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Acute lymphoblastic leukemia (ALL) is a fatal blood disorder characterized

by the excessive proliferation of immature white blood cells, originating in

the bone marrow. An e�ective prognosis and treatment of ALL calls for its

accurate and timely detection. Deep convolutional neural networks (CNNs) have

shown promising results in digital pathology. However, they face challenges

in classifying di�erent subtypes of leukemia due to their subtle morphological

di�erences. This study proposes an improved pipeline for binary detection and

sub-type classification of ALL from blood smear images. At first, a customized,

88 layers deep CNN is proposed and trained using transfer learning along with

GoogleNet CNN to create an ensemble of features. Furthermore, this study

models the feature selection problem as a combinatorial optimization problem

and proposes a memetic version of binary whale optimization algorithm,

incorporating Di�erential Evolution-based local search method to enhance the

exploration and exploitation of feature search space. The proposed approach is

validated using publicly available standard datasets containing peripheral blood

smear images of various classes of ALL. An overall best average accuracy of

99.15% is achieved for binary classification of ALL with an 85% decrease in the

feature vector, together with 99% precision and 98.8% sensitivity. For B-ALL sub-

type classification, the best accuracy of 98.69% is attained with 98.7% precision

and 99.57% specificity. The proposed methodology shows better performance

metrics as compared with several existing studies.

KEYWORDS

deep neural networks, optimization, meta-heuristics, transfer learning, convolutional

neural network

1 Introduction

Blood is an essential element for life and general health of human beings. It performs

several crucial functions including transport of nutrients and waste materials, controlling

flow of oxygen and overall immune system of body. Human blood is composed of three

main types of blood cells, namely, erythrocytes, thrombocytes, and leukocytes. Each

cell type performs a specific function in the human body. For example, leukocytes also

referred as white blood cells (WBCs) are responsible for human immune and inflammatory

response against diseases. Any abnormality in the structure and count of blood cells leads to

certain diseases. As an example, leukemia, a bloodmalignancy, is caused due to an excessive

leukocyte production in the bone marrows.
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Leukemia is a widespread disease with over 475,000 new cases

diagnosed worldwide each year and 312,000 annual deaths (Sung

et al., 2021). With 62,770 new cases and 23,670 deaths anticipated,

leukemia remains a significant public health concern for the United

States in 2024 (Siegel et al., 2024). It is primarily categorized into

two types: acute and chronic. Acute leukemia is distinguished by

the rapid and unregulated proliferation of immature white blood

cells within the bone marrow, which displaces the healthy cells.

The fast progression of disease requires prompt response. On the

other hand, the chronic leukemia is a slow progressing disease

in which gradual accumulation of mature but abnormal WBCs

takes place. Although these cells are typically more functional

than those found in acute leukemia, they are aberrant and can

still affect the normal functionality of blood and bone marrow.

The acute and chronic categories of leukemia are further classified

into myeloid and lymphoblastic sub-types, based on their afflicted

cells. The acute lymphoblastic type of leukemia (ALL) affects the

lymphoid cells and has high likelihood of occurring in the children

and young adults. It represents ∼14% of all new leukemia cases.

Approximately 90% of ALL cases occur in individuals younger than

20 years old, with a peak incidence observed in children aged 2–

5 (Sung et al., 2021). An estimated 6,550 new cases of ALL are

expected in the US in 2024 (Siegel et al., 2024).

A form of acute lymphoblastic leukemia called B-cell acute

lymphoblastic leukemia (B-ALL) develops from abnormal B-cell

progenitors. Various sub types of B-ALL are further categorized

based on distinct genetic, molecular, and immunophenotypic

characteristics. Sub types of B-ALL include pre-cursor, mature,

common, and pro B cell all.

The classical approach for the diagnosis of leukemia involves

visual analysis of microscopic blood images by hematologists.

This manual process needs human supervision; therefore, it is a

time-consuming process and often prone to classification errors

due to several factors (Matek et al., 2019). Thus, an accurate,

computer-aided diagnosis of leukemia is highly desirable (Khattak

et al., 2022). Among the modern approaches of computer vision,

deep CNNs have demonstrated significant potential for a number

of classification tasks in the biomedical domain. However, the

computer vision-based blood analysis for leukemia diagnosis is

difficult due to the small size, irregular structure, and physical

similarities across various blood components (Kassani et al., 2019).

Moreover, the performance of CNNs depends heavily on their

depth and structure. To obtain a high level of accuracy requires a

large, accurately labeled dataset for deep neural network training

from the scratch. However, due to a number of limitations, such

datasets are frequently not easily accessible in the biomedical

domain. In such a context, transfer learning stands out as the

recommended strategy, entailing the retraining of a deep CNN

Abbreviations: ALL, acute lymphoblastic leukemia; B-ALL, B cell acute

lymphoblastic leukemia; AML, acute myeloid leukemia; ANOVA, analysis of

variance; CNN, convolutional neural network; DNN, deep neural network;

DE, di�erential evolution; DT, decision tree; RGB, red green blue; HSI,

hue saturation intensity; SVMs, support vector machines; KNN, K-nearest

neighbors; TP, true positive; FN, false negative; TPR, true positive rate; FNR,

false negative rate; NN, neural network; WOA, whale optimization algorithm;

WBC, white blood cell.

originally trained on a substantially extensive dataset to suit a

specific classification task. A number of pretrained CNNs have

achieved high top-1 accuracy on benchmark datasets. GoogleNet

(Szegedy et al., 2015), Resnet (He et al., 2016), Darknet (Redmon

and Farhadi, 2018), Densenet (Howard et al., 2017), and Inception

(Chollet, 2017) are a few to mention. Recent research uses deep

CNNs as extractors of features, which are then utilized to train

outer classifiers. This leverages the power of transfer learning,

allows for task-specific adaptation, and provides an efficient way to

build accurate models. However, due to a large number of layers,

deep CNNs extract high dimensionality feature representations

from the input data. Afterward, feature selection is done to

reduce the dimensionality of these extracted features, making them

more manageable and potentially more informative. Efforts in

current research are directed toward optimizing the computational

efficiency and memory demands of the classification pipeline. The

primary goal is to attain superior accuracy while operating with

a more streamlined feature set (Khan et al., 2020; Ahmad et al.,

2023b).

The remainder of the study is structured as follows: Section 2

presents a literature review of some recently published studies in

the domain of leukemia identification. Section 3 offers an elaborate

exposition of the proposed framework for ALL identification.

In Section 4, we present and analyze simulation results, while

discussion is concluded in Section 5.

2 Literature review

Table 1 presents a summary of some notable contributions in

the realm of lekuemia identification using deep learning. They

are discussed as follows. In the study mentioned in the reference,

Elhassan et al. (2022), an approach is proposed for the detection

of acute myeloid leukemia (AML) from WBC images. At first, a

CMYK moment-based localization method is proposed to isolate

the region of interest (ROI) from WBC images. This is followed

by extraction and fusion of several pointwise and spatial features.

