
TYPE Methods

PUBLISHED 16 April 2024

DOI 10.3389/frai.2024.1339193

OPEN ACCESS

EDITED BY

Rashid Mehmood,

King Abdulaziz University, Saudi Arabia

REVIEWED BY

Inger Fabris-Rotelli,

University of Pretoria, South Africa

Massimo Salvi,

Polytechnic University of Turin, Italy

*CORRESPONDENCE

Alexander Broll

alexander.broll@ukr.de

RECEIVED 15 November 2023

ACCEPTED 19 March 2024

PUBLISHED 16 April 2024

CITATION

Broll A, Rosentritt M, Schlegl T and

Goldhacker M (2024) A data-driven approach

for the partial reconstruction of individual

human molar teeth using generative deep

learning. Front. Artif. Intell. 7:1339193.

doi: 10.3389/frai.2024.1339193

COPYRIGHT

© 2024 Broll, Rosentritt, Schlegl and

Goldhacker. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

A data-driven approach for the
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Background and objective: Due to the high prevalence of dental caries, fixed

dental restorations are regularly required to restore compromised teeth or

replace missing teeth while retaining function and aesthetic appearance. The

fabrication of dental restorations, however, remains challenging due to the

complexity of the human masticatory system as well as the unique morphology

of each individual dentition. Adaptation and reworking are frequently required

during the insertion of fixed dental prostheses (FDPs), which increase cost and

treatment time. This article proposes a data-driven approach for the partial

reconstruction of occlusal surfaces based on a data set that comprises 92 3D

mesh files of full dental crown restorations.

Methods: A Generative Adversarial Network (GAN) is considered for the given

task in view of its ability to represent extensive data sets in an unsupervised

manner with a wide variety of applications. Having demonstrated good

capabilities in terms of image quality and training stability, StyleGAN-2 has

been chosen as the main network for generating the occlusal surfaces. A 2D

projection method is proposed in order to generate 2D representations of the

provided 3D tooth data set for integration with the StyleGAN architecture. The

reconstruction capabilities of the trained network are demonstrated by means

of 4 common inlay types using a Bayesian Image Reconstruction method. This

involves pre-processing the data in order to extract the necessary information of

the tooth preparations required for the used method as well as the modification

of the initial reconstruction loss.

Results: The reconstruction process yields satisfactory visual and quantitative

results for all preparations with a root mean square error (RMSE) ranging from

0.02mm to 0.18mm. When compared against a clinical procedure for CAD inlay

fabrication, the group of dentists preferred the GAN-based restorations for 3 of

the total 4 inlay geometries.

Conclusions: This article shows the e�ectiveness of the StyleGAN architecture

with a downstream optimization process for the reconstruction of 4 di�erent

inlay geometries. The independence of the reconstruction process and the initial

training of the GAN enables the application of the method for arbitrary inlay

geometries without time-consuming retraining of the GAN.
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1 Introduction

Between 1990 and 2017, oral and headache disorders held the

top two positions in the Global Burden of Disease Study ranking

for level 3 causes (James et al., 2018). Medical causes of diseases

can be categorized into different levels based on their complexity

and specificity. Dental caries, commonly known as tooth decay, is

the principal cause of dental treatment for oral disorders and its

high prevalence is associated with the necessity of the fabrication

and insertion of FDPs. FDPs include partial crowns, crowns, and

multi-unit FDPs, which are typically made from ceramics, alloys

or resin-based materials. These restorations play a crucial role in

maintaining the correct function of the masticatory system, which

encompasses both static contacts in static occlusion and dynamic

contacts during excursive movements of the lower jaw with teeth

in contact. Static occlusion denotes the point of contact between

teeth when the jaw is in a closed and motionless position. To

produce well-fitting restorations that accurately reproduce static

contacts between the teeth of the upper and lower jaw, 3D scans and

CAD/CAM systems are commonly utilized. However, simulating

dynamic occlusion in the dental laboratory and transferring the

patient’s individual movements into an ideal geometry of the FDP

is a complex task.

Especially for smaller restorations, the design of FDPs is

currently based on a functional analysis of the patient, which

allows the parametrization of mechanical or digital articulators to

verify that the produced FDP is free of interference throughout

dynamic occlusion. This method is susceptible to errors due to

the complexity and individuality of the masticatory system. These

errors may result in occlusal discomfort, temporomandibular

disorders, or the failure of the inserted FDP (Preis et al., 2014;

Schnitzhofer et al., 2023). In the dental domain, functional analysis

refers to a comprehensive examination and assessment of the

dynamic interactions among the teeth, jaw joints, muscles, and

other oral structures during various activities like biting, chewing,

and speaking. Digital methods of recording the jaw movements

are available (Revilla-León et al., 2023) but costly and therefore

rarely employed. Consequently, insertion of FDPs often requires

adaptation and reworking. These steps result in elevated treatment

cost and duration alongside a reduction in overall stability due

to the partial weakening of the material. Adverse effects include

surface damage, increased roughness, and the occurrence of

fractures within the FDP.

1.1 State of the art of digital dental
restorations

Various commercial software applications are available for

designing FDPs such as CEREC by Dentsply Sirona or CARES R©

by Straumann R© as well as ongoing research employing non

data-driven conventional reconstruction techniques (Blanz et al.,

2004; Zheng et al., 2011; Jiang et al., 2016). For example,

Blanz et al. (2004) utilized the Bayesian maximum posterior

probability in a non-iterative process to calculate an optimal

reconstruction regarding fitting quality and plausibility. In contrast,

Jiang et al. (2016) employed an iterative deformation approach in

which salient features were identified by applying Morse theory

(Matsumoto, 2002) and a standard tooth was modulated through

iterative Laplacian surface editing (Sorkine et al., 2004) and mesh

stitching. The proposed method is versatile and applicable to a

range of tooth types including incisors, canines, premolars, and

molars. Zheng et al. (2011) proposed a similar method involving

morphing a standard tooth by extracting the contours of the cavities

allowing a set of feature points to be matched on an available

tooth preparation.

In light of the still existing problems in the quality of

reconstruction, a data-driven approach based on deep learning can

be pursued. Although deep learning has found broad applications

in segmentation and classification within dentistry (Le Son et al.,

2018; Wu et al., 2018; Lai et al., 2021; Rajee and Mythili, 2021),

the use of generative network architectures for the generation and

reconstruction of human teeth has been explored by only a few

research groups. Derived from a 3D mesh object as the primary

input format, the standard transformation of the raw data typically

entails converting the data into one of two formats. The widespread

availability and accessibility of 2D generative network architectures

tailored for image inference (Isola et al., 2017; Karras et al., 2017,

2020a,b; Pandey et al., 2020; Ding et al., 2021; Lei et al., 2022;

Tian et al., 2022c) have prompted the adoption of a 2D depth map

representation for the data in various studies (Hwang et al., 2018;

Yuan et al., 2020; Tian et al., 2021, 2022a,b).

Hwang et al. (2018), Yuan et al. (2020), and Lee et al. (2021)

addressed the tooth reconstruction problem using a conditional

GAN based on the pix2pix (Isola et al., 2017) architecture. In

this model, the encoder learns a latent representation of the

input data, which is then used to directly generate the full

tooth reconstruction.

