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Introduction: Sepsis is a leading cause of death. However, there is a lack of 
useful model to predict outcome in sepsis. Herein, the aim of this study was 
to develop an explainable machine learning (ML) model for predicting 28-day 
mortality in patients with sepsis based on Sepsis 3.0 criteria.

Methods: We obtained the data from the Medical Information Mart for Intensive 
Care (MIMIC)-III database (version 1.4). The overall data was randomly assigned 
to the training and testing sets at a ratio of 3:1. Following the application of 
LASSO regression analysis to identify the modeling variables, we proceeded to 
develop models using Extreme Gradient Boost (XGBoost), Logistic Regression 
(LR), Support Vector Machine (SVM), and Random Forest (RF) techniques with 
5-fold cross-validation. The optimal model was selected based on its area under 
the curve (AUC). Finally, the Shapley additive explanations (SHAP) method was 
used to interpret the optimal model.

Results: A total of 5,834 septic adults were enrolled, the median age was 66  years 
(IQR, 54–78  years) and 2,342 (40.1%) were women. After feature selection, 14 
variables were included for developing model in the training set. The XGBoost 
model (AUC: 0.806) showed superior performance with AUC, compared with 
RF (AUC: 0.794), LR (AUC: 0.782) and SVM model (AUC: 0.687). SHAP summary 
analysis for XGBoost model showed that urine output on day 1, age, blood urea 
nitrogen and body mass index were the top four contributors. SHAP dependence 
analysis demonstrated insightful nonlinear interactive associations between factors 
and outcome. SHAP force analysis provided three samples for model prediction.

Conclusion: In conclusion, our study successfully demonstrated the efficacy of 
ML models in predicting 28-day mortality in sepsis patients, while highlighting 
the potential of the SHAP method to enhance model transparency and aid in 
clinical decision-making.
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Introduction

Sepsis is a common life-threatening condition associated with high morbidity and 
mortality (Singer et al., 2016). Data from the Global Burden of Diseases (GBD) project show 
that in 2017, there were an estimated 48.9 million sepsis cases occurred worldwide, with 
approximately 11.0 million sepsis-related deaths (Rudd et al., 2020). Despite the advancement 
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of various treatments of sepsis, the mortality remains unacceptably 
high (Evans et al., 2021).

Monitoring and providing early warning are essential steps in the 
sepsis process (Shamout et  al., 2020). Evidence from a multicenter 
randomized controlled trial showed that using of an automated 
predictive model to identify hospitalized patients at high risk for clinical 
deterioration was associated with decreased mortality (Escobar et al., 
2020). Machine learning (ML) is a subfield of artificial intelligence, which 
enables complex decision-making in clinical practice. Previous studies 
have demonstrated that ML is superior to traditional predictive models, 
such as Cox regressions and Logistic regression (Hu et al., 2022a,b,c).

In the context of sepsis outcome prediction, previous studies have 
employed fuzzy methods to enhance interpretability. For instance, 
fuzzy decision-making approaches have been utilized to derive 
transparent decision rules based on expert knowledge and patient data 
(Yang et al., 2023). Probabilistic fuzzy systems have been used to model 
uncertainties and capture the relationships between input variables 
and sepsis mortality outcomes. Multi-stage modeling using fuzzy 
multi-criteria feature selection has been employed to identify relevant 
features and interpret their contributions to the prediction model. 
Fuzzy modeling techniques have been utilized to develop interpretable 
and transparent models for sepsis prognosis. These fuzzy-based 
approaches emphasize the interpretability of the models by providing 
transparent rules, linguistic variables, and membership functions that 
can be easily understood and validated by domain experts.

In order to conquer the black box problem, Lundberg and colleagues 
recently proposed a Shapley additive explanations (SHAP) method 
(Lundberg et al., 2020). This explainable method has been successfully 
applied to interpret the ML models in predicting mortality among 
patients with acute kidney injury (Hu et al., 2022c) and identifying 
patients at risk of reattendance at discharge from emergency departments 
(Chmiel et al., 2021). However, the study to predict outcome using 
explainable ML approach in patients with sepsis remains scarce.

Therefore, combinatory uses of ML methods and SHAP method 
for prognosis prediction in the context of sepsis are worth exploring. 
In this investigation, we aimed to develop an explainable machine 
learning (ML) model to predict 28-day mortality in patients admitted 
to the intensive care unit (ICU) with a diagnosis of sepsis.

Methods

Data source and ethical approval

The data for this study were obtained from the Medical 
Information Mart for Intensive Care (MIMIC)-III database (version 
1.4). The MIMIC-III is a large, freely available database, which 
contains comprehensive information on more than 60,000 intensive 

care unit (ICU) admissions at the Beth Israel Deaconess Medical 
Center (Boston, Mass.), between 2001 and 2012 (Johnson et al., 2016). 
This database contains highly granular data, including demographic 
characteristics, vital signs, laboratory results, treatments and 
clinical outcomes.

