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In high-energy particle collisions, charged track finding is a complex yet crucial

endeavor. We propose a quantum algorithm, specifically quantum template

matching, to enhance the accuracy and e�ciency of track finding. Abstracting

the Quantum Amplitude Amplification routine by introducing a data register,

and utilizing a novel oracle construction, allows data to be parsed to the

circuit and matched with a hit-pattern template, without prior knowledge of

the input data. Furthermore, we address the challenges posed by missing hit

data, demonstrating the ability of the quantum template matching algorithm

to successfully identify charged-particle tracks from hit patterns with missing

hits. Our findings therefore propose quantum methodologies tailored for real-

world applications and underline the potential of quantum computing in

collider physics.
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1 Introduction

In collider physics, the endeavor of accurately associating the multitude of hits in the

detectors recorded during high-energy particle collisions with the original charged particle

tracks that traversed the detector emerges as a particularly challenging combinatorial

problem (Chatrchyan et al., 2014; Cerati, 2015). The precise assignment of these detector

hits is pivotal for deducing the underlying nature and dynamics that catalyzed the

fundamental interactions being probed in such collisions. The critical endeavor of tracking

therefore fosters a deeper understanding and elucidation of new physics phenomena,

thereby acting as a linchpin in advancing high-energy physics.

The gamut of issues encountered in high-energy physics often resembles database

search algorithms, where the solution to a particular problem is embodied as a notable

element within a specified dataset. A prime exemplification of this is identifying charged

particle tracks within a detector experiment, as seen in the eminent CMS (Chatrchyan

et al., 2008) and ATLAS (Aad et al., 2008) experiments at CERN. This task can be

conceptualized as a variant of a search algorithm known as templatematching. The primary

objective is to discern charged particle tracks traversing the tracker detector by juxtaposing

the raw detector response against a pre-established database encompassing hit patterns
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that correspond to physical particle tracks obtained from

simulation. Upon the recognition of a physical track within the

data, attributes of the track, such as momentum and angular

distribution, can be gleaned from the template database. This

procedure is prominently recognized as Associative Memory,

and has been shown to be a highly effective approach to

track finding in high-energy experiments, employing Application

Specific Integrated Circuits (ASIC; Dell’Orso and Ristori, 1989) to

perform the template matching. The method of template based

track finding is used in modern detector experiments (Nicolaidou

et al., 2010; Bunkowski, 2019; Collaboration, 2021) and is marked

as one of the potential approaches to be used at future colliders.

The proficiency of template matching algorithms is heavily

contingent on the efficiency at which one can traverse through

the template database. In an unstructured database comprising

N elements, conventional search algorithms exhibit a scaling of

O(N), necessitating, on average, N/2 queries to the database to

pinpoint the matching element. Contemporary particle colliders

witness an increase in the number of potential tracks encoded in

the database, congruent with the escalating energy and luminosity

of the collisions within the detectors. Concurrently, since the

advent of advanced tracking technology, tracking detectors have

been evolving to become highly granular, thereby amplifying the

resolution of the tracks and, consequently, the quanta of track

patterns necessitated to be encoded into the template database.

As the frontier of high-energy and high-luminosity experiments

beckons, the practice of identifying charged particle tracks via

Associative Memory is confronted with a duo of challenges: (1)

the rapidly increasing number of tracks encoded in the template

database demands a significant amplification in storage capacity to

accommodate the probable tracks, and (2) the temporal resources

required to sift through a burgeoning number of tracks is inefficient

for modern tracking objectives.

With its rapid and continuous development, quantum

computing offers a paradigm shift in information science and has

the potential to revolutionize modern computational techniques.

Particle physics will benefit from any speedup that quantum

computers can provide and the devices’ ability to compute in a

regime that has never been accessible before. Already, there has

been a quickly developing research effort into proof-of-principle

algorithms for applications in particle physics ranging from the

simulation of quantum field theories (Jordan et al., 2014; Ciavarella

et al., 2021; Kan and Nam, 2021; Paulson et al., 2021; Davoudi

et al., 2022; Kane et al., 2022; Fromm et al., 2023) and collision

events (Bauer et al., 2021; Bepari et al., 2021, 2022; Gustafson

et al., 2022; Li et al., 2022; Barata et al., 2023; Chawdhry and

Pellen, 2023), to event classification (Blance and Spannowsky,

2020; Araz and Spannowsky, 2022) and analysis (Mott et al., 2017;