Tian et al. (2021) extended their previously proposed model

(Yuan et al., 2020) in order to develop a dental inlay restoration

framework for a total of 5 different inlay types. It employs a

pix2pix (Isola et al., 2017) generator with a wasserstein loss

(Yang et al., 2018), two discriminators, and a groove parsing

network. The network is trained on very specific preparation types

and its performance with other preparation types has not yet

been validated.

Tian et al. (2022a) used a similar approach for the

reconstruction of full occlusal surfaces with a dilated convolutional-

based generative model and a dual global-local discriminative

model. The proposed generative model utilizes dilated convolution

layers to generate a feature representation that preserves the clear

tissue structure, while the dual discriminative model employs two

discriminators to jointly assess the input. The local discriminator

only focuses on the defective teeth to ensure the local consistency

of the output. The global discriminator evaluates whether the

generated dental crown is coherent as a whole by examining the

missing and adjacent teeth.

In their latest article, Tian et al. (2022b) proposed a network

that employs a two-stage GAN process. In the first stage, the

network generates the basic shape of the occlusal surface that

satisfies the spatial positional relationship between the prepared

jaw, opposing jaw, tooth type label, and gap distance between the

two jaws. In the second stage, the network refines the details of the

occlusal surface by incorporating information about the fossa and

occlusal fingerprint.
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While the previously mentioned studies used 2D

representations of the 3D data for the implementation of the

restoration methods, 3D data can be directly utilized. The

suitability of the 2D depth map representation is restricted by

the intrinsic characteristics of the data, limiting its suitability

to a specific maximum quantity of teeth in the input data.

More precisely, studies utilizing 2D data representations have

concentrated on reconstructing the occlusal surface of a single

tooth, with a maximum of three teeth per input image. The

targeted tooth preparations for restoration were accompanied

by two adjacent teeth in the same depth map, along with three

antagonists and the gap distance between the two jaws in terminal

occlusion (Hwang et al., 2018; Yuan et al., 2020; Tian et al., 2021),

each saved as a separate image. Moreover, Tian et al. (2022a,b)

broadened the scope of input data by integrating extracted dental

biological morphology, including features such as the occlusal

groove and the occlusal fingerprint (Kullmer et al., 2009). The

ground truth in these studies consisted of single crowns designed

by a technician.

When dealing with input data that involves a higher quantity,

type, or combination of teeth, such as an entire upper or lower

jaw, the practicality of the 2D representation diminishes due to

data loss. This loss is primarily attributed to undercuts in the

data that cannot be adequately captured through linear projection

methods. As a result, incorporating a 3D representation proves

beneficial. Zhu et al. (2022) and Feng et al. (2023) advocated for the

utilization of transformer networks in combination with dynamic

graph convolutional neural networks (Wang et al., 2018). The input

data was represented as a point cloud. Chau et al. (2023) and Ding

et al. (2023) opted for a 3D-GAN architecture (Wu et al., 2016).

While the exact data format was not specified, voxelized points

are assumed to be utilized due to the employed architecture (Wu

et al., 2016). The selection of teeth for reconstruction varies, ranging

from an arbitrary tooth (Zhu et al., 2022) to specific molars (Chau

et al., 2023; Ding et al., 2023) or incisors (Feng et al., 2023). Unlike

2D methods, the input data is no longer confined to the occlusal

surfaces of a limited number of teeth. Instead, it allows for the

inclusion of the entire upper or lower jaw (Zhu et al., 2022; Chau

et al., 2023). As of now, no study has employed the complete upper

and lower jaw as input data, resulting in information containment

limited to the respective jaw.

1.2 Summary

In this article, a data-driven approach for the partial

reconstruction of occlusal surfaces is proposed. The use of a

GAN (Goodfellow et al., 2014) is pursued. Since the stability of

the training process of immature network architectures remains

an ongoing problem, StyleGAN-2 (Karras et al., 2020b) is used

as the main network for generating the occlusal surfaces. It is

a broadly available and maintained state of the art architecture

that shows great capabilities in terms of output quality and

stability of the training process. To integrate the data set that

comprises 92 3D mesh files of single molar crowns with the

StyleGAN architecture, a normalized 2D projection method is

proposed. The trained network’s reconstruction abilities are then

demonstrated for 4 common inlay types using a Bayesian Image

Reconstruction method (Marinescu et al., 2020). For this purpose,

the data is pre-processed to extract the necessary information of

the tooth preparations required for the reconstruction and the

initial loss is modified. Finally, the superior quality of the GAN-

based restorations against a clinical procedure for CAD inlay

fabrication is demonstrated. The results indicate the effectiveness

of the proposed approach for the partial reconstruction of

occlusal surfaces.

Differing from the aforementioned approaches, our method

decouples individual components of the process, such as the 2D-

projection, teeth generation, and reconstruction. This separation

aims to simplify the application of further enhancements to each

component. In the event of external developments, such as a new

StyleGAN release, the modular nature of our approach allows for

updates to maintain state-of-the-art performance.

In contrast to the inlay restoration network proposed by Tian

et al. (2021), our method diverges by not being initially trained as

a completion network. Instead, it functions as a generative network

without a predefined target. The downstream optimization-based

reconstruction method is not part of the training process, enabling

the use of arbitrary restoration types. The employed GAN is thus

capable of handling a diverse range of inlay geometries without

necessitating time-consuming retraining.

Both approaches share a common foundation in the initial

transformation of the tooth based on its bounding box. However,

in the method proposed by Tian et al. (2021), the optimization

of the spatial information contained in the depth map is achieved

through the optimization of the projection parameters with respect

to the resulting image’s entropy. In our approach, we leverage the

principle components analysis (PCA) of the occlusal surface to

identify an optimal projection plane that maximizes the spatial

information in the projection.

Moreover, unlike the data quantity integrated by the previously

discussedmethods (Hwang et al., 2018; Yuan et al., 2020; Tian et al.,

2021, 2022a,b), our proposed method utilizes a dataset comprising

92mesh files of singlemolar crowns. This showcases the proficiency

of the 2D methodology in restoring varying extents of the occlusal

surface with a minimal amount of data.

2 Materials and methods

The reconstruction of the occlusal surfaces is achieved by

means of a 2 step process. This process includes a generating

component with the basic knowledge of the morphology of teeth

and a reconstructing component that uses the prior for the creation

of unknown partial occlusal surfaces based on the remaining

tooth data.

In the first step, the StyleGAN-2 (Karras et al., 2020a,b) network

is trained using the available data. This enables the ability to

generate a wide variety of occlusal surfaces. Adam (Kingma and

Ba, 2014) is used as the optimization algorithm for both, the

generator and discriminator network with α = 0.002, β1 = 0.0

and β2 = 0.99 without any learning rate decay or ramp down

(Karras et al., 2017). The minibatch size for the given resolution

is set to 32, the augmentation (Karras et al., 2020a) is disabled

and the weight for the path length regularization term γpl is
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set to 10 with a decay coefficient of βpl = 0.99. The training

process concludes once 7× 105 images have been shown to the

discriminator. A comprehensive description of the style-based

GAN architecture is presented by Karras et al. (2017, 2020b). The

data is split into a training and test data set that comprise 89 and

3 samples respectively. The training data is mirrored with respect

to the vertical axes of the images yielding a total of 178 training

images. The optimizer parameters are determined according to

the recommendations of the original authors (Karras et al., 2017),

while the remaining hyperparameters are selected to optimize the

reconstruction performance of the trained generator.