The MIMIC-III project was approved by the ethics committees of 
the Massachusetts Institute of Technology (United States) and Beth 
Israel Deaconess Medical Center (United States), and one author in 
this study has been approved to get access to the MIMIC-III database 
after completing the Protecting Human Research Participants 
examination. This database is a public de-identified database thus 
informed consent and approval of the Institutional Review Board was 
waived. Written informed consent was obtained from individual at 
ICU admission. All procedures performed in this study involving 
human participants were in accordance with the ethical standards of 
the institutional and national research committee and with the 2013 
Helsinki declaration (World Medical Association, 2013).

Study population and outcome

Inclusion criteria was adult patients (> 18 years) with a diagnosis 
of sepsis in accordance with the Third International Consensus 
Definitions for Sepsis (Sepsis-3) (Singer et al., 2016), which involved 
the acquisition of a blood culture (test for infection) contemporaneous 
to administration of antibiotics and combined with a change in 
Sequential Organ Failure Assessment (SOFA) score ≥ 2 on day 1 after 
ICU admission (Supplementary Figure S1). The SOFA score is a 
widely used tool in critical care medicine to assess the severity of 
organ dysfunction in critically ill patients, including those with sepsis. 
It provides a quantifiable measure of the extent of organ dysfunction 
based on several physiological parameters. The SOFA score evaluates 
six different organ systems: respiratory, cardiovascular, hepatic, 
coagulation, renal, and neurological. Each organ system is assigned a 
score based on the patient’s clinical measurements and laboratory 
values. The scores from each organ system are then summed to 
provide an overall SOFA score. Patients who met the following criteria 
were excluded: (1) multiple ICU admission (only the first admission 
per patient was analyzed); (2) ICU length of stay <24 h. The primary 
outcome was death from any cause at 28 days after ICU admission, 
which included both in-hospital and post-hospital mortality up to 
28 days. In MIMIC-III database, out of hospital mortality is obtained 
using the Social Security Administration Death Master database and 
in-hospital mortality is sourced from the hospital database. The 
28-day period is considered significant in sepsis because it reflects the 
acute phase of the illness and is a critical window for patient outcomes. 
It assists healthcare providers in determining the need for intensive 
care resources, including bed availability, staffing, and other supportive 
measures during this crucial timeframe (Peng et al., 2023).

Data extraction and preprocessing

We extracted demographic characteristics, comorbidities, vital 
signs, laboratory results and severity scores from the MIMIC-III 
database using Structured Query Language (SQL) and PostgreSQL 
software (version 9.6.22). In brief, the demographic characteristics 
included age, gender and body mass index (BMI). The comorbidities 

Abbreviations: ML, Machine learning; MIMIC, Medical Information Mart in Intensive 

Care; XGBoost, Extreme gradient boost; SHAP, Shapley additive explanation; SOFA, 

Sequential Organ Failure Assessment; LODS, Logistic Organ Dysfunction System; 

GBD, Global Burden of Diseases; ICU, Intensive care unit; SQL, Structured Query 

Language; SD, Standard deviation; IQR, Interquartile range; AUC, Area under the 

receiver operator characteristic curve; CI, Confidence interval; GCS, Glasgow 

Coma Scale; MICE, Multivariate Imputation by Chained Equations; LASSO, Least 

absolute shrinkage and selection operator.
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included hypertension, diabetes, congestive heart failure, renal failure, 
liver disease, tumor and rheumatoid arthritis. The vital signs included 
heart rate, respiratory rate, systolic blood pressure, diastolic blood 
pressure, mean artery pressure, body temperature, SpO2. We extracted 
the mean values for the vital signs because they are measured 
repeatedly and could be greatly affected by the external environment. 
For laboratory results, we  selected the maximum value for the 
following variables: glucose, lactate, white blood cell count, aspartate 
aminotransferase, alanine aminotransferase, creatine kinase MB, 
lactate dehydrogenase, total bilirubin, prothrombin time, partial 
thromboplastin time, international normalized ratio, creatinine, 
blood urea nitrogen (BUN), sodium, chloride, potassium, 
bicarbonate, and anion gap. Furthermore, we selected the minimum 
value for the following variables: platelet, hematocrit, hemoglobin, 
and albumin. The Logistic Organ Dysfunction System (LODS) (Le 
Gall et al., 1996) and Sequential Organ Failure Assessment (SOFA) 
(Raith et al., 2017) score were recalculated with the maximum value 
according to their components on day 1. Moreover, we included total 
urine output on the first day of the ICU. All the data were collected 
on day 1 after ICU admission. To avoid overfitting, we  excluded 
LODS score and SOFA score for model development 
(Supplementary Table S1). The code and data extraction details can 
be found in the repository available at GitHub MIT-LCP/mimic-code. 
The components of the SOFA score include: (1) respiratory: PaO2/
FiO2 ratio (partial pressure of arterial oxygen/fraction of inspired 
oxygen); (2) coagulation: platelet count or international normalized 
ratio (INR); (3) liver: bilirubin level; (4) cardiovascular: mean arterial 
pressure or use of vasopressors; (5) central nervous system: Glasgow 
Coma Scale score; (6) renal: Serum creatinine or urine output. Each 
component is assigned a score from 0 to 4, with higher scores 
indicating more severe dysfunction. The total SOFA score is the sum 
of the scores from all the components (Supplementary file). The 
components of the LODS score include: (1) cardiovascular: mean 
arterial pressure, use of vasopressors, or the need for cardiac massage; 
(2) respiratory: oxygenation index and positive end-expiratory 
pressure; (3) renal: serum creatinine level and urine output; (4) 
hematologic: platelet count and white blood cell count; (5) hepatic: 
bilirubin level; (6) neurologic: Glasgow Coma Scale score. Similar to 
the SOFA score, each component is assigned a score, and the total 
LODS score is calculated by summing these scores. The LODS is 
typically used for the assessment of organ dysfunction in critically ill 
patients, including those with sepsis (Supplementary file).