Classification is performed usingmultiple classifiers including SVM

and XG boost. The study reports the best accuracy of 97.57%

on self collected single cell morphological dataset. In the study

mentioned in the reference, Dese et al. (2021), a computer-assisted

system is proposed for the diagnosis of several leukemia sub-

types. The system is based on Gaussian and Weiner filtering

for image pre-processing, followed by K-means clustering and

marker-controlled Watershed algorithm for segmentation. Several

morphological, texture, and statistical features are extracted and

classified using multi-class SVM classifier. The best accuracy of

97.69% is reported for overall leukemia detection on self-collected

dataset of peripheral blood smear images. In Al-jaboriy et al. (2019),

an automatic method for the diagnosis of leukemia is proposed

based on leukocyte cell segmentation. The method uses a dataset

of 108 microscopic images and performs ANN-based segmentation

and extracts various statistical features for classification. The best

accuracy of 96% is achieved for binary classification of leukocyte

cell blasts. The study mentioned in the reference, Kassani et al.

(2019), the authors applied different augmentation techniques to

the dataset images. Then, a hybrid CNNmodel consisting of hidden

layers of VGG16, andMobileNet is proposed for feature extraction.
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TABLE 1 Summary of some published studies on leukemia identification.

Work Year Methodology Leukemia type Results

Batool and Byun

(2023)

2023 Data augmentation ALL Binary accuracy= 99.31%

Classification: EfficientNetB3 Multiclass accuracy= 96.81%

Elhassan et al.

(2022)

2022 CMYK based ROI localization AML Accuracy= 97.57%

Feature extraction: pointwise, spatial features

Classification: SVM, XG boost

Dese et al. (2021) 2021 Preprocessing: median and Wiener filter ALL, AML, Accuracy= 97.6%

Segmentation: K-means clustering, watershed

algorithm

CLL, CML

Feature extraction: morphological, texture, statistical

Classification: multiclass SVM

Kumar et al. (2020) 2020 Feature extraction: K-best algorithm ALL, AML Accuracy = 97.25%

Classification: SVM, random forest, DT

Al-jaboriy et al.

(2019)

2019 Segmentation: AI based ALL Accuracy = 96%

Statistical feature extraction

Classification: ANN

Kassani et al.

(2019)

2019 Multiple augmentation techniques ALL Accuracy = 96.17%

Classification: hybrid CNN model Sensitivity = 95.17%

The extracted features are classified using a NN architecture.

The proposed method achieves a binary classification accuracy of

96.17%. In the study mentioned in the reference Jung et al. (2022),

the authors proposed a custom CNNmodel for WBC classification

for leukemia detection. The authors first created a synthetic dataset

of WBC images using generative adversarial networks and then

performed transfer learning of the proposed CNN for classification.

An average accuracy of 97% is achieved by the system.

For extracting and choosing blood features, the authors of

the study mentioned in the reference, Alruwaili (2021) presented

a stepwise linear discriminant analysis technique. The suggested

method performs the identification of specific attributes within

blood smear images and their classification based on partial F-

values. A Matlab-based method for classifying and identifying

WBC cancer was proposed in the study mentioned in the

reference, Nithyaa et al. (2021). The approach integrates a

range of morphological, clustering, and image pre-processing

procedures with the utilization of random forest classification.

In the study mentioned in the reference, Pang et al. (2015), an

automatic leukocyte categorization approach is proposed. Initially,

moment invariants are derived using the Euclidean distance

transform within the nucleus region, followed by the extraction of

morphological characteristics from the segmented cells.

The published literature on leukemia detection also proposes

a number of proprietary deep CNNs and their ensembles.

In the study mentioned in the reference, Batool and Byun

(2023), a lightweight deep learning-based EfficientNet-B3 model

is proposed which employs depth-wise separable convolutions for

ALL classification. The method proposed in this study attains

a classification accuracy of 96.81% when applied to publicly

available datasets for leukemia sub-type classification. In the study

mentioned in the reference, Kumar et al. (2020), a simple method

for the detection of ALL, and AML is proposed in which KBest

algorithm is used for feature extraction, followed by a dense CNN

for classification. The proposed approach reports the best accuracy

of 97.2%. In the study mentioned in the reference, Jha et al. (2022),

a leukemia identification method is proposed which uses K-means

clustering from image segmentation. Next, multiple statistical

features are extracted to train an ensemble of multiple classifiers.

The proposed system reports a best accuracy of 96.3%. In most of

the existing studies that utilize deep transfer learning, the feature

selection is performed using a filter or wrapper-based approach.

Filter-based methods assess the relevance of individual features

by examining their statistical properties, such as correlation with

the target variable or variance within the feature. These methods

have a limitation in that they do not consider the relevance

between the selected features and the actual model’s performance.

This can lead to situations where selected features might not be

the most predictive for the planned model. Conversely, wrapper-

based methods entail employing a machine learning model in

the capacity of a “wrapper" to assess the effectiveness of various

feature subsets. These methods select features by repeatedly

training and evaluating the model on different subsets of features.

These methods are particularly useful in obtaining the best set

of features for a specific classifier model. Recently, population-

based algorithms for feature selection have received considerable

research attention. A significant challenge lies in fine tuning the

algorithm to achieve better exploration of feature search space and
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obtain the most discriminant and powerful set of features. Standard

population-based algorithms used in several studies on disease

classification often suffer from poor convergence and local optima

problems (Gupta et al., 2020; Shahzad et al., 2022).

2.1 Contributions

In this study, a hybrid method is proposed for the classification

of ALL sub-types. The key contributions of this research can be

outlined as follows:

• First, we present a customized 88-layer deep CNN architecture

which incorporates the aspects of two standard deep CNN

models, namely, AlexNet and SqueezeNet.

• Subsequently, we employ transfer learning to extract features

using the proposed custom CNN architecture and another

deep model, namely, GoogleNet. The feature vectors from

both networks are fused together.

• For feature selection, we propose a memetic algorithm

which combines a nature inspired meta-heuristic, i.e., whale

optimization algorithm (WOA) with local search based on

differential evolution. The proposed method achieves a better

exploration of search space while avoiding local optima.

• The set of selected features is then used to perform training

and classification using several outer classifiers with multiple

kernel settings.

• The proposed pipeline is validated using public datasets for

binary detection and sub-type classification of ALL. Better

or comparable performance with significant reduction in

feature vector size is demonstrated by the proposed method

as compared with several existing studies.

3 Materials and methods

3.1 Datasets

In this research, publicly accessible datasets comprising blood

smear images are employed for both binary detection and the

identification of ALL sub-types. The first dataset is the ALL-IDB2

dataset created by the authors of the study mentioned in the

reference, Scotti et al. (2005) at the University ofMilan. This dataset

consists of 260 images corresponding to two classes of subjects,

i.e., “Healthy" and “ALL." An optical microscope with a Canon

Power Shot G5 camera is used to capture the images. The ALL-

IDB2 dataset consists of cropped images of ALL-IDB1 dataset that

obtains region of interest of normal and blast cells. The image

resolution is 2, 592× 1, 944 pixels with a TIFF format. Few samples

of ALL-IDB2 dataset are shown in Figure 1.