In a second step, the partial reconstruction of the teeth is

handled by a downstream optimization process that is derived

from the Bayesian Image Reconstruction method as proposed by

Marinescu et al. (2020). Here, the fixed generator G(w) of the fully

trained StyleGAN-2 network serves as the underlying model for the

optimization process. The input latent vector w is used to control

the features of the generated occlusal surfaces xsynth = G(w). The

process employs an Adam (Kingma and Ba, 2014) optimizer with

α = 0.05, β1 = 0.9 and β2 = 0.999.

In order to apply the reconstruction method, a complete image

with size w× h and a dedicated binary maskM of the same size are

required. During the reconstruction process, this mask is applied to

both the true and the synthesized images xsynth according to

xcor = fcor(xcln) = xcln ⊙M . (1)

The masking operation fcor is characterized by the Hadamard

product of the binary mask M ∈ {0, 1}w×h and the desired clean

image xcln = G(w∗) ∈ Rw×h. The Bayesian maximum a posteriori

estimate over the latent vector w ∈ R512×nres is depicted as w∗

(Marinescu et al., 2020).

The StyleGAN proprietary parameter nres is dependent on

the resolution of the used images and can be calculated with

Equation 2.

nres = 2(log2(w)− 1) ∀ w = h ∧ log2(w) ∈ N 6=0 . (2)

The solution to the optimization problem x∗
cln

can then be

merged with the masked image according to Equation 3.

xmerge = xcor + (M − 1)abs ⊙ x∗cln . (3)

The (·)abs operator represents a copy of the argument matrix

with all element-wise absolute values and 1 denotes an all-ones

matrix of the same size asM.

2.1 Creation of a 2D tooth data set

In order to utilize the StyleGAN network architecture, the 3D

mesh data needs to be projected into the 2D image spaceX ∈ Rw×h

in a normalized and repeatable manner. This involves normalizing

the 3D orientation of the object followed by a 2D projection.

2.1.1 Normalization of the 3D orientation
The normalization process consists of 2 essential steps. The

first step aims to achieve independence of subsequent processing

steps from the underlying intrinsic coordinate systems, which

may vary due to changes in the used 3D data retrieval method.

This enables identical teeth with different coordinate systems to

produce identical results. A second step focuses on improving the

orientation of the occlusal surface to ensure optimal data retention.

To achieve independence of the underlying coordinate system,

the orientation of the body’s bounding box is utilized. This box

is defined as a cuboid with a minimum volume to encompass all

points of the associated body. The orientation of the bounding box

is determined by the rotation matrix Rbb with respect to the initial

coordinate system. The tooth, represented by the points P0, can

then be transformed using the inverse rotation matrix according to

P = R−1
bb

P0 . (4)

Figures 1A, B illustrate the top view of the tooth prior to

and after the transformation in Equation 4. At this point, the

transformed tooth’s top view does not uniformly depict the occlusal

surface as it lacks proper rotation around the x and y axes. The

z-axis is represented by a blue arrow for reference.

Therefore, the second step is needed to increase the number of

points that define the occlusal surface in the top view of the tooth by

means of a second transformation. Due to the complex geometry of

the occlusal surface, its orientation is approximated by an optimal

fitting plane

axi + byi + czi = d ,

nTpi = d .
(5)

The parameters of the plane can be obtained by performing

a principal component analysis on a subset of points P

that characterize the occlusal surface (Jacquelin, 2011). The 2

eigenvectors of the covariance matrix KPiPi with the largest

associated eigenvalues v1 and v2 define the orientation of the plane

passing through the mean value of the point setµP. Therefore, each

point on the plane can be calculated according to

pi = µP + r1v1 + r2v2 , (6)

where ri ∈ R denotes an arbitrary real number and the normal

vector of the plane n according to Equation 5 is represented by

the eigenvector with the smallest associated eigenvalue v3. Finally,

substituting Equation 6 into Equation 5 with n = v3 yields the final

equation of the plane

vT3 pi = vT3µP . (7)

The inverse of the plane’s rotation matrix can now be used to

perform a rotation of the tooth with respect to the initial xy-plane

while leaving the z rotation constant according to

P = R−1
P P0 . (8)

The rotationmatrix is calculated based on the orientation of the

plane with Equation 9.

RP =

[

xF

||xF||2
,

yF
||yF||2

,
zF

||zF||2

]

,

xF =
[

1, 0, zP(1, 0)− zP(0, 0)
]T

,

yF =
[

0, 1, zP(0, 1)− zP(0, 0)
]T

,

zF = xF × yF .

(9)
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A B C

FIGURE 1

Representation of the 3 orientation stages of a tooth during the normalization process. The upper row shows the views with the bounding box and

the planes that are defined by a subset of the occlusal surface points according to Equation 7. (A) Initial orientation of the tooth with the associated

bounding box. It can be seen that the bounding box is not aligned with the coordinate system. (B) Orientation after the bounding box transformation

according to Equation 4. (C) Orientation after the subsequent plane rotation according to Equation 8.

By solving Equation 5 for z, the function zP(x, y) can be

obtained. The resulting plane and the subsequent transformation

can be seen in Figures 1B, C.

As already mentioned, the plane to describe the orientation

of the occlusal surface is calculated based on a subset of points

to reduce noise and improve the final position of the tooth. After

the bounding-box dependent pre-rotation of the tooth according

to Equation 4, the intrinsic normal vectors of the occlusal surface

point in the positive z-direction. Therefore, their respective z

components can be used to obtain the point subset P(nz,i > nz,t)

for the calculation of the plane. Figure 2 depicts the top view of

the resulting rotated teeth for different threshold values ranging

from 0.1 to 0.9 with nz,t = 0.9 yielding the best visual results.

Namely, the respective point subsets show that the points assigned

to the maxima of the cusps as well as the minima of the fossa

are significant for determining a plane that accurately captures the

overall orientation of the occlusal surface.

2.1.2 Dimensionality reduction
The next step involves projecting the normalized 3D model

of the tooth into a 2D image space to generate a depth map of

the occlusal surface. The projection plane is positioned parallel

to the xy plane of the normalized model. The final projections

have a resolution of 256 × 256 with a bit depth of 8 bits,

which allows for possible values ranging from 0 to 255 for every

pixel. The selected resolution shows a good compromise between

the duration of the training process and a sufficiently accurate

representation of the data. The size of the quadratic projection

plane in mm is determined by the maximal expansion in the

x and y direction of the entire data set with an additional

positive offset to ensure that the outer contour of the largest

tooth does not touch the borders of the image. To normalize the

position of the tooth, it is centered inside the projection plane.

Additionally, the z position of every point is normalized using

Equation 10.

pi = pi,0 + [0, 0, znorm − zmax]
T ∀ i ∈ [1, n] . (10)

The global parameter znorm is fixed for the whole data set. The

maximum z direction for the respective tooth is represented by

zmax. To achieve maximal spatial resolution, the position of the

projection plane is determined by the new value of zmax = znorm.

The projection of each individual pixel on the grid is then executed

according to Equation 11.

xi,j =







255

znorm
max
z

zi,j ∃ zi,j > 0

0 (∄ zi,j ∈ R) ∨ (zi,j ≤ 0)
,

∀ i, j ∈ [0, 255] .