In this study, the selection of maximum or minimum values for 
specific variables was driven by the clinical context and their relevance 
to the research question under investigation. Our primary objective 
was to capture the extreme values of these variables, as they hold 
utmost importance in clinical decision-making and bear significant 
implications for patient outcomes. Variables such as glucose, lactate, 
white blood cell count, aspartate aminotransferase, and alanine 
aminotransferase serve as common markers for metabolic 
dysfunction, inflammation, and organ damage. Higher values of these 
variables often suggest the presence of pathology or indicate the 
severity of a disease, thereby signifying critical conditions or disease 
progression. On the other hand, variables like platelet count, 
hematocrit, hemoglobin, and albumin have specific optimal or 
desirable ranges. Values falling below the normal range for these 
variables may indicate conditions such as anemia or nutritional 
deficiencies, which can impact overall health.

We performed the analyses in accordance with the published 
studies (Tseng et al., 2020; Hu et al., 2022b). First, we defined outlier 
as a data point that falls below [first quartile (Q1) - 1.5* interquartile 
range (IQR)] or above [third quartile (Q3) + 1.5*IQR]. It defines a 
range beyond which data points are considered potential outliers. Data 
points falling below (Q1–1.5*IQR) or above (Q3 + 1.5*IQR) are 
typically flagged as outliers. Then we dropped these outliers (Korhonen 
et al., 2024). Second, we removed those features with greater than 50% 
missing values. The fraction of missing values for all features are 
presented in Supplementary Figure S4. Third, all septic individuals 
were split into a training (N = 4,375) set and a validation (N = 1,459) set 
using computer-generated random numbers at a ratio of 3:1. After data 
splitting, Multiple Imputation by Chained Equations (MICE) was 
carried out independently for both the training set and the testing set 
(Zhang, 2016). This approach entails treating the training and testing 
sets as separate entities during the data imputation process, ensuring 
no information exchange between them. Furthermore, we used a least 
absolute shrinkage and selection operator (LASSO) regression with 
5-fold cross-validation to select the features in the training set 
(Supplementary Figure S5). The LASSO is a well-known method that 
could mitigate overfitting during feature selection (Bloniarz et  al., 
2016). The full details for data preprocessing are presented in Figure 1, 
which including data extraction, data preprocessing, model 
development and validation, model interpretable.

Model development and validation

First, we  evaluated multiple candidate prediction models, 
including extreme gradient boost (XGBoost), logistic regression (LR), 

FIGURE 1

Study design. MIMIC-III, Medical Information Mart for Intensive Care 
III; LASSO, least absolute shrinkage and selection operator; SHAP, 
Shapley additive explanation.
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support vector machines (SVM), and Random Forest (RF), to predict 
28-day mortality among patients with sepsis in the training set. 
XGBoost, known for its optimized implementation of gradient 
boosting, demonstrated high bias and low variance. LR was chosen as 
the baseline model due to its linear nature. SVM utilized the boundary 
hyperplane between positive and negative samples for prediction, 
while RF employed an ensemble of decision trees to reduce prediction 
errors caused by individual trees.