For multi-class classification, this study uses the dataset of

the study mentioned in the reference, Ghaderzadeh et al. (2022),

which is prepared at bone marrow laboratory of Taleqani Hospital

Iran. The dataset is composed of 3, 242 images which are divided

into “Benign" class and three sub types of B-Cell ALL, namely,

“Early," “Pre-cursor," and “Pro B," with a class distribution of 512,

955, 796, and 979 images, respectively. A microscope with 100×

magnification of Zeiss Camera is used to capture the images having

224× 224 pixel resolution. Few images of this dataset are shown in

Figure 2.

3.2 Computation pipeline

Figure 3 shows the computation pipeline of the proposed

framework for ALL identification and its sub-type classification.

The pipeline accepts the raw microscopic images from selected

database repositories. These images are then pre-processed using

contrast enhancement and augmentation steps. The contrast-

enhanced images are resized according to input layer requirements

of two deep neural networks, i.e., GoogleNet and our proposed

CNN and subjected to transfer learning step. The features extracted

from these deep CNNs are serially fused together and then

subjected to the feature selection step. The selected set of features is

then classified using multiple classifiers. These steps are discussed

in details as follows.

3.2.1 Dataset pre-processing
In the first step, the training and testing dataset images

are subjected to contrast enhancement using color histogram

equalization. When dealing with microscopic images, contrast

enhancement by applying histogram equalization independently

to R, G, and B channels may not always produce good results

(Xie et al., 2019). Equalizing the histogram across all three RGB

channels can amplify existing noise in the image, especially in areas

with low intensity values. This can make it difficult to distinguish

between relevant features and noise artifacts. This study performs

image contrast enhancement within the HSI image domain. HSI

separates intensity information from hue and saturation, making it

less susceptible to variations in lighting conditions that can affect

RGB channels. This is particularly helpful for microscopic images,

where lighting control can be challenging. By separating hue,

saturation, and intensity, HSI provides distinct channels that can

be individually analyzed or combined to extract specific features

relevant to the recognition task. This can improve the ability to

differentiate between different cell types, structures, or objects in

the image.

The main steps of image contrast enhancement adopted in this

study are as follows:

1. Transform the RGB image into the HSI image;

2. Perform histogram equalization on the intensity channel;

3. Substitute the HSI image’s intensity channel with the

corresponding histogram-equalized intensity channel;

4. Revert the HSI image back to an RGB image.

3.2.2 Customized deep feature extraction
Feature extraction stands as a pivotal phase within the domain

of deep learning. In this study, we employ transfer learning from

a standard deep CNN, i.e., GoogleNet and our proposed custom

CNN architecture for feature extraction. Both of these networks are

elaborated upon as follows.
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FIGURE 1

Sample images of ALL-IDB2 dataset of the study mentioned in the reference, Scotti et al. (2005).

FIGURE 2

Sample images of dataset of the study mentioned in the reference, Ghaderzadeh et al. (2022).

3.2.2.1 GoogleNet

GoogleNet also referred to as InceptionV1 is a deep CNN

architecture developed by the researchers at Google (Szegedy

et al., 2015). It is designed to solve some problems of earlier

networks such as vanishing gradient problem and trade-off between

complexity and efficiency. To solve the problem of overfitting due

to very deep neural networks, the GoogleNet is based on the idea

of having multiple sized filters, operating in the same level. The

resultant network becomes wider rather than becoming deeper.

Breakthrough performance is achieved due to the introduction
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FIGURE 3

Proposed framework for binary and sub-type classification of ALL.

of ‘Inception modules” and auxiliary classifiers. An inception

module is composed of parallel concatenation of convolutions with

multiple sized kernels and pooling operations in order to allow

efficient learning of local and global features. The GoogleNet also

utilizes 1 × 1 convolutions which is also known as “network-in-

network" layers. Incorporation of these layers before applying larger

filter convolution results in a compact, computationally efficient

network. Moreover, these layers are used to combine features across

different inception modules for multi-abstraction feature learning.

The GoogleNet Architecture has 22 layers including nine

linearly stacked inception modules, four max pool layers, a dropout

regularization layer, and fully connected layer. The inception

module terminations are linked to the global average pooling layer.

The GoogleNet is pretrained on the ImageNet dataset,1 which

consists of thousands of image categories. To facilitate transfer

learning on the leukemia dataset, several modifications are made

to the network. First, the last learnable layer, referred to as “loss3-

classifier,” is substituted with a new fully connected layer having

an output count and matching the number of leukemia classes.

Additionally, the network’s softmax layer is replaced with a new

softmax layer. Furthermore, the classification layer of the network

is substituted with a new classification layer without class labels.

1 http://www.image-net.org

Before commencing training, dimensions of all images are changed

to 224 × 224 × 3 to conform to the network’s input layer.

Subsequently, various augmentation techniques, such as flipping,

scaling, and random rotation, are applied. The extraction of deep

features is conducted from the global average pool layer, denoted as

“pool5-7x7_s1," which yields a deep feature vector comprising 1 ×

1,024 features per image.

3.2.2.2 Proposed custom network

This study introduces a novel deep CNN, which is meticulously

designed to incorporate key attributes from two well-known deep

models: AlexNet and SqueezeNet. AlexNet is composed of five

convolutional layers and three fully connected layers. Furthermore,

it incorporates three pooling layers, seven ReLU activation layers,

two dropout layers, and a SoftMax layer. In contrast, the proposed

CNN model encompasses 88 layers, spanning from the input

to the output layer. Beyond the conventional layers inspired by

AlexNet, the proposed model introduces additional elements such

as batch normalization and structures reminiscent of SqueezeNet.

The architectural view of customized architecture is shown in

Figure 4. The size of input layer is 227 × 227 × 3, which is

similar to the AlexNet architecture. The network starts with a

convolution (CN) layer followed by ReLU (R), BatchNormalization

(BN), Max Poopling (PL), Leaky ReLU (LR), and Drop out
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FIGURE 4

Proposed custom CNN architecture.

(D) layers. Embedded in the network, are the SqueezeNet like

structures of parallel branches of grouped convolution layers

(having a cascade of CN, R, LR, A, and BN layers). The individual

branches of each group are merged together with the help of

Addition (A) layer. The last three layers of the network are

fully connected (FC), softmax and classoutput layer. Tables 2, 3

present the detailed configuration of all layers of the proposed

CNN architecture.

The leukemia datasets utilized in this research are relatively

small, making it infeasible to train the proposed CNN model

from the ground up. Consequently, the initial step involves pre-

training the proposed CNN on the CIFAR-100 dataset (Krizhevsky

et al., 2009), which encompasses 100 object categories, each

with 600 images. Subsequently, transfer learning is applied to

adapt the pre-trained network to the leukemia dataset. The

extraction of deep features is conducted from the FC-3 layer,

yielding a feature vector with dimensions of 1 × 2, 048 for

each image.

3.2.3 Feature ensemble/fusion
Obtained feature vectors from both networks are

combined together through a serial concatenation technique.

The joint feature vector has a size of 1 × 3, 072 features

per image.

