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Diabetes is an enduring metabolic condition identified by heightened blood

sugar levels stemming from insu�cient production of insulin or ine�ective

utilization of insulin within the body. India is commonly labeled as the “diabetes

capital of the world” owing to thewidespread prevalence of this condition. To the

best of the authors’ last knowledge updated on September 2021, approximately

77 million adults in India were reported to be a�ected by diabetes, reported by

the International Diabetes Federation. Owing to the concealed early symptoms,

numerous diabetic patients go undiagnosed, leading to delayed treatment.

While Computational Intelligence approaches have been utilized to improve

the prediction rate, a significant portion of these methods lacks interpretability,

primarily due to their inherent black box nature. Rule extraction is frequently

utilized to elucidate the opaque nature inherent in machine learning algorithms.

Moreover, to resolve the black box nature, a method for extracting strong rules

based onWeighted Bayesian Association RuleMining is used so that the extracted

rules to diagnose any disease such as diabetes can be very transparent and easily

analyzed by the clinical experts, enhancing the interpretability. The WBBNmodel

is constructed utilizing the UCI machine learning repository, demonstrating a

performance accuracy of 95.8%.

KEYWORDS

diabetes disease prediction, Bayesian Belief Network, association rule mining, Weighted

Bayesian Confidence, Weighted Bayesian Lift

1 Introduction

The global prevalence of diabetes is on the rise, emerging as a significant and pressing

public health concern in the 21st century. Diabetes, characterized by either deficiency

of insulin secretion, is a widespread chronic condition. According to recent statistics

presented by the International Diabetes Federation (IDF), 8.8% of individuals affected by

diabetes are approximately in the age range of 20–79 years. Notably, 46.5% of these cases go

undetected, contributing to the alarming fact that∼5million deaths annually are attributed

to diabetes. Projections indicate that by 2040, the global diabetic population will reach 642

million (Ershadi and Seifi, 2020).
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In the past few years, the exploration of medical data

collected through data mining and machine learning techniques

has captured the attention of numerous researchers. Researchers

have worked with the Bayesian Belief Network due to its nature and

suitability in the clinical world (Kharya et al., 2022). In the clinical

sector, the Bayesian network projects conditional dependencies

and independencies between the various symptoms of illness

(Fazel Zarandi et al., 2018; Braik et al., 2023a). For example,

“physical inactivity” may cause “obesity,” which may raise “blood

glucose.” Moreover, BBN plays a significant role in understanding

the association between symptoms. In this study, to improve the

accuracy, BBN is reconstructed to incorporate one characteristic

of the clinical world, i.e., “not all symptoms are equally important

for prediction.” Every symptom has different predicting capabilities

for any illness in the clinical world, for example, considering the

symptoms of heart diseases such as chest pain, fainting, fatigue,

shortness of breath, and swollen feet. Here, each symptom has a

different impact on the severity of the disease. Therefore, it cannot

be given equal weightage. According to the above example, chest

pain impact is the highest among all the symptoms. Moreover, an

innovative idea of assigning different weights to different symptoms

based on the predictive capability is incorporated into this study.

This study proposes a new concept, formula, and pseudocode to

create a new Weighted Bayesian Belief Network (WBBN) model

using a clinical dataset. In this model, the weighted concept is

introduced and implemented with BBN.

The suitability of the BBN in the clinical domain as the

best predictive computational model is presented in the study

mentioned in the reference (Liu et al., 2018; Shen et al., 2018;

Simsek et al., 2020; Braik et al., 2023b). After studying the impact

of different disease symptoms, the major work is to find the

correlation or association between the symptoms. The importance

of the ARM method in discovering a correlation or association

between attributes/symptoms is to predict the class label in the form

of Class Association Rules (CARs). In conventional rulemining, the

significance of a rule is typically determined by the count of item

sets within a database. Traditional mining rules rely on support and

confidence measures to identify frequent item sets, assuming that

all items have equal significance (Topuz et al., 2018).

In contrast, social science, medical, and business market

researchers hold distinct perspectives. A rule’s significance is

contingent on quantitative aspects, such as the frequency of an

item in a database, and qualitative elements, involving human

interpretation rather than solely relying on database metrics.

Weights can be employed to depict the impact of symptoms within

a dataset (Kumar et al., 2019).