Next, we  incorporated feature selection, model selection, and 
hyperparameter tuning into the process. For feature selection, LASSO 
regression was employed to identify relevant features. Model selection 
involved comparing the performance of the candidate models 
(XGBoost, LR, SVM, RF) using appropriate evaluation metrics. 
Hyperparameter tuning was performed to optimize the parameters of 
each model. Specifically, the hyperparameters of the XGBoost model 
were fine-tuned using Scikit-learn’s GridSearchCV in combination 
with 5-fold cross-validation (Khan et  al., 2020). The selected 
hyperparameters for optimization included learning_rate, gamma, 
max_depth, subsample, min_child_weight, and n_estimators. 
Similarly, the GridSearchCV method from scikit-learn was utilized to 
optimize the hyperparameters of other models (SVM, RF, LR), while 
also employing 5-fold cross-validation.

Lastly, the final selected model is assessed by evaluating its 
generalization performance on the test set. AUC is calculated using 
the selected features on the test set, thereby validating the 
model’s performance.

Model explainability

Since SHAP utilizes game theory to transform the model into a 
sum effect of all feature attributes, enabling the calculation of the 
impact of each feature on the final prediction, we proposed three 
analytical approaches: SHAP summary analysis, SHAP dependence 
analysis, and SHAP force analysis. These approaches aimed to provide 
a comprehensive understanding of the optimal model at both the 
feature level and individual level.

Statistical analysis

For continuous variables, the mean [standard deviation (SD)] and 
median [interquartile range (IQR)] were used for normally and 
abnormally distributed data, respectively. Categorical variables were 
expressed as absolute values along with percentages. For the 
comparison of participants with survivors and non-survivors, χ2 test, 
Fisher’s exact test, Student’s t test or Mann–Whitney U test were used 
when appropriate. Spearman’s rank correlation coefficient was used to 
assess association between the candidate features.

In this study, an outlier is defined as a data point that falls below 
(Q1–1.5*IQR) or above (Q3 + 1.5*IQR), and then we dropped these 
outliers using R statistical software. Additionally, we provided the 
related hyperparameters (values that control the machine learning 
process) for each machine learning model (Supplementary Table S4).

To evaluate the predictive performance of the four models, 
we  calculated eight representative performance evaluation 
measures: area under the receiver operator characteristic curve 
(AUC), cut-off, accuracy, sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV) and F1 score. In our 
study, we utilized the Youden index to select the optimal cut-off 
point for determining the predictive threshold of models. The 
Youden index is a commonly used metric that maximizes the sum 
of sensitivity and specificity, providing an optimal balance between 
the two (Chen et al., 2015). Additionally, the cut-off values represent 
the threshold values used to classify individuals into the two 
categories: survivors and non-survivors. We  evaluated the 
calibration of the prediction model by conducting the Hosmer-
Lemeshow goodness-of-fit test, calculating the Brier score and 
plotting the calibration curve. The SHAP summary analysis, SHAP 
dependence analysis and SHAP force analysis were applied to 
describe the impacts of the feature values on the optimal model, 
respectively.

We performed statistical analyses using the sklearn machine 
learning package (version 0.24.2), xgboost package (version 1.5.0), 
and shap package (version 0.40.0) in Python (version 3.6.6, Python 
Software Foundation, Wilmington, DE, United  States) and R 
(version 3.6.1, Project for Statistical Computing, Vienna, Austria) 
software. A two-sided p < 0.05 was considered statistically significant.

Results

Characteristics of study participants

Of 61,532 admissions from the MIMIC-III database, 7,924 were 
diagnosed with sepsis in the first day after ICU admission. 2090 
patients were excluded in our study because of multiple ICU 
admission (N = 1,610) and ICU length of stay <24 h (N = 480). A total 
of 5,834 patients with sepsis were then enrolled. The screening 
flowchart is presented in Supplementary Figure S2. Among 5,834 
septic patients, the median age was 66 years (IQR, 54–78 years), 2,342 
(40.1%) were women, and the 28-day all-cause mortality was 15.5% 
(903/5834). The top three comorbidities were diabetes (1,557/5834, 
26.7%), congestive heart failure (878/5834, 15.0%) and renal failure 
(802/5834, 13.7%). Additional participant characteristics are presented 
in Table 1.

Univariate comparison of two groups revealed that non-survivors 
were older [73 (60–82) vs. 65 (53–77) years, p < 0.001], and had lower 
body mass index [26 (23–30) vs. 28 (24–32) kg/m2, p < 0.001], 
compared with survivors. Non-survivors were more likely to have 
underlying comorbidities, including congestive heart failure (23.9% vs. 
13.4%, p < 0.001), renal failure (17.6% vs. 13.0%, p < 0.001), liver disease 
(10.0% vs. 5.8%, p < 0.001) and tumor (11.6% vs. 5.4%, p < 0.001). 
Additionally, survivor patients vs. non-survivors had lower severity of 
illness scores, included SOFA score [6 (4–9) vs. 5 (3–6), p < 0.001] and 
LODS score [7 (4–9) vs. 4 (3–6), p < 0.001]. The distribution plot of 
mortality days is shown in Supplementary Figure S3, we observe a high 
mortality rate within the first 7 days after ICU admission, this early 
peak in mortality aligns with the well-established understanding of 
sepsis as a rapidly progressing and life-threatening condition.