(11)

A single pixel is represented by xi,j and the corresponding

xy-coordinates of the image are represented by xi , yi. The grid-

coordinate dependent distance z(xi, yj) is depicted as zi,j. Namely,

this process captures the surface of a given object while neglecting

all points with a vertical distance greater than znorm from the

object’s highest point. Figures 3A, B showcase the view of the 3D

model through the projection plane along with the final 2D depth

map of the tooth in the 8-bit grayscale image space X ∈ Rw×h.

To further improve the normalized depth map representation

of the occlusal surface, a rotation around the z axis is performed

in the 2D space. The z axis is perpendicular to the image plane.

Similar to the described 3D bounding box as a reference for the

orientation of the volumetric model, a bounding rectangle is used

to determine the orientation and position of the 2D projection as

shown in Figure 3C. The 2D projection of the tooth with xi,j 6=

0 ∀ i, j ∈ [0, 255] can then be transformed such that the position

of the rectangle’s center coincides with the center of the image.

Additionally, the z rotation is adjusted such that the bounding

rectangle is parallel to the edges of the image and the buccal aspects

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1339193
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Broll et al. 10.3389/frai.2024.1339193

FIGURE 2

Representation of the top view of an exemplary tooth after a rotation with di�erent threshold values nz,t for the retrieval of a plane using PCA. The

orientation of the calculated plane determines the applied rotation.

A B C D

FIGURE 3

Visualization of the 2D projection process including the subsequent normalization of the tooth’s orientation inside the depth map. (A) View of the

normalized 3D model through the projection plane. (B) 2D projection of (A). (C) Bounding rectangle of the tooth’s depth map. (D) Rotated tooth with

a bounding rectangle that is parallel to the edges of the images.

of the tooth are located in the bottom half of the image. The final

2D projection of the 3D tooth is shown in Figure 3D.

The described method requires the available mesh data to

be converted to a 3D point cloud. Based on empirical testing,

the number of sampled points is set to 3.3× 106 for the given

resolution. Due to the non-deterministic nature of the executed

sampling process, the 95% CI RMSE of the 3D to 2D projection

is analyzed. This involves projecting every tooth from the entire

data set n = 100 times into the 2D space and comparing each

projection to its corresponding reference image by calculating the

RMSE according to Equation 12.

RMSEmm,i = cpix→mmRMSE(x0, xi) ∀ i ∈ [1, n] . (12)

The fixed factor cpix→mm is used for the conversion from an

8 bit unsigned integer to a float with its physical unit mm. The

result of this procedure is a total RMSE of [3.81, 3.97] × 10−3 mm

(including background), which translates to a difference per non-

zero pixel of [6.57, 6.68] × 10−3 mm (excluding background).

Therefore, a deviation of this magnitude can be neglected in further

proceedings as it represents the quantitative difference between

two images that originate from the same 3D model with visually

indistinguishable projections.

2.2 Extraction of the 2D preparation area

For the forthcoming experiments, the teeth in the 3D test

data set are prepared by a dental professional to receive 4 distinct

types of commonly used inlays as illustrated in Figure 4. These

inlays are denoted with letters from “a” to “d” with the specific

order determined by the size of the inlay to be received. Since

the proposed method necessitates 2D data, the tooth preparations

are projected into the 2D image space utilizing the techniques

described in Section 2.1.2. This yields the images a-d displayed in

the second row of Figure 4 for an exemplary tooth.

To apply the proposed reconstruction method, the prepared

area of the tooth model has to be extracted as a 2D mask M,

which allows for the corruption process fcor to be performed as

described in Equation 1. One possible approach is the generation

of a mask based on the 3D edges that were created as a result of

the tooth preparation as shown in Figure 4, where the breaks in

continuity on the occlusal surfaces of the prepared teeth are clearly

visible. The boundaries of the masks must be coincident with the

exact edge lines of the prepared teeth for the final merging process.

Otherwise, the resulting reconstructed inlay will not satisfy the

boundary condition

precon,i = pprep,i {∀ i ∈ [1, n] | pprep,i = pedge,i} (13)

for all points on the preparation edge.

In order to define the mask, all points that are associated with

the tooth preparation process, i.e., the points located inside and

below the preparation edge, have to be extracted in the 3D space. It

is assumed that the normal vectors ni for each triangle in the mesh

are perpendicular to the gradients according to Equation 14.

ni ⊥ ∇P(xi, yi, zi) . (14)

The 3D point cloud is represented by P. Therefore, the z-

component nz,i of the normal vector is utilized to eliminate the

points related to the preparation area. As shown in Figure 5A,
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FIGURE 4

3D and 2D representations of all 4 tooth preparations (a–d) including the original tooth on the left.

these points exhibit two distinct characteristics. The bottom part

is below a specific z threshold, which can be easily cropped, and the

lateral area is much steeper than the occlusal surface of the tooth.

Therefore, the heuristic in Equation 15 is sufficient to produce

satisfactory results, as illustrated in Figure 5B.

Pmask = P(nz,i > nz,t ∧ zi > zt) . (15)

The thresholds nz,t and zt are individual, empirical values

for each preparation. Residual artifacts, such as small point

accumulations associated with the preparation area or tiny holes

in the occlusal surface are not present in the direct vicinity of the

preparation edge. Therefore, they do not affect the accuracy of the

resulting mask as they do not interrupt the edge.

Figure 5C shows the 2D projection of the cropped point cloud

in a binary space

xbin,i,j =

{

255 xi,j 6= 0

0 xi,j = 0
∀ i, j ∈ [0, 255] . (16)

The artifacts can now be manually corrected to create an

enclosed binary mask M with a white background, as depicted in

Figure 5D.

2.3 Introduction of a boundary loss term

A final preliminary step necessary for a smooth transition

between the reconstructed and the real part of the combined

image xmerge is the extension of the initial reconstruction loss Linit

according to Marinescu et al. (2020). This is achieved by adding

a term to the loss function that inspects pixels neighboring the

edge of the black mask area Mi = 0 to ensure that the boundary

condition (Equation 13) is met. Specifically, the loss increases with

a larger deviation of the boundary pixels. The computation of the

newly introduced term is expressed by Equation 17.

Lpixel,B = ||fcor,B ◦ x− fcor,B ◦ G(w)||22 . (17)

The symbol || · ||2 represents the l2 norm and the masking

operation is denoted as fcor,B with the boundary maskMB, as shown

in Figure 6D. The new cost function can be calculated according to

Equation 18.

LB = Linit + λpixel,BLpixel,B . (18)

The weight of the introduced loss term is represented by λpixel,B.

The weights of the initial loss term Linit according to Marinescu

et al. (2020) and the boundary loss term are set to λw = −3.2,

λcolin = 8.6× 10−4, λpixel = 6.7× 10−4, λpercept = 9.2× 103 and

λpixel,B = 4.0× 10−4.

3 Results

In the following section, the performance of the reconstruction

method is presented using the test data set and all 4 types of

preparations as shown in Figure 4. Furthermore, a full set of

preparations for an exemplary tooth will be compared against the

restoration results of a clinical procedure for CAD inlay fabrication.

3.1 Quantitative evaluation of the
reconstructions

The images required for the upcoming reconstruction and

evaluation process are shown in Figure 6. Figures 6B–D are

explicitly utilized for the reconstruction process, while Figure 6A is

the ground truth xtrue for the quantitative evaluation of the output.