3.2.4 Feature selection
Feature fusion enlarges the feature vector, potentially triggering

the ‘curse of dimensionality’ issue. This expanded feature vector

may include duplicate features, which can result in overfitting

by the classifier. Selection of the most relevant features is an

essential step to achieve better generalization while reducing

the computational complexity of the classification system. As

an important contribution, this study models the problem of

deep feature selection as a global combinatorial optimization

problem and proposes a nature-inspired metaheuristic, i.e., whale

optimization algorithm (WOA), to achieve the most pertinent set

of features.

3.2.4.1 Standard whale optimization algorithm

The WOA, as introduced by Mirjalili and Lewis in their study

(Mirjalili and Lewis, 2016), offers a solution to the challenge of

discovering optimal solutions within intricate search spaces. This

algorithm emulates the social and hunting behaviors of humpback

whales, leveraging their techniques to improve solutions within

the search space. Humpback whales employ a bubble-net hunting

strategy to corral and capture their prey, particularly in the case of

small fish groups.

Mathematically, the algorithm begins with a random whale

population. The optimization model captures three whale

behaviors: (a) hunting for prey (exploration), (b) encircling the

prey, and (c) executing a bubble-net attack (exploitation).
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TABLE 2 Layer-specific details of the proposed CNN architecture.

Layer# Layer name Filter map size Filter depth Stride Padding Learnable

01 Input image 227× 227× 3 11× 11× 3× 96 [4 4] [0 0 0 0] wt 227× 227× 3 B 1× 1× 96

02 CN1 55× 55× 96 –

03 R1 55× 55× 96 –

04 BN1 55× 55× 96 5× 5× 96× 96 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

05 Pool 27× 27× 96 –

06 CN2 55× 55× 256 – wt 5× 5× 48× 128 B 1× 1× 2× 128

07 LR-1 27×27× 256 1× 1× 96× 48 [1 1] Same

08 Drop_1 27× 27× 256 –

09 BN_2_1 27× 27× 256 11× 11× 48× 96 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

10 LR-1 55× 55× 96 wt 5× 5× 48× 128 B 1× 1× 2× 128

11 LR-2 55× 55× 96 Offset 1× 1× 256 scale 3× 3× 256

12 ADD1 55× 55× 96

13 CN-5 27× 27× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

14 BN_7_1 27× 27× 256 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

15 CN-3 27× 27× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

16 LR4 27× 27× 64

17 BN3 27× 27× 64 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

18 CN_6_1 55× 55× 256 wt5× 5× 48× 128 B 1× 1× 2× 128

19 BN_8_1 27× 27× 64 [1 1] Same

20 Addition_1_1

21 Dropout 13× 13× 384 3× 3× 256× 384 [1 1] [1 1 1 1]

22 CN_1 55× 55× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

23 CN_6 55× 55× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

24 CN_5 55× 55× 256 wt 5× 5× 48× 128 B×1× 2× 128

25 Relu_3

26 BN-2 27× 27× 64 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

27 Relu_4

28 BN-6 27× 27× 64 [1 1] Same Offset 1× 1× 256 scale3× 3× 256

29 Addition_1

30 pool-2 Max pool 3× 3 [2 2] [0 0 0 0]

31 Dropout 13× 13× 256 13× 13× 256× 384 [1 1] [1 1 1 1]

32 CN3 3× 3× 256 wt 5× 5× 48× 128B 1× 1× 2× 128

33 CN_10 3× 3× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

34 BN-6 13× 13× 64 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

35 CN_8 3× 3× 384 wt5× 5× 48× 128 B 1× 1× 2× 128

36 Relu_4

37 BN-6 13× 13× 64 [1 1] Same Offset1× 1× 256 scale 3× 3× 256

38 Addition_2

39 CN_4_2 55× 55× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

40 CN_7 55× 55× 256

41 LR_5 13× 13× 64 wt 5× 5× 48× 128 B×1× 2× 128

(Continued)
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TABLE 2 (Continued)

Layer# Layer name Filter map size Filter depth Stride Padding Learnable

42 BN-9 13× 13× 64

43 LR_5 13× 13× 64 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

44 Relu_4

45 CN_5_2 55× 55× 256

46 BN_7_2 27× 27× 64 wt 5× 5× 48× 128 B1× 1× 2× 128

47 CN_6_2 55× 55× 256 [1 1] Same Offset 1× 1× 256 scale 3× 3× 256

48 BN_8_2 27× 27× 64 Offset 1× 1× 256 scale 3× 3× 256

49 Addition_1_2 [1 1]

50 Dropout_3

51 CN3 3× 3× 384

52 Relu_1

3.2.4.1.1 Encircling the prey

The current best candidate solution of a population is called

as the “leader.” It is the whale which has the best fitness value

and assumed to be closest to the target prey. All other solutions

(whales) update their position toward the leader. Mathematically,

the position update is computed as follows (Mirjalili and Lewis,

2016):

EY = |EC. EX∗(t)− EX(t)| (1)

EX(t + 1) = EX∗(t)− EA.EY (2)

where t denotes the current iteration number, EX∗(t) is the leader,

i.e., population best solution so far, EX(t) is the individual whale. EA

and EC are the co-efficient vectors calculated as follows (Mirjalili and

Lewis, 2016):

EA = 2.Ea. Er1 − Ea (3)

EC = 2. Er2 (4)

where r1 and r2 are random numbers in [0, 1].

3.2.4.1.2 Bubble-net attacking

This behavior of humpback whales is mathematically modeled

using two approaches.

1. Shrinking encircle: to mimic this behavior, the value of Ea is

decreased from 2 to 0 through a linear function (Mirjalili and

Lewis, 2016)

Ea = 2

(

1−
t

tmax

)

(5)

where tmax is the maximum number of iterations.

2. Spiral trajectory: the whales create an upward spiral loop around

the prey. The position update due to this spiral trajectory is

modeled as follows (Mirjalili and Lewis, 2016):

EY = |EX∗(t)− EX(t)| (6)

EX(t + 1) = EY .eb.l.cos(2.π .l)+ EX∗(t) (7)

where l is a random number in [−1, 1] and b is a constant.

The position update of whales considering both phenomenons

of spiral trajectory and shrinking encirclement is performed as

follows:

EX(t + 1) =

{

EX(t)− EA.EY p < 0.5
EY .eb.l.cos(2.π .l)+ EX∗(t) p ≥ 0.5

}

(8)

3.2.4.1.3 Searching prey (exploration)

In addition to above hunting mechanisms, the humpback

whales also search randomly according to position of each others.

When |EA| < 1, the position update of each whale is carried out

using the Equation (1) whereas, for |EA| ≥ 1, the position update is

computed as follows (Mirjalili and Lewis, 2016):

EY = |EC.EXr(t)− EX(t)| (9)

EX(t + 1) = EXr(t)− EA.EY (10)

where Xr(t) is the randomly selected whale as the population best

solution.