Feature selection

The overall study design is displayed in Figure 1. We extracted 41 
clinical variables from the MIMIC-III database, including demographic 
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TABLE 1 Baseline characteristics between survivors and non-survivors.

Characteristics Total
(N  =  5,834)

Survivors
(N  =  4,931)

Non-survivors 
(N  =  903)

P value

Demographics

Age, year 66 (54–78) 65 (53–77) 73 (60–82) <0.001

Gender 0.016

Male, n (%) 3,492 (59.9) 2,984 (60.5) 508 (56.3)

Female, n (%) 2,342 (40.1) 1947 (39.5) 385 (43.7)

Body mass index, kg/m2 28 (24–32) 28 (24–32) 26 (23–30) <0.001

Comorbidities

Diabetes, n (%) 1,557 (26.7) 1,324 (26.9) 233 (25.8) 0.513

Congestive heart failure, n (%) 878(15.0) 662 (13.4) 216 (23.9) <0.001

Renal failure, n (%) 802 (13.7) 643 (13.0) 159 (17.6) <0.001

Hypertension, n (%) 697 (11.9) 571 (11.6) 126 (14.0) 0.043

Liver disease, n (%) 377 (6.5) 287 (5.8) 90 (10.0) <0.001

Tumor, n (%) 369 (6.3) 264 (5.4) 105 (11.6) <0.001

Rheumatoid arthritis, n (%) 153 (2.6) 122 (2.5) 31 (3.4) 0.097

Vital signs on day 1

Heart rate, bpm 104 (91–118) 103 (90–117) 109 (94–126) <0.001

Systolic blood pressure, mmHg 89 (79–99) 89 (81–99) 84 (73–95) <0.001

Diastolic blood pressure, mmHg 43 (37–50) 44 (38–50) 40 (33–48) <0.001

Mean arterial pressure, mmHg 57 (51–64) 58 (52–64) 55 (47–62) <0.001

Respiratory rate 27 (23–31) 26 (23–30) 29 (24–33) <0.001

Body temperature, °C 37.6 (37.1–38.2) 37.6 (37.1–38.1) 37.6 (36.9–38.2) 0.011

SpO2, % 93 (90–95) 93 (91–95) 92 (88–95) <0.001

Laboratory findings on day 1

Blood glucose, mg/dL 170 (139–212) 168 (139–207) 179 (143–243) <0.001

Lactate, mmol/L 2.3 (1.5–3.5) 2.3 (1.5–3.3) 2.6 (1.6–4.6) <0.001

White blood cell count, ×103/uL 13.6 (10.1–18.2) 13.3 (10.1–17.8) 15.1 (10.3–20.4) <0.001

Platelets, ×103/uL 170 (119–232) 169 (121–229) 175 (109–248) 0.996

Hematocrit, % 29 (25–33) 29 (25–33) 30 (26–34) <0.001

Hemoglobin, g/dL 9.8 (8.4–11.3) 9.7 (8.4–11.2) 10.0 (8.7–11.4) <0.001

Total bilirubin, mg/dL 0.7 (0.4–1.5) 0.7 (0.4–1.4) 0.8 (0.5–2.1) <0.001

Prothrombin time, s 15 (13–17) 15 (13–17) 16 (14–20) <0.001

Partial thromboplastin time, s 33 (28–45) 33 (28–43) 35 (28–57) <0.001

International normalized ratio 1.3 (1.2–1.6) 1.3 (1.2–1.5) 1.4 (1.2–2.0) <0.001

Creatinine, mg/dL 1.1 (0.8–1.6) 1.0 (0.8–1.5) 1.4 (0.9–2.5) <0.001

Blood urea nitrogen, mg/dL 21 (15–35) 20 (14–31) 32 (21–51) <0.001

Sodium, mmol/L 141 (138–143) 141 (138–143) 141 (137–144) 0.509

Chloride, mmol/L 109 (105–112) 109 (105–112) 107 (102–112) <0.001

Potassium, mmol/L 4.6 (4.2–5.3) 4.6 (4.2–5.3) 4.6 (4.1–5.2) 0.112

Bicarbonate, mmol/L 25 (22–27) 25 (23–27) 24 (21–27) <0.001

Anion gap 15 (12–18) 14 (12–17) 17 (14–21) <0.001

Urine output on day 1, mL 1723 (1090–2,540) 1818 (1205–2,630) 1,097 (606–1820) <0.001

Severity of illness scores

GCS 15 (14–15) 15 (14–15) 15 (12–15) 0.561

SOFA 5 (3–7) 5 (3–6) 6 (4–9) <0.001

LODS 4 (3–7) 4 (3–6) 7 (4–9) <0.001

Data were reported as no. (%) or median (IQR).
GCS, glasgow coma scale; SOFA, sequential organ failure assessment; LODS, logistic organ dysfunction system.
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TABLE 2 Comparisons of performance between the four models in the testing set.