With the used NVidia GTX 1080 ti, the reconstruction process

takes about 120 s with 16 iterations per second and a maximum

of nR = 2× 103 optimization steps. The stagnation of change of

the reconstruction error occurs at a calculated point of diminishing

returns ndr = [201, 212] for all image mask combinations. For

performance oriented applications, the optimization process could

thus be executed in about 12 s instead of 120 s.

For the following evaluation and comparison, the

reconstruction with the minimal loss LB after nR = 2× 103

optimization steps is used for each run. Since all reconstructions

are based on a known ground truth xtrue of the complete tooth, the

RMSE between the merged reconstruction and the ground truth
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A B C D

FIGURE 5

Depiction of the 3D mask area extraction process: (A) Pointcloud of the 3D tooth preparation as shown in Figure 4. (B) Pointcloud after a crop in

z-direction in order to remove the bottom part of the the preparation area and the extraction of all vertices with normals ni that satisfy the condition

nz,i > nz,t. It can be seen that small residual point accumulations (blue circle) associated with the preparation area are still present. (C) The projection

of (B) into the 2 dimensional binary space where every pixel with a non zero value is set to 255 according to Equation 16. (D) The final 2D binary mask

M after manual post processing of (C) to fill the gaps that result from the aforementioned artifacts.

A B C D E

FIGURE 6

Development of the tooth image data from left to right: (A) Complete tooth xtrue (ground truth). (B) 2D projection of the 3D tooth preparation. (C)

Extracted binary mask M that perfectly covers the prepared area. (D) Outer boundary MB of the binary mask M for the extended pixel boundary loss

Lpixel,B. (E) 2D projection of the 3D tooth preparation with mask xcor.

is used as the comparison metric. The calculation of the RMSE in

mm is performed including the background of the images.

The resulting values for all merged reconstructions xmerge and

their respective ground truth xtrue for the test data set are shown in

Figure 7. To facilitate a better assessment of the displayed data, it

should be considered that the RMSE of the 3D→2D projection is

equal to [3.81, 3.97]× 10−3 mm for identical input data. Therefore,

a RMSE of this magnitude represents a perfect reconstruction. It

can be seen that across the entire data set, there is a steady increase

in the RMSE as the size of the removed area increases. In terms

of quantitative reconstruction quality, the best reconstructions for

preparation “a” exhibit an error that deviates from a theoretically

perfect reconstruction by a factor of 5.

To gain a better understanding of the relationship between

the quantitative RMSE and the quality of the reconstruction, the

visual appearance of the tooth has to be considered. Figure 8 shows

the masked tooth preparations in the first row, the associated

reconstructions in the second row and the visual difference between

the reconstruction and the ground truth in the last row. The visual

difference is calculated by including all points of the original tooth

with an error-distance greater than 0.1mm.

Figure 9 depicts the relative distribution of the absolute error-

distances of the reconstruction with respect to the total number

of points inside the black mask area (Mi = 0) for every

preparation within the 95th percentile distance for the same tooth.

The 95th percentile distance is utilized as a practical threshold for

focusing on the majority of data points while excluding the extreme

values. The highest 5% of error distances do not contribute to

the overall result for a continuous occlusal surface. This choice

facilitates a more meaningful and representative visualization of

the reconstruction outcomes. It can be seen that an increase in

the removed area yields an overall worse distribution of the points

within this area. Most of the reconstructed area for preparations

a–c is located at an error distance <0.1mm and <0.2mm for

preparation “d”.

3.2 Evaluation of the reconstruction
method

In the following, the behavior of the proposed method with

respect to linearly increasing mask sizes with a fixed geometry

is evaluated. This involves masking the teeth from the test data

set with a filled circle that removes 10% to 70% of the tooth

area. The position and maximum relative size of the circle

are determined by the biggest inscribing circle for each tooth.

For comparison, the relative cut-out area of the available real

preparations ranges from approximately 30% to 80% with the

largest real mask exceeding the removed area of the largest circle.
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FIGURE 7

RMSEs of the merged reconstructions xmerge and the respective ground truth xtrue for all teeth from the test data set. The development of the error

across the di�erent masks shows a steady increase with respect to the size of the removed area.

FIGURE 8

Reconstructions of all 4 tooth preparations for an exemplary tooth including the ground truth in the first column. The second row displays the mere

reconstructions whereas the third row shows the reconstructions including all true points (blue) with an error-distance greater than 0.1mm. The

exact distribution of all distances for every preparation can be seen in Figure 9.

To ensure better comparability, the circles are kept inside the

respective teeth and do not touch or cross the outer contour.

This limits the upper relative bound of the study to the smallest

value of the biggest inscribing circle for each tooth from the test

data set.

Figure 10 illustrates the masks applied to an exemplary tooth

along with the associated reconstructions, the ground truth as well

as the 3D projections of the 2D images. The third row of the

3D projections contains representations of the reconstructed teeth

including the true points (blue) with an error-distance greater than

0.1mm.

The results coincide with the previously presented conclusions,

as all the reconstructions in this study exhibit visually nearly

indistinguishable quality assuming the real scale of a human tooth.

Despite this, the spatial frequency within the reconstruction area

experiences a decrease, even with the smallest mask applied. The

overall quantitative results are presented in Figure 11. The bar plot

illustrates the RMSE for each tooth, while the scatter plot shows

the mean reconstruction RMSE across all teeth as a function of

the relative mask area. Assuming that the masks do not intersect

the outer contour of the tooth, it is evident that there exists

a significant linear correlation between the reconstruction error

and the relative area of the removed surface with an R2 of 0.94

and a p-value of 0.002. However, it should be emphasized that

the reconstruction outcomes may differ for masks with the same

relative size depending on their shape and position.

The previous results indicate that the quality of the

reconstruction can be influenced by the outer contour

information of the tooth. Specifically, the reconstruction

performs worse when a mask intersects the outer boundary.
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FIGURE 9

All relative ratios of the points with a certain distance, depicted on the abscissa, with respect to the total number of points of the black mask area

(Mi = 0) for every preparation within the 95th percentile for an exemplary tooth. The results are related to the images displayed in Figure 8. As

expected, an increase in the removed area yields an overall worse distribution of the points within this area. However, as already shown in Figure 8,

most of the reconstructed area for preparations a–c is located at an error distance <0.1mm and <0.2mm for preparation “d”.

FIGURE 10

Rising area masks applied to an exemplary tooth with their associated reconstructions and the ground truth (first column). The relative removed area,

related to the nonzero area of the 2D image, is located at a range from 10% to 70%. The third row of the 3D representations of the reconstructed

teeth includes the true points (blue) with an error-distance greater than 0.1mm. It can be seen that even for a 70% removal of the occlusal surface,

the proposed method is able to reconstruct the missing part such that there are no major visible di�erences between the reconstruction and the

ground truth.
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A B

FIGURE 11

Representation of the reconstruction RMSE and the relative masked area for every tooth in the test data set, i.e., the area removed by the mask with

respect to the whole area of the tooth where xi,j 6= 0. (A) The distribution across the whole test data set. (B) The correlation between the mask area

and the RMSE represented by a linear regression over the mean values of the data displayed in (A) with R2 = 0.94 and p = 0.002.