3.2.4.2 Proposed hybrid binary whale optimization

algorithm

The optimal feature selection problem is a binary combinatorial

optimization problem. Therefore, an association rule is

required to convert the real valued whale position vectors

into binary sub-space. In this study, we have proposed

a “V"-shaped transfer function for whale position update

as follows:

P(EXij) =

∣

∣

∣

∣

∣

2

π
tan−1

(

π

2
EXij

)

∣

∣

∣

∣

∣

(11)

EXij =

{

1 r1 ≥ P(EXij)

0 otherwise

}

(12)

where r1 denotes a uniformly distributed random number

in [0, 1], and EXij denotes the feature at index j of

i− th whale.
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TABLE 3 Layer-specific details of the proposed CNN architecture (Contd.).

Layer# Layer name Filter map size Filter depth Stride Padding Learnable

53 BN-4 13× 13× 384

54 CN_2 55× 55× 256 [1 1] Same wt 5× 5× 48× 128 B 1× 1× 2× 128

55 CN_12 55× 55× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

56 CN_13 55× 55× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

57 Relu_8

58 BN-12 13× 13× 384 Offset 1× 1× 384 scale 3× 3× 384

59 Relu_7 [1 1] Same

60 BN-11 13× 13× 384 Offset 1× 1× 384 scale 3× 3× 384

61 Addition_3 [1 1] Same

62 Dropout_4

63 CN_8 13× 13× 64

64 CN_4_3 13× 13× 64 wt 5× 5× 48× 128 B 1× 1× 2× 128

65 LR_3_3 13× 13× 64 Offset 1× 1× 64 scale 1× 31× 64

66 Relu_4_3

67 CN_5_3 13× 13× 384 wt 5× 5× 48× 128 B 1× 1× 2× 128

68 LR_6 13× 13× 64

69 BN_10 13× 13× 64 Offset 1× 1× 64 scale 3× 3× 64

70 CN_6_3 13× 13× 384 [1 1] Same

71 BN_8_3 13× 13× 384 Offset 1× 1× 384 scale 3× 3× 384

72 BN_7_3 13× 13× 384 [1 1] Same Offset 1× 1× 384 scale 3× 3× 384

73 Addition_1_3 [1 1] Same

74 Dropout_5

75 CN-5 13× 13× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

76 Relu_2

77 BN-5 13× 13× 256 wt 5× 5× 48× 128 B 1× 1× 2× 128

78 Pool5 [1 1] Same

79 FC-1

80 Relu6

81 Drop6 1× 1× 2, 048

82 FC-2

83 Relu-7

84 Drop7 1× 1× 2, 048

85 FC-3

86 SoftMax

87 Output

In WOA, the whales update their position on

the basis of optimal individual solutions (leader).

Often, the algorithm may fall into the local optimum,

resulting in a loss of population diversity. To avoid this

problem, we have proposed a hybrid binary WOA, in

which Differential Evolution (DE) is applied as a local

search technique.

During each iteration of WOA, the so far best solution

(leader) is computed. All other whales of the population

update their position using the update rules (Equations 8, 11,

12). To perform local refinement of an optimum solution,

the whole population of binary individuals is considered

as an input to the DE algorithm which operates in the

following steps.
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3.2.4.2.1 Mutation

Each individual (“target") EXi in the population is used to

generate its corresponding mutation vector EMi such that:

EMi = EXr1 ⊕ EXr2 (13)

This mutation vector is then used to create a trial vector as

follows:

EUi = EMi ⊕ EXr3 (14)

where EXr1, EXr2, and EXr3 are three randomly selected distinct vectors

excluding EXi, and⊕ denotes the bit-wise XOR operation.

3.2.4.2.2 Binomial crossover

The target vector EXi and trial vector EUi undergo the Binomial

Crossover as follows:

ECi,j =

{

EXij if x1 = j or x2 ≤ pr
EUij otherwise

}

(15)

where j = 1 : d, d is the dimensionality of the i-th individual, x1
is a random number in interval [1, d], x2 is a random number in

interval [0, 1], and pr is the crossover probability.

Finally, the fitness of each cross-over individual ECi is computed.

If there is an individual with fitness value better than the iteration

best solution EX∗ of binary WOA, EX∗ is replaced by this individual.

3.2.4.2.3 Feature selection using proposed hybrid binary WOA

Algorithm 1 shows the main computational steps of the

proposed hybrid binary whale optimization (BWO)-based feature

selection approach. Table 4 lists the main symbols and variables

used in the algorithm. The algorithm receives the fused feature

matrix F of size nt × dmax, where nt denotes the total number of

images in the training set used for feature extraction, and dmax is the

total number of fused features, i.e., 3, 072 per image. Each row of F

corresponds to fused feature vector obtained from a single image. L

is a vector containing class labels of training dataset images, tmax

is the maximum number of algorithm iterations, and np is the

population size. In Step 4 of the algorithm, the whale population

matrix EX of size np × dmax is randomly generated. The algorithm

runs for tmax iterations. During each iteration, Steps 7–12 compute

the fitness of each individual to update the best (leader whale)

solution EX∗ and its fitness value Ŵ
∗. The fitness function Evaluate

receives as input parameters the population matrix EX, the label

vector L, and one binary individual EX of EX. In Step 35, all features

corresponding to non-zero entries of EX are extracted from F and

stored in F2. In the subsequent Steps 36–38, the feature matrix F2

and label vector V are split into training and testing parts with

holdout ratio of h0. Then, training of KNN classifier is performed,

and predicted labels are obtained by applying testing feature set.

The classification accuracy ac and fitness Ŵ are computed as

Equations 16, 17:

ac =
npred

ntest
× 100(%) (16)

Ŵ = α1.(1− ac)+ α2.
qs

qt
; (17)

1: Inputs: F, L, dmax , tmax , np

2: Initialize Parameters:

Ŵ
∗ ← inf , EX∗(1 : dmax)← 0,

3: Initialize Whale Population

4: EX(1 : np , 1 : dmax)← rand(1 : np , 1 : dmax)

5: while t < tmax do

6: Calculate Fitness

and Find the current

Optimal Solution

7: for j = 1 : np do

8: EXj ← EX(j, 1 : dmax)

9: Ŵ← Evaluate(F, L, EXj)

10: if Ŵ < Ŵ
∗ then

11: Ŵ
∗ ← Ŵ

12: EX∗ ← EXj

13: end if

14: end for

15: Update Whale Position

16: for j = 1 : np do

17: update EX(j, 1 : dmax)

using

(Equations 1-10)

18: end for

19: Refine the iteration

best solution using

Differential

Evolution

20: [ŴDE , EXDE]← Refine_DE(EX)

21: if ŴDE < Ŵ
∗ then

22: Ŵ
∗ ← ŴDE

23: EX∗ ← EXDE

24: end if
25: end while

26: Return Selected Features

27: SF ← F(:, ( EX∗ == 1))

28: OUTPUT: SF

---------------------------

29: Function: Evaluate

30: Inputs: F, L, EX

31: Parameters: k = 5, ho = 0.2

32: if sum((EX == 1) == 0) then

33: Ŵ = ∞

34: else

35: F2 ← F(:, (EX == 1))