Models AUC Cut-off Accuracy Sensitivity Specificity PPV NPV F1

XGBoost 0.806 0.186 0.855 0.761 0.701 0.577 0.864 0.373

RF 0.794 0.121 0.846 0.763 0.690 0.188 0.873 0.291

LR 0.782 0.231 0.843 0.732 0.695 0.442 0.881 0.429

SVM 0.687 0.168 0.832 0.621 0.616 0.216 0.913 0.271

AUC, area under the curve; ML, machine learning; XGBoost, extreme gradient boost; LR, logistic regression; SVM, support vector machines; RF, random forest; LODS, logistic organ 
dysfunction system; SOFA, sequential organ failure assessment; PPV, positive predictive value; NPV, negative predictive value.

characteristics, comorbidities, vital signs, laboratory results and 
severity scores (Supplementary Table S1). Five variables were removed 
because of missingness >50%. The fraction of missing values for all 
variables is presented in Supplementary Figure S4. After randomly 
splitting, there were 4,375 patients (75%) in the training set and 1,459 
patients (25%) in the testing set. Then, we applied a classical LASSO 
regression involved using 5-fold cross-validation with the minimum 
criteria in the training set (Supplementary Figure S5). A total of 14 
variables were finally included for our analysis (Supplementary Table S2). 
Moreover, we tested the association of these variables by calculating 
Spearman’s rank correlation coefficient (Supplementary Figure S6). The 
highest correlations were observed between anion gap and lactate 
(r = 0.5) and anion gap and blood urea nitrogen (r = 0.5).

Model development and validation

We found that all of the variables between the training set (N = 4,375) 
and the verification set (N = 1,459) did not exhibit statistically significant 
differences (all p > 0.05) (Supplementary Table S3). We  developed 
XGBoost, RF, LR and SVM models with 5-fold cross-validation 
technique. The results are presented in Table  2. We  found that the 
XGBoost model (AUC: 0.806) had superior performance with AUC, 
compared with RF (AUC: 0.794), LR (AUC: 0.782) and SVM model 
(AUC: 0.687) (Figure  2 and Table  2). To evaluate the predictive 
performance of the XGBoost model, we also added LODS score and 
SOFA score as the reference standard for prediction of the outcome in 
sepsis. The AUCs for LODS and SOFA were 0.728 and 0.685, respectively 
(Supplementary Figure S7). Additionally, we  used the Hosmer-
Lemeshow test and Brier score to assess the calibration for the XGBoost 
model, the results showed that the Chi-square value was 8.216 (p = 0.354) 
and the Brier score was 0.05, respectively (Supplementary Figure S8). 
Meanwhile, the calibration curve also demonstrated a good agreement 
between the predicted and observed values for the XGBoost model 
(Supplementary Figure S8). Therefore, the XGBoost model was 
identified as the optimal model in this study.

Model interpretability at the feature level

Moreover, we  evaluated the factors that contributed to the 
prediction in the XGBoost model. The SHAP summary analysis 
showed that urine output on day 1, age, BUN and BMI were the top 
four contributors in the XGBoost model (Figures 3A,B). To better 
understand the relationship between the four variables and outcome, 
we displayed the four SHAP dependence plots (Figures 4A–D). These 
results demonstrated that elevated urine output and BMI were 
associated with decreased mortality. Reversely, higher levels of BUN 

and older were associated with increased mortality. Additionally, the 
SHAP interaction value for XGBoost model is presented in 
Supplementary Figure S9.

Model interpretability at the individual level

Furthermore, we conducted SHAP force analysis to illustrate the 
overall impact of key features on the XGBoost model in three 
representative individuals (Figure 5). For example, in case-A, the 

FIGURE 2

ROC analysis for the four models. (A) Comparison of AUC values 
between the four models in the training set. (B) Comparison of AUC 
values between the four models in the testing set. ROC, receiver 
operating characteristic curve; AUC, area under the curve; XGBoost, 
extreme gradient boost; RF, random forest; LR, logistic regression; 
SVM, support vector machine.
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probability of death predicted by the XGBoost model was 2% due to 
a variety of favorable conditions, consisting of a high GCS value of 
14, high BMI value of 36.5 kg/m2, high SBP value of 103 mmHg, 
although a slightly older age (75.9 years) and high BUN value of 
40 mg/dL. The true outcome for case-A was survive. In case-B, the 
probability of death prediction was 40% due to a mixture of 
conditions, including a low urine output on day 1 (215 mL), high 
anion gap value of 24 and high WBC count value of 16 × 103/uL, 
despite a low bilirubin of 0.6 mg/dL. The true outcome for case-B was 
death. In case-C, the probability of death prediction was relatively 
high (76%) due to a variety of unfavorable conditions, including a low 
urine output on day 1 (33 mL), high lactate value of 19.7 mmol/L, 
despite a high BMI value of 29.29 kg/m2. The true outcome for case-C 
was death.