Wu et al., 2021). Quantum tracking algorithms have gained a

lot of interest (Shapoval and Calafiura, 2019; Bapst et al., 2020;

Zlokapa et al., 2021; Duckett et al., 2022; Gray and Terashi,

2022) in an attempt to combat the problems facing classical

techniques. Quantum computers offer a solution to the limitations

of Associative Memory. The exponentially growing Hilbert space

of qubit-based systems allows large datasets to be encoded onto

quantum devices with efficient resource usage (Ventura and

Martinez, 2000; Shapoval and Calafiura, 2019). Furthermore, it has

been shown that a polynomial speedup can be achieved for search

algorithms by leveraging the Grover Search Algorithm (Grover,

1996, 1997), which has been suggested as a tool to achieve the

crucial speedup required for Associative Memory to be effective for

tracking algorithms (Shapoval and Calafiura, 2019).

This paper proposes a proof-of-principle quantum algorithm

which extends on the regular Grover search approach to track

finding via Associative Memory, proposed in Shapoval and

Calafiura (2019), by abstracting the oracle operation to perform

a template matching algorithm to match detector-hit data with a

pre-established database of physical tracks. Following the oracle

construction method of Gao et al. (2022), it will be shown

that a single, general oracle operation can be constructed for

the template matching approach to successfully identify particle

tracks. Additionally, we will demonstrate that the template

matching approach further improves on the regular Grover

search approach by allowing for data with missing hits to be

efficiently reconstructed, a highly non-trivial task for classical

tracking algorithms.

2 Grover Search and Quantum
Amplitude Amplification

The Grover Search is an optimal quantum search

algorithm (Grover, 1996, 1997) which amplifies the amplitudes

of marked states within a uniformly distributed database to

successfully identify elements of interest, achieving a polynomial

speedup over classical search techniques for unstructured

databases. Consider an unstructured dataset of N elements

X = {x1, x2, . . . , xN} with one or more elements of interest,

mj, which can be encoded onto n = log2(N) qubits as an

equal superposition,

|s〉 = AG |0〉⊗n =
1

√
N

∑

i

|xi〉, (1)

where AG = H⊗n is an n-qubit Hadamard transformation which

prepares the state |s〉, and the states |xi〉 encode the elements xi in

the computational basis on the quantum device. The Grover Search

aims to identify the elements of interest, mj, in the database X and

amplify their amplitudes. To first identify the marked elements, one

can define a Boolean function, f (x), such that

f (x) =
{

1 if x = m,

0 otherwise.

This function can then be used to construct the oracle,

Sf |x〉 = (−1)f (x)|x〉,

such that the amplitude of an element of interest is marked by

inverting the amplitude of the state and leaving all other states

unchanged. Marking the states alone is not enough to successfully

identify the elements of interest, as a measurement at this stage

will still return each element with equal probability. Therefore,

one must amplify the amplitudes of the marked states such

that a measurement returns one of the marked states with a
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high probability. Geometrically, the amplification process can be

modeled as a reflection of the whole system about the equal state |s〉
from Equation (1), reducing the amplitudes of the unmarked states,

and amplifying the marked states. This can be achieved by applying

the Grover diffuser, which has the form

D = A
†
GS0AG, (2)

where S0 is a phase inversion on the zero state, and in the case

of the Grover Search, A†
G = AG, as the Hadamard transform is

Hermitian.

Combining the diffuser with the oracle, one step of the

algorithm can be defined as a single, unitary operation, the Grover

Iterator,

Q = A
†
GS0AGSf , (3)

which can be applied iteratively to amplify the amplitudes of all

states of interest in the database. For an unstructured database of

N-elements with m-elements of interest, the optimal number of

applications of Q to achieve the highest probability of measuring

a state of interest is

t =
⌊

π

4

√

N

m

⌋

. (4)

The Grover Search, therefore, scales as O(
√
N), providing a

remarkable polynomial speedup over a classical search algorithm.

Consequently, the Grover Search offers a substantial speedup when

searching large databases, typical of those produced by modern

particle physics experiments.