A B

FIGURE 12

Representation of the relative ratios of the points with a certain distance, depicted on the abscissa, with respect to the total number of points of the

black mask area (Mi = 0) within the 95th distance percentile for an exemplary tooth. (A) The values for a circle mask with a relative cut out area of 0.3

and a RMSE of 0.024mm. (B) Mask with an equivalent cut-out area but a partial removal of the outer contour with a RMSE of 0.15mm. It can be seen

that the reconstruction with the latter mask performs worse although an equivalent number of pixels is removed.

To investigate this behavior, a circle mask and a mask that

removes an equivalent area of the tooth while also intersecting

the upper outer contour are compared. Both masks remove

30% of the original tooth surface area. Figure 12 depicts the

direct comparison of the error-distances for the respective

reconstructions. The “boundary cut” reconstruction exhibits

significantly higher error-distances due to the geometric

uncertainty caused by the mask’s intersection with the tooth’s

borders. With its RMSE of 0.15mm, it is clearly outperformed by

the reconstruction with a non-boundary cutting circle mask and

a RMSE of 0.024mm. These findings confirm the results from the

real preparations.

3.3 Comparison with clinical restorations

To validate the quality of the reconstructions with respect to its

practical in vitro application, a domain-guided survey is conducted.

In the course of this, the reconstructions for all preparations of an

exemplary tooth are compared to the results of a clinical procedure
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A B C D E

FIGURE 13

Complete process of the 3D mesh tooth preparation to the final merged mesh reconstruction. (A) The tooth is prepared by a dentist and saved as a

mesh file. (B) 2D Projection of the preparation which serves as the base for the reconstruction process. (C) Fully reconstructed and merged 2D tooth

representation (D) 3D projection of (C). (E) Merged mesh with the inlay data from the reconstruction (D) and the base preparation (A).

for CAD inlay fabrication for the creation of inlay restorations.

A dental technician is provided with the same preparations a-

d as shown in Figure 4. These are processed with commercially

available CAD/CAM software to generate the inlay restorations. On

the other hand, Figure 13 illustrates the GAN-based reconstruction

method from the 3D preparation in Figure 13A to the final merged

3D reconstruction in Figure 13E. The inlay is extracted from the

final reconstruction using CAD software. The necessary tolerances

for the joining process are applied by a technician.

The baseplate with all preparations and the respective inlays

are printed on a Formlabs Form 3b SLA printer using Formlabs

Dental Model Resin. The base is divided into 2 columns (Figure 14

left, right) with the restorations (rows 1–4) and the ground truth

in the center. To prevent bias toward one restoration type, the

restorations are randomly shuffled between the 2 columns as shown

in Figure 14.

The blinded survey is divided into 2 parts. In the first part, a

group of dentists is asked to evaluate which restoration evokes a

better overall visual impression, disregarding the joining operation.

Following this, the ground truth is revealed and the visual quality

is rated for all restorations on a five-step selection grid ranging

from “0: very bad” to “4: very good” in comparison with the

original tooth.

The results of the survey with a sample size of 6 are presented

in Table 1. The findings indicate that the GAN-based restorations

are preferred for all preparations except for “a” in the first part of

the survey. However, when the restorations are compared with the

ground truth, the GAN-based method consistently receives high

ratings (“good”–“very good”). Particularly for the more complex

restorations, the subjective quality of the GAN-based method

surpasses the clinical procedure in both parts of the survey.

4 Discussion

Based on the presented findings, it has been demonstrated

that the StyleGAN-2 architecture is able to learn the correct

representation of various occlusal surfaces using a limited 3D

tooth data set. This allows for a downstream optimization process

to successfully restore up to 80% of an unknown corrupted

tooth. The data set used for training comprises 8-bit grayscale

images xL ∈ R256×256 with a black background. These images

differ significantly in terms of detail, complexity, and resolution

from the RGB images xRGB ∈ Rw×h×3 typically used with the

StyleGAN architecture. Despite the small size of the data set

compared to popular data sets such as AFHQ CAT (5× 103

images, R512×512×3) or CIFAR-10 (5× 104 images, R32×32×3)

(Karras et al., 2020a), the training process converges after 7× 105

images have been shown to the discriminator with good results

in terms of quality and diversity of the generated teeth. The

trained network is used in combination with the modified

Bayesian Image Reconstruction method (Marinescu et al., 2020)

to generate the occlusal surfaces for 4 common inlay restoration

tasks. It is shown that the proposed method yields satisfactory

visual and quantitative results for all preparations. Most of

the points for the reconstructions of the preparations a–c are

located at an error-distance <0.1mm with RMSEs of 0.02mm to

0.08mm. The reconstructions for preparation “d” with a missing

area of about 80% show RMSEs from 0.16mm to 0.18mm

and a reconstruction error that is mostly located at distances

<0.2mm. As no additional information is available beyond the

remainder of the prepared tooth, the results are considered to be

very positive.

Even for the highly demanding preparation “d,” the

reconstructed occlusal surfaces replicate the overall true

appearance for every preparation. However, the method fails

to adopt some of the high frequency spatial features in the

mid region of the ground truth. A common issue for the open

preparations b–d that cut the outer contour of the original tooth is

the local shrinkage of the reconstruction near the outer boundaries

of the ground truth. For masks that do not cut the outer contour

of the target tooth, the proposed boundary loss LB implicitly

solves the problem by ensuring that the pixels around the mask

are assigned to the original values of the target. The trained

model with its knowledge of the morphology of a real tooth now

prohibits a pixel with a value of zero surrounded by non-zero

pixels. This results in a watertight and smooth representation of

the occlusal surface. For a mask that cuts the outer contour of the

tooth, the boundary condition for the outer contour is xi,j = 0,

allowing the shrinkage of these regions near an outer boundary

of the target. The most obvious display of this behavior is the

distance representation of the reconstruction for preparation “d”

in the lower right corner of Figure 8, which coincides with the

respective distribution shown in Figure 9. The results in Figure 12
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FIGURE 14

The base plate with all restorations for an exemplary tooth. It is

divided into 2 full columns (left, right) with the restorations (rows

1–4) and a middle column that contains the ground truth. The

marked reconstructions are based on the proposed method.

confirm these observations where 2 masks with identical relative

corruption areas of 30% and different positions are compared. One

of the masks intersects the outer boundary while the other mask is

positioned in the center of the tooth.

A final comparison with a clinical procedure for CAD inlay

fabrication demonstrates the overall superior quality of the GAN-

based restorations. However, the conducted evaluation has some

limitations. The sample size of 6 participants is relatively small

and they may be biased toward the visual appearance due to the

joining process. The 3D printed base plate with the restorations

is fabricated with a model resin. This complicates the refining

process of the joined restorations yielding worse visual results. In

summary, the results indicate that the practical application of the

proposed method is consistent with the quantitative results and can

be considered successful.

Previous research for the data driven restoration of occlusal

surfaces used encoder-decoder methods to directly generate the

missing tooth data. Data sets ranging from teeth sectors to whole

jaws were utilized in the 2D and 3D space. The employed networks

have to be trained on data sets that are prepared for the specific

restoration case. The proposed method achieves independence of

TABLE 1 Results of the clinical comparison with a sample size of 6.