Discussion

In this study, we successfully applied ML approaches to develop 
and validate the prognostic prediction models in patients with sepsis. 
By comparison, the XGBoost model outperformed RF, LR, SVM and 
other traditional clinical scoring systems. Moreover, we utilized a 
latest model interpretation strategy called SHAP to explain how 
individual risk factors influence mortality in the ML model. These 
may help to provide clinical decision-making.

Sepsis is a common syndrome in critically ill patients. Early 
and accurate prediction of prognosis is essential to the clinical 
decision-making process in patients with sepsis. Notably, several 
recently randomized clinical trials have demonstrated that use of 
ML-based disease prediction systems were associated with 
improved outcomes (Shimabukuro et  al., 2017; Escobar et  al., 
2020). Thus, it is necessary to develop a prognostic prediction 
model in patients with sepsis.

ML represents the most cost-effective method for model 
construction, and consequently many computational tools for disease 
detection and outcome prediction have been recently developed. A 
recent study conducted by William et al. demonstrated the potential 
ability of ML models in predicting mortality among sepsis, they 
found that ML outperformed commonly used clinical risk scores, 
such as abbMEDS, mREMS and SOFA (van Doorn et  al., 2021). 
Additionally, Taylor and colleagues conducted a retrospective, 
modeling study and found that ML algorithm was superior to 
traditional analytic models (MEDS and REMS score) for predicting 
in-hospital mortality in patients with sepsis (Taylor et  al., 2016). 
Similarly, another modeling study including 923,759 patients also 
demonstrated the value of ML models in predicting sepsis mortality 
(Park et al., 2022). Our study supported evidence from the earlier 
clinical observations that XGBoost model had a superior performance 
to predict 28-day mortality among patients with sepsis, compared 
with clinical scoring systems, such as LODS and SOFA score.

The choice between filter and wrapper methods depends on 
various factors, such as the dataset size, dimensionality, computational 
resources available, and the specific goals of the analysis (McKearnan 
et  al., 2023). Filter methods like LASSO can be  computationally 
efficient and provide a good balance between feature selection and 
model building (Yamada et  al., 2014). Wrapper methods, while 
potentially more accurate, might be more computationally expensive 
and prone to overfitting, especially with high-dimensional datasets. 
Therefore, we used LASSO to select feature.

To date, the ML techniques still face black box challenges, which 
making it questionable to implement them in clinical practice (Azodi 
et al., 2020). Thus, it is essential to ensure transparency for ML and 
clarify how the ML model works. However, up to now, few studies 
have used explainable artificial intelligence (XAI) method for model 
interpretation (The Lancet Respiratory, 2018). In this study, 
we implemented SHAP method to mitigate the black-box effect of the 

FIGURE 3

SHAP summary plot for the XGBoost model. The model’s interpretation. (A) This plot depicts the feature importance ranking according to the mean 
(|SHAp value|); (B) This plot depicts the feature importance based on Shapley values. Herein, red indicates higher feature value, blue indicates lower 
feature value. Abbreviations: SHAP, Shapley additive explanation; XGBoost, extreme gradient boost; BMI, body mass index; BUN, blood urea nitrogen; 
GCS, Glasgow Coma Scale; SBP, systolic blood pressure.
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XGBoost model. The benefits of using SHAP analysis were mainly 
standing in two aspects. First, it provided an understanding of the 
impact of input features in the XGBoost model. Second, it provided 
a mechanism to build trust in the user community of the model by 
surfacing the features that impacted a particular prediction of the 
XGBoost model.

In this study, we found that urine output on day 1, age, BUN and 
BMI were the top four factors that affected the XGBoost model. 
These risk factors were also reported in previous studies. For 
example, urine output, a marker for the development of acute kidney 
injury, is commonly measured in the ICU. A huge study of 161,940 
patients identified that lower urine output was independently 
associated with increased mortality (Heffernan et al., 2022). In line 
with previous reports, we found that urine output ranked first in the 
XGBoost model, and we demonstrated that lower urine output was 
associated with increased mortality among septic patients. BUN is 
another serum biomarker to evaluate the renal function. Recently, 

this indicator has been employed in the context of septic patient 
evaluation because it has been shown to be  a key risk factor 
associated with poor prognosis among patients with sepsis (Li et al., 
2021; Han et al., 2022). Consistently, the SHAP analysis in our study 
also demonstrated that elevated blood urea nitrogen was related to 
poor outcome in septic patients. Additionally, evidences from 
previous studies shown that older age were associated with 90-day 
mortality after adjustment. In our study, we also found that age is 
another important indicator for mortality in patients with sepsis 
(Xie et  al., 2020; Hu et  al., 2022a). Notably, several studies have 
examined the effects of BMI on mortality with conflicting 
conclusions. For instance, some studies have observed the lower 
mortality in the obese (Pepper et al., 2016; Gribsholt et al., 2021), but 
some researchers believe that elevated BMI was associated with poor 
outcomes in sepsis (Butler-Laporte et al., 2020; Lin et al., 2020). 
Recently, the obesity paradox has been found in septic sepsis and 
several possible reasons that may explain this phenomenon: (1) 