It should be noted that it is possible to construct a database

for which the number of elements of interest, m, is not known a

priori. Therefore it is not clear how many iterations of Q should

be applied to reliably return an element of interest from the

database uponmeasurement. To establishm, one can use Quantum

Counting (Brassard et al., 1998) which leverages Quantum Phase

Estimation (Kitaev, 1995) to estimate the number of interesting

states in the database, and, by extension, the number of applications

of Q. For the examples considered in this paper, the number of

elements of interest is known by construction of the database,

however future implementations may benefit from the Quantum

Counting routine.

2.1 Quantum Amplitude Amplification

The Grover algorithm performs a search on a uniform,

unstructured database encoded onto n-qubits using a Hadamard

transformation, AG = H⊗n. However, it is often the case that it

is not efficient to encode the database as a uniform superposition,

but instead as an arbitrary state, |s′〉, prepared using the unitary

operation A. Quantum Amplitude Amplification (QAA; Brassard

et al., 2002) is a generalization of the Grover Search algorithm

which can perform a search on |s′〉 bymodifying the Grover Iterator

from Equation (3).

As shown in Equation (2), the amplification of a marked state

is performed by reflecting around the state |s〉. Generalizing to an

arbitrary initial state, the diffuser operation now reflects around

the state |s′〉, and thus has the form D′ = AS0A
†. The Grover

Iterator becomes,

Q = AS0A
†Sf , (5)

such that the Grover Iterator from Equation (5) can be retrieved

by identifying the preparation of the state |s〉 as an n-qubit

Hadamard transform. Figure 1 shows a schematic circuit diagram

for Quantum Amplitude Amplification.

2.2 Oracle construction

The explicit form of the oracle, Sf , has so far remained an

undefined black box in both the Grover and QAA routines. The

only speculation is that the oracle must mark any interesting states

within the database by inverting the phase of the marked states’

amplitudes. Consider the example where a database of four states

is encoded onto two qubits via a Hadamard transform,

H⊗2|0〉⊗2 =
1
√
4

3
∑

i=0

|i〉.

It is possible to define an oracle which will search this database

for the state |11〉 by applying a controlled-Z gate operation, which

will apply the Z-gate operation to the target qubit if the control

qubit is in the “1” state. The oracle operation therefore has the form

Sf : I⊗ |0〉〈0| + Z ⊗ |1〉〈1|.

Acting the oracle on the initial state, we find

1
√
4

3
∑

i=0

|i〉 =
1
√
4

[

|00〉 + |10〉 + |01〉 − |11〉
]

,

thus the state |11〉 has been marked by the oracle. However, if the

target state now changes from |11〉, the form of the oracle has

to change. For the problem of track finding, this is limiting as

one would have to transpile the circuit each time a data string is

retrieved from the detector to correctly search for, and identify,

a matching hit-pattern template in the database. In Section 4, an

algorithm is proposed that removes this limitation by generalizing

the oracle construction, allowing for the same circuit to be used for

all data retrieved from the detector, without having to know how to

construct the oracle a priori.

3 Track finding via associative memory

Modern high-energy collider experiments collide particles

together at unprecedented energies in the center of close-to-fully

hermetic detectors. These detectors comprise many sub-detector

regions immersed in strong magnetic fields. The experiment aims
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FIGURE 1

Schematic circuit diagram for Quantum Amplitude Amplification (QAA) on n qubits. The circuit is initialized by preparing an arbitrary state using the

unitary operation A. The state is then parsed to the QAA routine which amplifies the amplitudes of interesting states in the initial state. The QAA

routine is applied t-times to return an interesting state with high probability, upon measurement. The QAA routine is constructed from two

operations: the oracle, which marks the interesting states by inverting their phase, and the di�user, which performs a reflection to amplify the

amplitudes of the marked states.

FIGURE 2

A single track through a 12-module detector, arranged in four layers

of three detector modules. The red track shows the “true” track

through the detector, with the blue circles representing the hits in

the detector. The black tracks show a selection of possible tracks

which can also lead to this hit pattern in the detector. Increasing the

granularity of the detector decreases the number of tracks

corresponding to a single hit pattern, but increases the

combinatorial challenge of finding possible hit patterns left by

charged particles.

to precisely reconstruct the energy and momentum of each particle

created in the collision event to unveil the underlying physics

in play. The reconstruction of a high-energy collision event can

be separated into three main steps: (1) the reconstruction of the

charged particle trajectories as they traverse the detector layers

through particle tracking, (2) the determination of the particle

energies using calorimetry, and (3) the reconstruction of muons

in dedicated tracking modules on the outer layer of the detector

device. From this process, essential characteristics of the underlying

physics can be obtained. For example, the particle species can be

identified, and any missing energy can be established. This paper

will focus on the first step, designing a quantum algorithm to

identify charged particle tracks in the detector efficiently.