36: Split the feature

matrix F2 and label

vector L into training

and testing data with

ratio ho

37: Train KNN classifier

with k neighbors using

the training data of

F2 and L

38: Use the testing part

of F2 to perform

classification using

KNN and compute the

testing accuracry ac

39: compute fitness Ŵ

using
40: end if

41: Return Ŵ

-------------------------------

42: Function: Refine_DE

43: Inputs: EX

44: Parameters: pr ← 0.5, Ŵb ←

inf, EXb(1, 1 : dmax)← zeros(1, 1 : dmax)

45: for i = 1 : np do

46: EXi ← EX(i, 1 : dmax)

47: Compute the trial

vector EUi using

Equations 13, 14

48: Compute the vector Ci

using Binomial Cross

over Equation 15

49: Evaluate fitness and

update the fittest

solution

50: [Ŵt , EXt]← Evaluate(EX, L,Ci)

51: if Ŵt < Ŵb then

52: Ŵb ← Ŵt

53: EXb ← EXt

54: end if
55: end for

56: Return: Ŵb , EXb

Algorithm 1. Proposed hybrid BWO based feature selection algorithm.

where npred and ntest , respectively, denote the total number

of successfully predicted and applied testing samples of KNN

classifier. α1 and α2 are weight coefficients such that α1 + α2 = 1.

qs and qt denote the number of selected and total features of EX.

In Steps 15–18 of the main routine, the fittest solution (leader

whale) is used to update the position of all other whales of

population EX using the update rules (Equations 1–10). The updated

whales population is given as an input to Refine_DE which

performs refinement of best solution using differential evolution.

If a better solution is obtained by performing mutation and

crossover rules (Equations 13–15) of DE, this solution is selected

as the iteration best of BWO algorithm. At the conclusion of tmax
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TABLE 4 Description of main symbols used in Algorithm 1.

Symbol Description Symbol Description

F Fused feature matrix L Label vector of training

set

dmax Total no. of fused

features per image

tmax maximum no. of hybrid

BWO algorithm

np Population size EX Whale population matrix

EX∗ Iteration best individual Ŵ
∗ Iteration best fitness

EX One binary individual of

population matrix EX

F2 Features extracted from

F

h0 split ratio of training and

texting parts of F for

KNN

K size of neighbors for

KNN

ac classification accuracy Ŵ fitness value (error rate)

npred No. of successfully

predicted labels

ntest total no. of test labels

pr Binomial crossover

probability differential

evolution

EMi Mutation vector

EUi Trial vector ECi,j Binomial crossover

vector

iterations of the BWO algorithm, Step 27 involves utilizing the

indices of non-zero entries in the best overall solution EX∗, to choose

the corresponding features from the set F.

3.2.5 Classification
The ensemble of selected features yielded by the proposed

hybrid BWO algorithm, in conjunction with the label vector

L, is subsequently employed for training the outer classifiers.

In this study, we conducted an assessment of the classification

efficacy across a spectrum of classifiers employing diverse kernel

configurations, ultimately identifying and adopting the top-

performing classifiers for our proposed study.

4 Performance results

The prescribed workflow for the detection and sub-type

categorization of acute lymphoblastic leukemia has been executed

usingMATLABR2021a, running on an Intel Core i7 CPU equipped

with 16GB of RAM, all hosted within a 64-bit Windows 10

operating environment.

4.1 Leukemia binary detection

In the first phase, the leukemia detection pipeline is applied to

the ALL-IDB2 dataset. To mitigate potential overfitting issues, the

pre-processed images within the dataset undergo an augmentation

procedure. This step involves random image rotations within the

range of [0, 360] degrees, resizing by a random factor within

[0.5, 1] interval. The distribution of images across various classes

of augmented ALL-IDB2 dataset is presented in Table 5. Next, the

TABLE 5 Class-wise image details of augmented ALL-IDB2 dataset.

Class type No. of images

Original dataset Augmented
dataset

Healthy subject 130 600

ALL affected subject 130 590

TABLE 6 Distribution of ALL-IDB2 dataset into training and test parts.

Class Training
dataset

Testing
dataset

Healthy subject 420 180

ALL affected subject 413 177

Total No. of images 833 357

TABLE 7 Main parameters for transfer learning of GoogleNet and

proposed custom CNNmodel.

Parameter Value Parameter Value

Kernel type sdgm Max epochs 10

Initial learning rate 1× 10−4 Environment Auto

Validation

frequency

30 Stride size 1

Mini batch size 20 Dropout rate 0.1

augmented dataset was stratified into training and validation sets

with a 70:30 ratio through a random selection of images belonging

to each class. The corresponding image distribution is shown in

Table 6.

To perform feature extraction, the training dataset is employed

for transfer learning with both the GoogleNet model and our

proposed custom CNN architecture. The main training parameters

are shown in Table 7. We explored various combinations of

hyperparameters through multiple training runs and identified the

set that achieved the best training performance. These optimal

parameters were then used to train the custom CNN on the

augmented ALL-IDB2 dataset. Figure 5 shows the validation

accuracy and loss function plot of proposed custom CNN on

the augmented ALL-IDB2 dataset. Subsequently, deep feature

vectors of dimensions 1, 024 and 2, 048 are, respectively, extracted

from GoogleNet and custom CNN. These feature vectors are

then horizontally concatenated, yielding a composite feature

vector of size 1 × 3, 072 for each training image. In the next

step, the proposed hybrid BWO algorithm is applied on fused

feature vector for the selection of most dominant set of features.

The vector of selected features is then used for training outer

classifiers. In this study, we have used a range of classifier

families, such as SVM, KNN, NN, Decision Tree (DT), and

Ensemble, with different kernel settings. The performance results

of best performing classifiers from each family are shown in

Table 8. The key performance metrics are evaluated, which include

classification Accuracy, Precision, Sensitivity (Recall), F1 Score, and

Specificity. For binary classification, these metrics are computed as

Equations 18–22:
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FIGURE 5

Plots of training accuracy and loss function for transfer learning of proposed custom CNN model on augmented ALL-IDB2 dataset.

Accuracy =
TP

TP + TN + FN + FP
(18)

Sensitivity (Recall) =
TP

TP + FN
(19)

Specificity =
TN

TN + FP
(20)

F1 Score =
2× Precision× Recall

Precision+ Recall
(21)

Precision =
TP

TP + FP
(22)

where TP denotes the total number of “ALL” images successfully

classified, TN denotes the total number of “Healthy”

images classified as “Healthy,” FP denotes the number of

‘Healthy’ images incorrectly classified as “ALL,” and FN

denotes the number of “ALL” images incorrectly classified

as “Healthy.”

The above performance metrics reported in Table 8 are the

average results obtained after several Monte-Carlo iterations of

proposed pipeline with 10-fold cross validation. In Figure 6,

the individual results of each classifier are graphically presented

for comparison. Out of 3, 072 features extracted from transfer

learning of GoogleNet and proposed custom CNN, only 460

features are selected by Hybrid BWO algorithm. With an 85%

feature reduction, all selected classifiers demonstrate accuracy

above 89%. The Ensemble Subspace KNN classifier demonstrates

an average accuracy of 99.2% and better or comparable values

of key performance parameters in comparison with other

classifier settings.