FIGURE 4

SHAP dependence plot for the XGBoost model. (A) Urine output on day 1; (B) Age; (C) Blood urea nitrogen; (D) Body mass index. The y-axis values 
indicated the SHAP values of features, and the values of features for the x-axis were in the SHAP dependence plot. SHAP values for specific features 
exceeding zero represent an increased risk of mortality. Abbreviations: SHAP, Shapley additive explanation; XGBoost, extreme gradient boost; BUN, 
blood urea nitrogen; BMI, body mass index.
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Excess body fat prevent muscle loss in sepsis; (2) The 
immunomodulatory role of adiponectin in sepsis (Yeo et al., 2023). 
Our SHAP analysis also presented that higher BMI was associated 
with decreased mortality among patients with sepsis.

Compared with previous similar studies, this study has the 
following differences (Hou et al., 2020; Kong et al., 2020; Hu et al., 
2022b; Li et al., 2023). We demonstrated the ability of ML models to 
predict 28-day mortality in patients with sepsis, highlighting their 
potential as valuable tools in healthcare. The results indicate the 
superiority of the proposed approach over previous techniques in 
sepsis mortality prediction. By leveraging advanced ML algorithms, 
our models achieved higher accuracy and predictive power, 
outperforming traditional methods. Additionally, the utilization of 
the SHAP method improved the transparency of the ML models, 
providing interpretable insights into the factors influencing the 
predictions. This enhanced interpretability contributes to clinical 
decision-making, enabling healthcare professionals to understand the 
underlying mechanisms and make informed treatment choices for 
sepsis patients. These findings have significant implications, especially 
in cases where previous techniques failed to deliver satisfactory 
results. The proposed approach offers a novel solution that overcomes 
the limitations of conventional methods, providing more accurate 
and reliable predictions for sepsis mortality. By highlighting the 
advantages of our method and referencing situations where other 
techniques fell short, our study underscores the potential impact of 
this approach in improving patient outcomes and guiding 
clinical interventions.

However, this study also has several limitations. First, the 
MIMIC-III is a single-center database that only included patients in 
ICU at the Beth Israel Deaconess Medical Center, it remains 

unknown if the XGBoost model developed from the database applies 
to outside patients with sepsis. Second, we  only extracted the 
commonly used variables in this database, further exploration was 
not performed, which may lead to the abandonment of some key 
variables. Third, the MIMIC-III database consisting of critically ill 
participants between 2001 and 2012, and there have been many 
changes in the management of sepsis occurred in the interim. 
We  have attempted to reduce this effect by applying sepsis 3.0 
definition. Fourth, the LASSO method used in this study will select 
one factor randomly when there are two or more highly collinear 
variables, which therefore reflect the omission of important 
predictors. Fifth, we only included data in the first 24 h after ICU 
admission, and ignored the natural progression of sepsis. Sixth, this 
is a retrospective study, which is only conducted to identify 
potentially associations and hypothesize about whether identifying 
septic patients will actually have any benefit. Future studies can focus 
on validating the developed machine learning models using 
independent datasets from different healthcare settings or 
geographical regions. This would help assess the generalizability and 
robustness of the models across diverse patient populations and 
healthcare systems.

Conclusion

Our study successfully demonstrated the effectiveness of ML 
models in predicting 28-day mortality in patients with sepsis. The 
results showcase the potential of ML as a valuable tool in healthcare, 
offering accurate predictions for clinical outcomes. Furthermore, the 
application of the SHAP method enhanced the transparency of the 

FIGURE 5

SHAP force plot for the XGBoost model. Characteristic SHAP value influence diagram of three samples. Abbreviations: SHAP, Shapley additive 
explanation; XGBoost, extreme gradient boost; BMI, body mass index; BUN, blood urea nitrogen; GCS, Glasgow Coma Scale; SBP, systolic blood 
pressure; WBC, white blood cell.
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ML model, providing interpretable insights into the factors 
influencing the predictions. This increased transparency has 
significant implications for clinical decision-making, enabling 
healthcare professionals to better understand and trust the model’s 
output. Overall, the combination of ML models and the SHAP 
method holds promise for improving patient care and outcomes in 
the context of sepsis management.
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