To successfully record the trajectory of a charged particle

within a tracking detector, a method for measuring the particle’s

position without disturbing its path is required. In state-of-the-art

collider experiments such as the CMS (Chatrchyan et al., 2008)

and ATLAS (Aad et al., 2008) experiments on the Large Hadron

Collider at CERN, sub-millimeter-thick layers of silicon sample a

particle’s trajectory by recording a hit every time the particle passes

through a layer. By applying strong magnetic fields the trajectory

of a charged particle can be curved proportionally to the inverse of

the particle’s momentum. Thus, with a position granularity of tens

of micro-meters, the tracking detector can accurately reconstruct

the particle’s trajectory, allowing for the particle’s charge and

momentum to be inferred from the track’s curvature. Furthermore,

the high precision of silicon trackers allows for the accurate

reconstruction of jets, cones of high-energy hadrons emerging

from the hadronization of color-charged particles resulting from

the high-energy collision. Displacements of 100’s of micro-meters

can be reconstructed, allowing for the individual constituents of

the jet to be separately resolved. As a result, the detectors can

identify complete decay chains emerging from the high-energy

collision event.

In the tracking detectors, the only information collected is

the position at which each track traversed a silicon layer. The

hits belonging to an individual particle track must, therefore, be

identified from the raw detector output. Once identified, a fitting

operation is performed to dress the track with parameters such as

the azimuthal angle, φ, at which the particle has been produced,

and the reconstructed transverse momentum, pT . Due to the wide

range of possible interactions, the paths of the charged particles

in the tracking detectors vary, and the possible combination of

hit patterns they produce is extensive. Furthermore, each hit

pattern is associated with many tracks. For example, Figure 2

indicates some of the possible tracks that have the same hit

pattern in a simple, 12-module detector.With increasingly granular

detectors, the number of possible hit patterns is increasing to
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unmanageable levels. For a single particle crossing the detector,

identifying the hits corresponding to the particle’s track is seemingly

a trivial task. However, in particle collisions, thousands of charged

particles traverse the detector every fraction of a second. Each

particle leaves a set of hits in the detector, leading to tens of

thousands of hits in the detector from the particle trajectories, all

overlapping. Therefore, the reconstruction of particles becomes a

highly challenging combinatorial problem. Cerati (2015) highlights

the increasing challenge of track reconstruction at high pile-up

and presents analysis of reconstruction times for current track

reconstruction methods.

Classical techniques such as Associative Memory, which

employs a template matching approach to track finding, have been

shown to be highly effective at identifying hit patterns in the

tracking detectors (Bardi et al., 1998). However, as the number of

particles through the detector increases with the collider energy

and luminosity, and tracking detectors become more granular,

the number of hit patterns that need to be stored and compared

becomes increasingly unmanageable, and the time taken to find

the correct match grows quickly. With the exponentially growing

Hilbert space of a qubit system and the polynomial speedup of

Quantum Amplitude Amplification (QAA), quantum computers

provide a potentially powerful tool for tackling the track finding

problem. In Section 4, a proof-of-principle quantum tracking

algorithm is proposed, which harnesses the advantage over the

QAA routine. In Section 5, it will be shown that this algorithm

can be extended to handle imperfect data which has missing

hits efficiently.

4 Quantum template matching for
track finding

To successfully identify tracks in hit data from the detector

via a quantum template matching algorithm, the oracle must have

a general construction to identify the correct track without prior

knowledge of the input data. Following the oracle construction

from Gao et al. (2022), it is possible to design a general oracle,

S̃f , by introducing an additional register to the QAA circuit in

Figure 1, the data register. The retrieved detector-hits data from

the experiment is encoded on this register for each event with the

unitary operationAD. The register retained from the QAA routine

will now encode the template database, the template register. For

a tracker in the same configuration as Figure 2, with 12 tracker

modules arranged in layers of threes, there are 15 possible hit

patterns for particles traversing the detector, neglecting multiple

track signatures and requiring one hit per detector layer. These hit

patterns are one-hot encoded into bit strings of 12 bits, with each

bit corresponding to a detector module. If a hit is detected on the

module, the bit is flipped to the “1” state. Otherwise, it remains in

the “0” state.1 The templates are encoded onto the template register

as a linear superposition of all possible tracks through the unitary

1 The choice of one-hot encoding has been made to allow for the

algorithm to deal well with perfect and imperfect data from the detector,

as will be outlined in Section 5. Other choices of encoding may prove to be

more optimal, for example encoding each track in the computational basis.