The test confusion matrix of Ensemble Subspace KNN

classifier on ALL-IDB2 dataset is shown in Figure 7, which

indicates a high true positive rate (TPR) and a very low false

negative rate (FNR), confirming the accuracy of our method.

Furthermore, in Figure 8, the error rate of feature selector

using proposed hybrid BWO algorithm is plotted with classical

Genetic Algorithm (GA). The error rate Ŵ is computed using

the Equation 17. Both GA and BWO are population-based search

algorithms, the hybrid BWO demonstrates a better exploration

of search space by achieving significantly smaller error rate for

all iterations.

Figure 9 demonstrates a performance comparison of standard

BWO and proposed hybrid BWO algorithms. The graphs in

the figure are generated by performing several Monte Carlo

iterations of both algorithms on the same training and testing

portions of ALL-IDB2 dataset and other common parameters. Each

curve in the graph is obtained for one Monte Carlo iteration

of the corresponding algorithm and plots the error rate as a

function of t iterations (generations) of the algorithm. Each

algorithm runs for tmax = 50 times per Monte Carlo iteration.

The graphs clearly reveal a better convergence performance of
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TABLE 8 Performance metrics of leukemia binary detection on ALL-IDB2 dataset.

Classifier Kernel Nt Ns Accuracy Precision Sensitivity F1 Score Specificity

KNN Cosine 3,072 460 93.2773 0.9000 0.9643 0.9048 0.9310

Coarse 94.6218 0.9000 0.9926 0.9071 0.9441

Cubic 94.1176 0.9167 0.9649 0.9194 0.9402

SVM Gaussian 92.8571 0.9000 0.9558 0.9040 0.9270

Regression 94.1176 0.9250 0.9569 0.9262 0.9407

Quadratic 94.7899 0.9333 0.9622 0.9342 0.9475

Decision Tree Medium 89.0756 0.8500 0.9273 0.8594 0.8870

NN Narrow 91.5966 0.8667 0.9630 0.8769 0.9123

Wide 94.2017 0.8917 0.9926 0.9002 0.9394

Ensemble Rusboost 98.4034 0.9750 0.9932 0.9750 0.9840

Subspace KNN 99.1597 0.9944 0.9888 0.9944 0.9915

Nt : total no. of features in fused feature set, Ns : no. of features selected by hybrid BWO algorithm.

FIGURE 6

Graphical representation of performance results of proposed pipeline for leukemia detection using ALL-IDB2 dataset.

proposed hybrid BWO algorithm with DE-based local search

method. For example, for t = 50, the best error rate achieved

by standard BWO is 1.5 × 10−3, whereas, for the same value

of t, proposed hybrid BWO achieves an error rate of 1.0 ×

10−3, which is ∼30% smaller as compared with the standard

BWO algorithm. This shows the superiority of proposed local

search-based solution refinement strategy. In Figure 10, the

convergence performance of two algorithms is plotted for multi-

class dataset of the study mentioned in the reference Ghaderzadeh

et al. (2022). The graphs again reveal a faster convergence

rate of proposed hybrid BWO algorithm as compared with its

standard version.
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FIGURE 7

Testing confusion matrix of ensemble subspace KNN classifier on ALL-IDB2 dataset.

FIGURE 8

Convergence plot of proposed hybrid binary whale optimization and genetic algorithm.
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FIGURE 9

Convergence performance of standard and proposed hybrid BWO algorithm ON ALL-IDB2 dataset. (A) Standard BWO algorithm. (B) Proposed

memetic BWO algorithm.

FIGURE 10

Convergence performance of standard and proposed hybrid BWO algorithm on multi-class dataset of the study mentioned in the reference

Ghaderzadeh et al. (2022). (A) Standard BWO algorithm. (B) Proposed memetic BWO algorithm.

4.2 Leukemia sub type identification

In the subsequent stage, the proposed pipeline is employed for

the purpose of leukemia sub type classification, utilizing the dataset

of the study mentioned in the reference Ghaderzadeh et al. (2022).

Dataset diversity is augmented through randomized rotation and

scaling of images along with the application of color jitter. The

image distribution of augmented dataset is shown in Table 9. In

Table 10, the class distribution of images is demonstrated after

performing random splitting of augmented dataset into training

and validation parts with a 70:30 ratio. Using the similar approach

of binary classification, the training dataset is used for transfer

learning of GoogleNet and proposed custom CNN. The features

are extracted from both networks and concatenated together to

obtain a fused feature vector. The set of selected features is then

obtained using proposed hybrid BWO algorithm and subsequently

used for training of outer classifiers. Table 11 shows the ALL

multi-class identification performance of selected classifiers. The
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TABLE 9 Distribution of augmented dataset of the study mentioned in the

reference Ghaderzadeh et al. (2022).

Class Frequency

Before After

Benign 512 1,024

Pre-cursor 955 1,000

Pro-cell 796 1,050

Early-pre-B 979 1,020

TABLE 10 Class distribution of training and testing parts of dataset of the

study mentioned in the reference Ghaderzadeh et al. (2022) for leukemia

sub type classification.

Class Training
images

Testing
images

Total

Benign 716 308 1,024

Pre-cursor 700 300 1,000

Pro-cell 735 315 1,050

Early pre-B 714 306 1,020

Total 2,149 1,229 4,094

average results are computed from several Monte-Carlo iterations

of proposed pipeline. During each iteration, the overall value

of all performance metrics of Table 11 is computed by micro-

averaging of their individual class-wise values. A comparison

of individual metrics of all classifiers is presented in Figure 11.

Again, a better performance is demonstrated by the Ensemble

Subspace KNN, which obtains an overall average accuracy of

98.6981% with relatively good values of other performance metrics.

The confusion matrix of Ensemble Subspace KNN is shown

in Figure 12.

Table 12 provides a comparison between the

performance of our proposed approach and several

existing studies focused on leukemia identification.

To ensure a fair assessment, we specifically selected

previously published studies that utilized either identical

or highly similar datasets. Our proposed pipeline,

designed for both binary leukemia detection and sub-type

identification, demonstrates superior or at least comparable

performance metrics compared with various other relevant

investigations that employed smaller feature sets. These

results affirm the effectiveness and practicality of our

proposed methodology.

4.3 Statistical analysis

In this study, we applied the one-way analysis of variance

(ANOVA) (Fotso Kamga et al., 2018) method to verify the validity

of classification results from statistical point of view. The statistical

analysis was performed on classification accuracy as the key

performance metric. For this purpose, a number of Monte Carlo

iterations of the complete classification pipeline were performed

with 10 fold-cross validation in each iteration. The accuracy values

were collected for the above mentioned classifiers. The normality

of accuracy data was validated using Shapiro–Wilk test (Akram

et al., 2020). The homogeneity of variances of classifier accuracy

values were verified using Bartlet’s test (Ahmad et al., 2023a).

