data are frequently high dimensional with drift only

affecting a few features which may cause issues. In Figure 10, we
present the results for runs on different numbers of dimensions.
Observe that all methods suffer heavily from high dimensionality.
For the kernel-based methods, this can be explained by the choice
of the RBF kernel, also explaining why global KCpD performs
quite poorly. In the case of D3 with Random Forest, this result
is somewhat surprising due to the inherent feature selection of
tree-based methods. Yet, on Gauss where trees have a harder time
exploiting the structure, the method suffers the most.

We further analyzed the behavior in the case of the uniform
dataset with a single drift in the middle and 250 samples (see
Figure 11). As can be seen, for D3 and MMD, the drift becomes
harder to detect while KS suffers from the multi-testing problem,
that is, drift-like behavior emerging by random chance.

Thus, we advise choosing appropriate preprocessing techniques
or descriptors to select or construct suited features. Furthermore,
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FIGURE 12

Drift detection performance for various models used by D3.

in case of high dimensionality with high cost in case of false
alarms, one should refrain from using drift detectors that operate
feature-wise.

6.2.5 E�ect of split point
Meta-statistics and two-window-based methods differ in

that the former optimizes the used split point. We study
this effect using the uniform dataset with 250 samples, either
with optimal or with random split points (see Figure 11).
We observe a significant increase in performance which is
also more reliable in case of a correct split point. This fits
the considerations in Hinder et al. (2021b). We thus advise
the user to investigate options to preselect a good candidate
split point, either through prior knowledge or by choosing an
appropriate algorithm.

6.2.6 D3 model choices
For D3, the metric is implicitly given by the model

making it interesting to study. We consider D3 with different
models: Logistic Regression (log.reg.), Random Forests (RF),
Extra Tree Forests (ET), and k-Nearest Neighbor classifier
(k-NN; see Figure 12).

The performance is strongly impacted by the model and its
interplay with the dataset, for example, k-NN is best on Gauss but
worst on uniform. Yet, similar models behave alike, for example,
ET and RF. Interestingly, feature selection cannot be observed or is
ineffective.

Thus, models pose a way to integrate prior knowledge into
the detection. This result matches the observations of Hinder
et al. (2022b) where the authors argued that the descriptor
(stage 2) is more important than the metric (stage 3) derived
from it.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2024.1330257
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Hinder et al. 10.3389/frai.2024.1330257

FIGURE 13

Drift detection performance of various model/loss-based approaches. Experiments use di�erent scale for intensity than previous experiments.

6.2.7 Loss-based approaches
Finally, we also considered outlier- and density/loss-based

approaches (Pedregosa et al., 2011): one-class-SVM (SVM; RBF
kernel), Local Outlier Factor (LOF; k = 10), Isolation Forests (IF),
Kernel-Density Estimate (KD; RBF kernel), and Gaussian Mixture
Model [GMM; mixture components ≤ 10 cross-validation (CV)
or Dirichlet prior (Bayes)]. We use either the outlier score or the
sample probability as the drift score. We use the same datasets
as before. Here, we use the first 100 samples for training, and
the remainder is used for evaluation (see Figure 13). Due to poor
performance, we increased the default intensity to 0.5. Otherwise,
the results are similar to the other drift detectors.

We thus found additional empirical evidence for the results
of Hinder et al. (2023d) which challenge the suitability of loss-
based approaches for drift detection from a formal mathematical
perspective and therefore suggest the reader not to make use of
loss-based approaches.

7 Guidelines and conclusion

In this study, we provided definitions of drift and drift
detection and discussed the relevance of unsupervised drift
detection in the motoring setting. Furthermore, we categorized
state-of-the-art approaches and analyzed them based on a
general, four-staged scheme (Lu et al., 2018). Table 1 and Figure 4
provided a condensed summary of the proposed taxonomy
and summarize how different methods are implemented
according to the common staged scheme as visualized
in Figure 2.

In addition, we analyzed the different underlying strategies
on simple data sets to showcase the effects of various parameters
reducing the effect of other dataset-specific parameters. From
these experiments, we can derive the following guidelines for
the selection and usage of drift detection schemes in monitoring
settings:

• A main finding is that as much domain knowledge as possible
should be incorporated when designing drift detection
schemes. This concerns selecting appropriate preprocessing
techniques, constructing and engineering suitable features,
and choosing fitting descriptors in stages 1 and 2 for the
process.

• Over all experiments, we found that it is advisable to use meta-
or block-based methods.

• Choosing good split points is crucial for obtaining good
detection capabilities.

• A feature-wise analysis should only be performed if it is
expected that the drift does not inflict itself in correlations.
Otherwise, relying onmulti-variant techniques seems to be the
better solution.

• When working with high dimensional data, one should avoid
using dimension-wise methodologies, especially if false alarms
are costly in the considered application. It might be beneficial
to consider feature selection approaches.

• If multiple drifts are expected, applying block-based detectors
is particularly suitable.

• Finally, but maybe most importantly loss-based strategies
should be avoided when the target of the drift detection is
monitoring for anomalous behavior.
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Note that our datasets are comparably simple for
the sake of controlling a number of parameters. While
one might argue that the generality and universality of
our findings are of course limited, we think that these
controlled experiments provide a first set of guidelines
that are valuable as a starting point for developing reliable
monitoring pipelines. In particular, we were able to confirm
the theoretical considerations of Hinder et al. (2023d) in our
experiments.

This study is the first part of a series of studies in which we also
cover topics that are closer related to the analysis of concept drift
like drift localization and drift explanation. The full series can be
found on ArXive (Hinder et al., 2023b).
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