operation AT . The individual hit-pattern encodings are displayed

in Table 1. The state preparation has the general form

AD|0〉⊗n ⊗AT |0〉⊗n,

where n = 12 for the example from Figure 2. Ideally, the

database of hit-pattern templates would be loaded onto the device

from Quantum Random-Access Memory (QRAM; Giovannetti

et al., 2008), however limitations on the ability to realize QRAM

mean that, currently, the database must be prepared via state

preparation. State preparation is a highly non-trivial task, and has

been shown to necessitate exponential circuit depths to construct

an arbitrary quantum state (Sun et al., 2023). By leveraging ancillary

qubits, this scaling can be reduced to polynomial scaling in circuit

depth, though at the potential cost of an exponentially growing

number of ancillary qubits (Plesch and Brukner, 2011; Zhang

et al., 2021, 2022; Rosenthal, 2023). For the algorithm proposed

here, the state preparation routine from Qiskit Contributors

(2023), which employs a recursive initialization algorithm with

optimization (Shende et al., 2006), has been used to load the

one-hot encoded track templates onto the device.

To construct the general oracle, S̃f , we allow for the oracle to

now act across the two registers, controlling from the data register

and applying a series of CNOT operations to the template register.

If the hit pattern encoded onto the data register is in the template

database, then the corresponding state on the template register will

be flipped to the zeroth state. The matched state can be marked by

applying a phase inversion on the zero state, S0. Finally, the oracle

returns the marked state to its original bit combination by applying

the series of CNOT operations again, in the same order, controlling

from the data register and acting on the template register. Through

this oracle operation, S̃f , the track-template matching the hit-

pattern encoded on the data register is marked with a negative

phase, without the need for a bespoke oracle operation designed

for the specific input data. To amplify the marked state, the QAA

diffuser from Equation (5) is then applied to the template register,

where here A = AT . To achieve the greatest probability of

selecting the correct track, the oracle and diffuser are then applied

t-times, according to Equation (4). Figure 3 shows a schematic of

the circuit for the quantum template matching algorithm, outlining

the structure of the oracle explicitly.

Adopting the procedure of the quantum template matching

algorithm for track finding allows for data from the detector to

be parsed into the quantum algorithm and matched to a track

template “on-the-fly,” as the circuit is general for all possible hit

patterns handed to the algorithm. The data is one-hot encoded

onto the device using the unitary operation AD, which applies a

series of NOT-gate operations to load the data onto the device.

The efficiency of the track finding algorithm has been tested for

two hit patterns, corresponding to Tracks 1 and 5 in Table 1. To

successfully determine the matching efficiency, the circuit has been

run for three iterations of the QAA routine, and for 104 shots on

the qasm_simulator without a noise model.2 The results are

2 The qasm_simulator is a 32-qubit quantum simulator that simulates a

fully fault-tolerant quantum device, without noise e�ects.
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TABLE 1 Full list of track templates for all possible hit-patterns in a 12 module detector, with the modules arranged in four layers of three modules.

Track Encoding Track Encoding Track Encoding

1 010010010010 6 010010001001 11 001001001010

2 010001001001 7 001001001001 12 010100100010

3 010100100100 8 010010010100 13 100100010010

4 100100100100 9 010010100100 14 100100100010

5 010010010001 10 001001010010 15 010001001010

Each track is required to have one hit in each layer. The track templates are one-hot encoded, with each bit corresponding to a detector module. If a hit has been detected in the module, the bit

is flipped to the “1” state, otherwise it remains in the “0” state. The bit strings read left to right, with the first three bits corresponding to the first detector layer, the next three bits corresponding

to the second layer, and so on.