The significance level α = 0.05 was selected. The p-values of

KNN, SVM, Decision Tree, NN, and Ensemble family of classifier

were p1 = 0.723, p2 = 0.7021, p3 = 0.694, p4 = 0.660

and p5 = 0.651, respectively, along with chi-squared probability

pch = 0.825. The obtained p-values were less than α, which

confirmed that null hypotheses of Shapiro–Wilk and Bartlet’s

test are true, i.e., accuracy values are normally distributed with

homogeneous variances.

Table 13 shows the results of one-way ANOVA test

performed on accuracy of selected classifiers. The key

metrics include mean square error (MSE), degree of

freedom (df), F-statistics, p-value, and sum of square

deviation (SS).

The confidence interval plot of selected classifiers on

the proposed leukemia identification pipeline is shown.

The average accuracy is demonstrated as red line, whereas

the 95% confidence limits are shown as black lines. The

figure demonstrates that ensemble subspace achieves a

high average accuracy with small confidence interval as

compared with other classifiers. The upper and lower

quantile points of each classifier lie within the confidence

interval limits.

5 Discussion

In this study, we examined the effectiveness of our proposed

approach for the binary and multi-class identification of ALL.

Modern deep CNNs often come with large model sizes, demanding

significant memory and computational resources. Employing

an ensemble of networks, including a tailored CNN alongside

publicly available deep CNNmodels, offers a practical compromise

between classification performance and pipeline complexity.

Furthermore, leveraging pretrained CNN models for feature

extraction and employing external classifiers is a potent and

pragmatic strategy that amalgamates the advantages of transfer

learning, feature abstraction, and minimized training effort to

enhance the outcomes of diverse computer vision tasks. One

drawback of this approach is that the feature sets extracted

from deep CNNs often exhibit substantial size and encompass

a considerable amount of duplicate features. Selection of most

promising set of features is a combinatorial optimization problem

with computational complexity of exhaustive search growing

exponential with the size of feature vector. Population-based

feature selection methods have shown a significant research

interest in recent years. A number of bio-inspired and nature-

inspired meta-heuristics have been proposed. One challenge is

the exploration and exploitation capabilities of the algorithm

problem of local optima. To address this issue, we have proposed

a memetic feature selection approach that combines elements

of population-based algorithms with local search methods. In

particular, we have proposed a nature-inspired metaheuristic
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TABLE 11 Performance metrics of leukemia sub type classification using dataset of the study mentioned in the reference Ghaderzadeh et al. (2022).

Classifier Kernel Nt Ns Accuracy Precision Sensitivity F1 Score Specificity

KNN Cosine 3,072 460 95.5701 0.9558 0.9560 0.9557 0.9853

Coarse 96.0623 0.9608 0.9610 0.9606 0.9869

Cubic 94.4217 0.9451 0.9451 0.9442 0.9815

SVM Gaussian 95.0779 0.9515 0.9515 0.9509 0.9836

Regression 95.8503 0.9589 0.9589 0.9585 0.9862

Quadratic 96.4199 0.9645 0.9646 0.9642 0.9881

Decision tree Medium 92.8397 0.9299 0.9284 0.9283 0.9761

NN Narrow 94.1128 0.9419 0.9412 0.9409 0.9804

Wide 95.0366 0.9510 0.9503 0.9501 0.9834

Ensemble Rusboost 98.3673 0.9837 0.9839 0.9837 0.9946

Subspace KNN 98.6981 0.9870 0.9872 0.9871 0.9957

FIGURE 11

Performance results of selected classifiers for ALL sub type classification using dataset of the study mentioned in the reference Ghaderzadeh et al.

(2022).

name binary whale optimization algorithm in which optimization

of an iteration best solution is performed using a differential

evolution method. These optimizations at CNN architecture

and feature selection level yield an improved pipeline which

shows promising results for leukemia detection and sub-type

classification. The validity of proposed approach is manifested

with better performance results as compared with several recently

published studies.

6 Conclusion

Leukemia, a hematologic malignancy, afflicts both pediatric

and geriatric populations. Acute lymphoblastic leukemia is an

aggressive form of leukemia that has a high mortality rate.

Modern computer vision approaches and deep CNNs have been

demonstrated as potential solutions for computer aided diagnosis

of several medical conditions. However, precise classification of
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FIGURE 12

Testing confusion matrix of ensemble subspace KNN classifier on dataset of the study mentioned in the reference Ghaderzadeh et al. (2022).

TABLE 12 Comparison of classification accuracy of proposed leukemia identification pipeline with some existing relevant studies.

Work Methodology Data set Classification type Performance
results

Classification: SVM, ANN

Di Ruberto et al.

(2020)

Multi scale blop detection ALL-IDB Binary classification of ALL Accuracy= 94.1%

Deep feature extraction: AlexNet

Classification: SVM

Bodzas et al. (2020) Preprocessing Self Binary classification of ALL Specificity= 93.5%

Segmentation: three phase filtering collected

Morphological feature extraction

Hegde et al. (2020) Active contours for nuclei detection Self collected Leukemia binary detection Accuracy= 98.8%

Shape and texture features extraction

Classification: NN, SVM

Baig et al. (2022) Preprocessing ALL-IDB ALL binary classification ALL Classification

Feature extraction: hybrid CNN MiMMSBI AML binary classification Accuracy= 97.04%

Classification: bagging ensemble SN-AM Multiple myeloma binary

classification

This work Contrast stretching using DE ALL-IDB2 ALL binary classification Accuracy= 99.15%

Deep feature extraction: proposed custom CNN &

GoogleNet

Ghaderzadeh

et al. (2022)

ALL sub-type classification Accuracy= 98.69%

Feature selection: hybrid BWO algorithm
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TABLE 13 ANOVA statistical results of proposed pipeline.

V-source df SS MSE F-statistics p-value

Between 2 6.815×10−5 2.7347×10−5 0.29 0.695

Within 6 6.3245×10−4 8.7725×10−5 – –

Total 8 5.956×10−4 – – –

malignancies at microscopic level is a challenging task due to

morphological similarities between different blood entities. This

study presents an improved pipeline for enhancing leukemia

detection from blood smear images. At first, We propose an

intricately designed 88-layer deep CNN architecture inspired by

AlexNet and SqueezeNet. We used this network as a feature

extractor alongside GoogleNet, aiming to balance classification

accuracy and computational efficiency. The work then models

the feature selection problem as a combinatorial optimization

problem and proposes a novel memetic approach based on the

Hybrid binary whale optimization algorithm to meticulously select

the most dominant set of features. Our proposed methodology

undergoes rigorous validation using publicly available datasets

containing peripheral blood smear images across diverse leukemia

classes. The proposed feature selection approach effectively selects

the most dominant and discriminant set of features. The proposed

system achieves an overall accuracy rate of 99.15% with an

80% reduction in feature size, performing comparably or better

than several existing studies on leukemia identification. The

propose method can be extended to the diagnosis of other

blood-related diseases. It can complement advanced diagnostic

methods such as RNA sequencing and molecular testing by

providing additional supporting evidence. Additionally, it offers

smooth integration with practical image analysis systems such

as image flow cytometry, expanding their functionalities in real-

world settings.
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