Prep.
type

Favored GAN GAN Tech.

a 17% [2.5, 3.5] [3.5, 4.0]

b 67% [2.6, 3.8] [1.0, 3.0]

c 100% [2.6, 3.8] [0.0, 0.7]

d 100% [2.5, 3.5] [1.3, 2.1]

Part 1: the second column shows the relative share of participants that favored the GAN

reconstruction over the technician’s reconstruction for every preparation type. Part 2:

columns 2 and 3 show the 95% CI ratings for both restoration types (0–4 selection grid from

“very bad” to “very good”). It can be seen that the GAN based restorations are favored for all

preparation types except “a”.

the training of the network from the downstream optimization

method. Therefore the GAN can be trained on data sets of full

teeth, tooth sectors, or full jaws without specific preparation for the

pursued reconstruction process. New data can be added to the data

set with minimal effort.

Further improvements to the method can be achieved by

incorporating information from the adjacent teeth. The network

has to be trained with sectors of teeth or whole jaws and the

opposing teeth or jaws have to be included in the optimization

process. As the current data set consists of crown restorations, real

teeth scan data should be utilized to ensure well fitting restorations

for real world applications.

The current implementation of the StyleGAN architecture

necessitates 2D representations of the input data. Consequently,

the method’s efficacy is confined to a specific maximum quantity

of teeth within the input data. When confronted with datasets

containing a greater quantity, variety, or combination of

teeth, such as entire upper or lower jaws, the practicality

of the 2D representation diminishes due to inherent data

loss. This loss predominantly arises from undercuts in the

data that cannot be adequately captured through linear

projection methods. The use of 3D architectures offers a

potential solution to alleviate these challenges. Recent studies

exploring non-dental applications of 3D shape completion

show promising results using diffusion-based architectures

(Zeng et al., 2022), Transformers (Yu et al., 2023), or GANs

(Sen et al., 2023). The application of these methods to the

current problem could potentially yield more accurate and

robust reconstructions.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

AB: Data curation, Formal analysis, Investigation,

Methodology, Project administration, Software, Validation,

Visualization, Writing—original draft, Writing—review & editing.

MR: Conceptualization, Resources, Writing—review & editing. TS:

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1339193
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Broll et al. 10.3389/frai.2024.1339193

Resources, Writing—review & editing. MG: Conceptualization,

Project administration, Supervision, Writing—review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The open

access publication of this work was funded by the University

of Regensburg.

Acknowledgments

We would like to thank Alois Schmid for the technical support

regarding all dentistry related matters.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Blanz, V., Mehl, A. C., Vetter, T., and Seidel, H.-P. (2004). “A statistical method
for robust 3D surface reconstruction from sparse data,” in IEEE 2nd International
Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (IEEE),
293–300.

Chau, R. C. W., Hsung, R. T.-C., McGrath, C., Pow, E. H. N., and Lam, W. Y. H.
(2023). Accuracy of artificial intelligence-designed single-molar dental prostheses: a
feasibility study. J. Prosthet. Dent. doi: 10.1016/j.prosdent.2022.12.004. Epub ahead of
print.

Ding, H., Cui, Z., Maghami, E., Chen, Y., Matinlinna, J. P., Pow, E. H. N., et
al. (2023). Morphology and mechanical performance of dental crown designed by
3D-DCGAN. Dental Mater. 39, 320–332. doi: 10.1016/j.dental.2023.02.001

Ding, S., Zheng, J., Liu, Z., Zheng, Y., Chen, Y., Xu, X., et al. (2021). High-resolution
dermoscopy image synthesis with conditional generative adversarial networks. Biomed.
Sig. Proc. Control 64:102224. doi: 10.1016/j.bspc.2020.102224

Feng, Y., Tao, B., Fan, J., Wang, S., Mo, J., Wu, Y., et al. (2023). 3D reconstruction
for maxillary anterior tooth crown based on shape and pose estimation networks. Int.
J. Comput. Assist. Radiol. Surg. 18, 1405–1416. doi: 10.1007/s11548-023-02841-1

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et
al. (2014). “Generative adversarial nets,” in Advances in Neural Information Processing
Systems 27.

Hwang, J.-J., Azernikov, S., Efros, A. A., and Yu, S. X. (2018). Learning beyond
human expertise with generative models for dental restorations. arXiv preprint
arXiv:1804.00064.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). “Image-to-image translation
with conditional adversarial networks,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (IEEE). doi: 10.1109/CVPR.2017.632

Jacquelin, J. (2011). Regression plane en 3D. Regres. Traject. 3D, 24–25.

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., et
al. (2018). Global, regional, and national incidence, prevalence, and years lived with
disability for 354 diseases and injuries for 195 countries and territories, 1990–2017:
a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392,
1789–1858. doi: 10.1016/S0140-6736(18)32279-7

Jiang, X., Dai, N., Cheng, X., Wang, J., Peng, Q., Liu, H., et al. (2016). Robust
tooth surface reconstruction by iterative deformation. Comput. Biol. Med. 68, 90–100.
doi: 10.1016/j.compbiomed.2015.11.001

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of gans
for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T. (2020a).
“Training generative adversarial networks with limited data,” in 34th International
Conference on Neural Information Processing Systems (NIPS), 12104–12114.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and
Aila, T. (2020b). “Analyzing and improving the image quality of
StyleGAN,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (IEEE), 8110–8119. doi: 10.1109/CVPR42600.2020.
00813

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kullmer, O., Benazzi, S., Fiorenza, L., Schulz, D., Bacso, S., and Winzen, O. (2009).
Technical note: occlusal fingerprint analysis: quantification of tooth wear pattern. Am.
J. Phys. Anthropol. 139, 600–605. doi: 10.1002/ajpa.21086

Lai, Y., Fan, F., Wu, Q., Ke, W., Liao, P., Deng, Z., et al. (2021). LCANet: learnable
connected attention network for human identification using dental images. IEEE Trans.
Med. Imaging 40, 905–915. doi: 10.1109/TMI.2020.3041452

Le Son, H., Tuan, T. M., Fujita, H., Dey, N., Ashour, A. S., Ngoc, V. T. N., et
al. (2018). Dental diagnosis from X-Ray images: an expert system based on fuzzy
computing. Biomed. Signal Proc. Control 39, 64–73. doi: 10.1016/j.bspc.2017.07.005

Lee, H., Thoummala, N., Park, H., Ham, S., Yu, J., Hwang, J., et al. (2021). AI-based
dental prostheses fabrication using generative adversarial networks.Quant. Bio-Sci. 40,
39–44.

Lei, H., Liu, W., Xie, H., Zhao, B., Yue, G., and Lei, B. (2022). Unsupervised domain
adaptation based image synthesis and feature alignment for joint optic disc and cup
segmentation. IEEE J. Biomed. Health Inf. 26, 90–102. doi: 10.1109/JBHI.2021.3085770

Marinescu, R. V., Moyer, D., and Golland, P. (2020). Bayesian image reconstruction
using deep generative models. arXiv preprint arXiv:2012.04567.

Matsumoto, Y. (2002). An Introduction to Morse Theory, volume 208 of Iwanami
Series in Modern Mathematics. Providence, RI: American Mathematical Society.