FIGURE 3

Schematic circuit diagram for the quantum template matching algorithm for charged track finding. The circuit comprises two registers, the data

register, |d〉, and the template register, |t〉. The state preparation step encodes hit data from the detector onto the data register, and the database of

hit-pattern templates onto the template register using the unitary operations AD and AT , respectively. The Quantum Amplitude Amplification (QAA)

routine is then applied t-times to correctly identify the hit pattern within the database, with high probability. The general oracle marks the state in the

template database which corresponds to the hit pattern from the detector, encoded on the data register. The di�user operator then amplifies the

marked amplitudes. A measurement is then performed to return the matched template.

displayed in Figure 4, showing that the correct match is achieved

with high probability, >90% efficiency.

The success in matching the data to the correct hit pattern with

very high probability and the QAA routine’s polynomial speedup

over classical search algorithms means the algorithm is well-suited

to the track finding problem. Furthermore, in practice one would

only have to run a small number of shots of the circuit to retrieve

the correct track match with high probability, and remarkably

requiring only one shot of the circuit if the track pattern is known to

the be in the database. Therefore, the quantum template matching

provides a fast and efficient approach to charged-particle track

finding on a quantum device. However, the circuit from Figure 3

requires the data to match precisely with a hit-pattern template in

the database. In practice, this is not always the case, as data from

the detector may be missing hits from specific tracking modules.

In Section 5, it will be shown that, by modifying the oracle S̃f ,

the quantum template matching algorithm can identify possible

tracks in imperfect data, a highly non-trivial task for current

classical techniques.

5 Track finding on data with
missing hits

One of the primary challenges in track finding via Associative

Memory arises when a particle passes through the detector and one

or more of the detector modules on its trajectory fails to register

a hit. Current, state-of-the-art track-reconstruction techniques

struggle with this scenario as the combinatorics between layers

with missing hits quickly become unmanageable. Overcoming this

problem is paramount as the energy and luminosity of colliders are

increasing, and the detectors are becomingmore granular, elevating

the combinatorial problem. In this Section, the quantum template

matching algorithm from Section 4 is extended to allow for the

identification of tracks from imperfect data, without an increase in

computation complexity or resources.

In the quantum template matching circuit shown in Figure 3,

the oracle, S̃f , is essential for accurately selecting and marking the

identified track by comparing, exactly, the bit strings in the data

register and the template register. Consider parsing a hit pattern
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A B

FIGURE 4

Results from the quantum template matching algorithm for two detector-hit data scenarios. (A, B) Show the correct identification of Tracks 1 and 5

from Table 1, shown in the top right-hand corner of the plots. The algorithm successfully identifies the correct hit-pattern templates from the

database with high probability, >90%. The algorithm requires three iterations of the QAA routine, and has been run on the qasm_simulator for 104

shots on the device.

FIGURE 5

Results from the quantum template matching algorithm with the modified oracle for data with a missing hit in the third detector layer. The results

show the correct identification of the two possible hit patterns, Tracks 8 and 9 from Table 1. The algorithm successfully identifies the correct

high-pattern templates with high probability, >80%. The algorithm requires two iterations of the QAA routine, and has been run on

qasm_simulator for 104 shots on the device.

to the algorithm which does not contain a hit in the third layer of

a detector like the one shown in Figure 2. Running the algorithm

for many shots would not return a decisive answer to which hit

pattern matches the trajectory of the particle through the tracker, as

the hit pattern without the third hit is not in the template database.

To combat this problem, the oracle can be modified to correctly

identify a match in the hit-pattern template database.

Using the example of a hit missing in the third detector layer,

we now modify the oracle S̃f such that it does not act on the

qubits corresponding to the third detector layer, and acts only on

the “good" subset of qubits corresponding to the other layers. The

modified oracle, S̃ ′
f
, follows the same form as S̃f , but acts only on the

good subset of qubits: first, a series of CNOT-operations is applied,

controlling from the good subset of qubits in the data register and
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acting on the corresponding good subset of qubits in the template

register. If there is amatch, the good subset of qubits in the template

register will have been flipped to the zero state. The matching state

is then marked using a phase inversion on the zero state, S0. Finally,

the CNOT-operations are reapplied, and the template register is

returned to its original state with the exception of any matched

state having a negative phase. The oracle S̃ ′
f
therefore has the same

effect as the oracle S̃f from Section 4, but now acting only on the

good subset of qubits corresponding to the tracking layers which

are operating correctly.

Employing this oracle, S̃ ′
f
, in the quantum template matching

algorithm from Section 4 will return all possible hit-pattern

templates with the matching good subset of qubits, allowing

for efficient identification of the particle’s trajectory through the

detector. For the example outlined here, two states corresponding

to Tracks 8 and 9 from Table 1 will be marked, therefore

Equation (6) states that two iterations of the QAA routine will

yield the best match.3 Figure 5 shows the results from 104 shots

on the qasm_simualtor for two iterations of the QAA routine

using the modified oracle. The algorithm successfully predicts

the possible path that the particle could have taken through

the tracker, returning correct hit patterns for Tracks 8 and 9

from Table 1. Remarkably, the computational complexity and the

required quantum resources do not increase when dealing with

imperfect data, which is not the case using classical techniques.

On the right of Figure 5, an illustrative number of combinations

of tracks passing through the two hit patterns shows how the

combinatorics for this problem will increase dramatically for

missing-hits data.

In a modern silicon detector the efficiency of each detector

module is very high and so missing hits are usually attributed to

cooling or power faults, which can be quickly identified during

data quality monitoring (Butz, 2018). Therefore, the oracle, S̃ ′
f
, can

be easily modified to ensure efficient tracking by removing the

qubits corresponding to the faulty tracker modules from the oracle

operation. However, it is not always knownwhich detector modules

have failed to record a hit, thus the choice of which part of the

data bit-string to examine is not clear. To effectively deal with this

situation, the oracle can be modified by randomly removing CNOT-

operation controls to correctly identify possible hit-patternmatches

in imperfect data to a high level of accuracy. Due to the extreme

combinatorics in modern particle collider experiments, this is

becoming an unmanageable problem for classical approaches,

such as Associative Memory. The algorithm presented here can

match both perfect and imperfect data, retrieving the correct

match with high probability without any increase in computational

complexity or resources for the latter. The simple but effective

algorithm, therefore, provides an advantage over classical template

matching techniques, both in polynomial speedup and the ability

to match data with missing hits. This speedup and accuracy will

become necessary as the field moves to an era of higher energies

and luminosities.

3 In practice, Quantum Counting (Brassard et al., 1998) can be used to

determine the number of interesting states, m.

6 Conclusion

Charged-track finding in high-energy particle collisions is a

complex combinatorial task, fraught with challenges stemming

from the sheer volume of data, noise, and intricacies of particle

interactions. In this article, we present general and extendable

quantum algorithms for the identification of particle tracks through

a detector. As an application, a simplified detector model has

been used, constructed from 12 detector modules arranged in

four layers of three tracking modules. The quantum algorithms

employ a novel oracle design to successfully identify particle tracks

traversing the detector by matching detector-hit data to a hit-

pattern template in a pre-established database of possible hit

patterns. By abstracting the Quantum Amplitude Amplification

(QAA) routine to encompass an additional data register, the

identified template has then been amplified to deliver the correct

match upon measurement. Exploiting the established polynomial

speedup provided by the QAA routine (Brassard et al., 2002),

the quantum template matching algorithm provides an advantage

over classical tracking techniques via Associative Memory. Figure 4

contains the results from running the quantum template matching

algorithm on the qasm_simulator for 104 shots, showing that

data parsed to the algorithm has been correctly matched to a

hit-pattern template.

Confronting the prevalent issue of data with missing detector

hits, the quantum template matching algorithm has been adapted

and tested to mitigate the complexity of reconstructing tracks from

imperfect data. By modifying the general oracle from Section 4,

the quantum template matching algorithm has been used to

correctly identify hit-pattern templates for a track traversing the

detector with one detector layer failing to register a hit. This task

is highly non-trivial for classical track-identification techniques.

Remarkably, the quantum resources required, and the complexity

of the circuit, do not increase for imperfect data, providing

a quick and efficient method for identifying tracks from data

with missing hits. Figure 5 demonstrates the quantum template

matching algorithm’s ability to successfully return possible hit-

pattern templates for data with missing hits, with high probability.

The quantum methodologies presented in this article not only

adeptly manage incomplete data but also underline the durability

and adaptability of quantum algorithms when faced with real-

world, inconsistent datasets. Furthermore, our exploration of

track encoding and utilizing templates for various hit patterns in

detectors provides deeper insights into the potential of quantum

techniques in collider physics. These findings emphasize the

immense promise of quantum computing in high-energy physics.

To conclude, while acknowledging the challenges inherent to

charged track finding, our research underscores the pivotal role

and promise of quantum algorithms in setting new benchmarks

and advancing the task of charged-track finding in particle

collision studies.
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