Pandey, S., Singh, P. R., and Tian, J. (2020). An image augmentation approach using
two-stage generative adversarial network for nuclei image segmentation. Biomed. Sig.
Proc. Control 57:101782. doi: 10.1016/j.bspc.2019.101782

Preis, V., Dowerk, T., Behr, M., Kolbeck, C., and Rosentritt, M. (2014). Influence
of cusp inclination and curvature on the in vitro failure and fracture resistance of
veneered zirconia crowns. Clin. Oral Invest. 18, 891–900. doi: 10.1007/s00784-013-
1029-9

Rajee, M. V., and Mythili, C. (2021). Gender classification on digital dental x-ray
images using deep convolutional neural network. Biomed. Sig. Proc. Control 69:102939.
doi: 10.1016/j.bspc.2021.102939

Revilla-León, M., Kois, D. E., Zeitler, J. M., Att, W., and Kois, J. C. (2023). An
overview of the digital occlusion technologies: Intraoral scanners, jaw tracking systems,
and computerized occlusal analysis devices. J. Esthet. Restor. Dent. 35, 735–744.
doi: 10.1111/jerd.13044

Schnitzhofer, K., Rauch, A., Schmidt, M., and Rosentritt, M. (2023). Impact of the
occlusal contact pattern and occlusal adjustment on the wear and stability of crowns. J.
Dent. 128:104364. doi: 10.1016/j.jdent.2022.104364

Sen, B., Agarwal, A., Singh, G., B., B., Sridhar, S., et al. (2023). “SCARP:
3D shape completion in ARbitrary poses for improved grasping,” in IEEE
International Conference on Robotics and Automation (ICRA) (IEEE), 3838–3845.
doi: 10.1109/ICRA48891.2023.10160365

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P.
(2004). “Laplacian surface editing,” in Symposium on geometry processing (SGP), eds.
J.-D. Boissonnat, P. Alliez, R. Scopigno, and D. Zorin (Aire-la-Ville: Eurographics
Association), 175–184. doi: 10.1145/1057432.1057456

Tian, S., Huang, R., Li, Z., Fiorenza, L., Dai, N., Sun, Y., et al. (2022a). A dual
discriminator adversarial learning approach for dental occlusal surface reconstruction.
J. Healthc. Eng. 2022, 1–14. doi: 10.1155/2022/1933617

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2024.1339193
https://doi.org/10.1016/j.prosdent.2022.12.004
https://doi.org/10.1016/j.dental.2023.02.001
https://doi.org/10.1016/j.bspc.2020.102224
https://doi.org/10.1007/s11548-023-02841-1
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/j.compbiomed.2015.11.001
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1002/ajpa.21086
https://doi.org/10.1109/TMI.2020.3041452
https://doi.org/10.1016/j.bspc.2017.07.005
https://doi.org/10.1109/JBHI.2021.3085770
https://doi.org/10.1016/j.bspc.2019.101782
https://doi.org/10.1007/s00784-013-1029-9
https://doi.org/10.1016/j.bspc.2021.102939
https://doi.org/10.1111/jerd.13044
https://doi.org/10.1016/j.jdent.2022.104364
https://doi.org/10.1109/ICRA48891.2023.10160365
https://doi.org/10.1145/1057432.1057456
https://doi.org/10.1155/2022/1933617
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Broll et al. 10.3389/frai.2024.1339193

Tian, S., Wang, M., Dai, N., Ma, H., Li, L., Fiorenza, L., et al. (2022b). DCPR-GAN:
dental crown prosthesis restoration using two-stage generative adversarial networks.
IEEE J. Biomed. Health Inf. 26, 151–160. doi: 10.1109/JBHI.2021.3119394

Tian, S., Wang, M., Ma, H., Huang, P., Dai, N., Sun, Y., et al. (2022c). Efficient tooth
gingival margin line reconstruction via adversarial learning. Biomed. Sign. Proc. Control
78:103954. doi: 10.1016/j.bspc.2022.103954

Tian, S., Wang, M., Yuan, F., Dai, N., Sun, Y., Xie, W., et al. (2021).
Efficient computer-aided design of dental inlay restoration: a deep adversarial
framework. IEEE Trans. Med. Imag. 40, 2415–2427. doi: 10.1109/TMI.2021.30
77334

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. (2018). Dynamic graph CNN for learning
on point clouds. ACM Trans. Graph. 38, 1–12. doi: 10.1145/33
26362

Wu, C.-H., Tsai, W.-H., Chen, Y.-H., Liu, J.-K., and Sun, Y.-N. (2018).
Model-based orthodontic assessments for dental panoramic radiographs.
IEEE J. Biomed. Health Inf. 22, 545–551. doi: 10.1109/JBHI.2017.26
60527

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J. (2016). “Learning a
probabilistic latent space of object shapes via 3D generative-adversarial modeling,” in
30th International Conference on Neural Information Processing Systems (NIPS), 82–90.

Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., et al. (2018).
Low-dose CT image denoising using a generative adversarial network with
wasserstein distance and perceptual loss. IEEE Trans. Med. Imag. 37, 1348–1357.
doi: 10.1109/TMI.2018.2827462

Yu, X., Rao, Y.,Wang, Z., Lu, J., and Zhou, J. (2023). AdaPoinTr: diverse point cloud
completion with adaptive geometry-aware transformers. IEEE Trans. Pattern Analy.
Mach. Intell. 45, 14114–14130. doi: 10.1109/TPAMI.2023.3309253

Yuan, F., Dai, N., Tian, S., Zhang, B., Sun, Y., Yu, Q., et al. (2020).
Personalized design technique for the dental occlusal surface based on conditional
generative adversarial networks. Int. J. Numer. Methods Biomed. Eng. 36:e3321.
doi: 10.1002/cnm.3321

Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., et al. (2022).
LION: latent point diffusion models for 3D shape generation. Adv. Neural Inf. Proc.
Syst. 35, 10021–10039.

Zheng, S.-X., Li, J., and Sun, Q.-F. (2011). A novel 3D morphing approach
for tooth occlusal surface reconstruction. Comput. Aided Des. 43, 293–302.
doi: 10.1016/j.cad.2010.11.003

Zhu, H., Jia, X., Zhang, C., and Liu, T. (2022). “ToothCR: a two-stage completion
and reconstruction approach on 3D dental model,” in 26th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD) (Cham: Springer), 161–172.
doi: 10.1007/978-3-031-05981-0_13

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2024.1339193
https://doi.org/10.1109/JBHI.2021.3119394
https://doi.org/10.1016/j.bspc.2022.103954
https://doi.org/10.1109/TMI.2021.3077334
https://doi.org/10.1145/3326362
https://doi.org/10.1109/JBHI.2017.2660527
https://doi.org/10.1109/TMI.2018.2827462
https://doi.org/10.1109/TPAMI.2023.3309253
https://doi.org/10.1002/cnm.3321
https://doi.org/10.1016/j.cad.2010.11.003
https://doi.org/10.1007/978-3-031-05981-0_13
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	A data-driven approach for the partial reconstruction of individual human molar teeth using generative deep learning
	1 Introduction
	1.1 State of the art of digital dental restorations
	1.2 Summary

	2 Materials and methods
	2.1 Creation of a 2D tooth data set
	2.1.1 Normalization of the 3D orientation
	2.1.2 Dimensionality reduction

	2.2 Extraction of the 2D preparation area
	2.3 Introduction of a boundary loss term

	3 Results
	3.1 Quantitative evaluation of the reconstructions
	3.2 Evaluation of the reconstruction method
	3.3 Comparison with clinical restorations

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