This study introduces a novel classifier, WBBN, which

employs Weighted Bayesian_class Association Rules (WBAR) to

construct the computational model utilizing clinical datasets. This

methodology initially allocates weights to various symptoms or

attributes based on their predictive capacities. Next, the main

focus is given to the WARM technique, which discovers the

relationship betweenWeighted Two attributes andWeightedMulti

attributes to represent hidden patterns and new knowledge. Then,

the Weighted_class Association Rules (WAR) are extracted. The

consequence of a rule is the ’class label’ using interesting measures

such as Weighted Support and Weighted Confidence on setting

minimum threshold values. Bayesian theory is applied to the

Weighted_class Association Rules to produce WBAR, utilizing

Weighted Bayesian Confidence (WBC) andWeighted Bayesian Lift

(WBL), which are employed to construct theWBBN. Subsequently,

experiments were conducted on established clinical datasets to

assess the accuracy of the performance of WBBN.

A brief literature survey is conducted on the research

performed in the clinical sector of the last 5 years on different

classifiers using the PIDD UCI machine learning dataset, as shown

in Table 1. The classifiers considered are Naïve Bayes, Neural

Network, Support Vector Machine, and Decision Tree. Accuracies

of all the work are shown in Table 1. The literature survey shows

that the Bayesian Belief Network classifier is a promising area to

work on, and it shows better results when applied to the PIDD UCI

machine learning dataset.

2 Datasets

Experiments are performed on clinical datasets such as diabetes

using the Pima Indian Diabetics Dataset (PIDD) from the UCI

machine learning data repository (Pima Indian Diabetes Dataset

UCI.-ML Repository, 2023). The distribution and details of data are

shown in Table 2.

The clinical datasets are acquired from the standard UCI

archive. The discretized version is obtained through Liverpool

University Computer Science-Knowledge Discovery in Data

(LUCS-KDD). Discretization/Normalized (DN) software is utilized

to convert data files from the UCI archive, which is an appropriate

format for ARM applications. In this context, discretization refers

to converting numeric attributes into categorical ones.

3 Methodology

The procedural approach of the WBBN model proposed in

this research is systematically elucidated through a step-by-step

representation depicted in the workflow diagram, as shown in

Figure 1. This diagram outlines the sequential processes employed

in investigating the proposed study.

Following extracting the clinical dataset using the UCI archive

and obtaining its discretized form, the subsequent step involves

calculating the weights of the {attribute, value} pair using an

automated method. Weights can be calculated using domain

knowledge-based weight calculation, automated weight calculation,

and semi-automated weight calculation (Alwidian et al., 2018). This

study calculates weights using the rank-based weight assignment

method (Kharya and Soni, 2016). The choice of the rank-based

weight assignment method for computing weights of {attribute,

value} pairs in the WBBN model can contribute to its robustness

and interpretability such as ranking importance, simplicity, and

transparency, especially in clinical decision support systems. This

ranking clearly indicates which features are most influential in

making predictions, enhancing the interpretability of the model.

This attribute ranking facilitates clinicians’ understanding of the

model’s decision-making process in clinical decision support

systems, where transparency and understandability are crucial.
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TABLE 1 A brief literature survey.

References Classifier Year Accuracy

Resti et al. (2021) Naïve Bayes 2021 93%

Chowdary and Kumar (2021) Naïve Bayes 2021 87.3%

Jader and Aminifar (2022) Artificial Neural Network 2022 91%

Bukhari et al. (2021) Neural Network 2021 93%

Xie et al. (2017) Bayesian Belief Network 2017 82.48%

Joseph et al. (2022) Bayesian Belief Network 2022 92.2%

Patil et al. (2022) Support Vector Machine 2022 94.5%

Hao et al. (2022) Support Vector Machine 2022 95.92%

Azad et al. (2022) Decision Tree & Genetic

Algorithm

2022 82.12%

Abedini et al. (2020) Ensemble Method 2020 83.08%

TABLE 2 The UCI clinical machine learning dataset.

Dataset Size Attributes Class labels Percentage of records in
positive class label

Percentage of records in
negative class label

PIDD 768 9 2 35 65

FIGURE 1

Workflow diagram of the proposed model WBBN.

Different ranking methods may yield varying results in terms

of attribute importance. The choice of ranking algorithm or criteria

can impact the weights assigned to attribute-value pairs and,

consequently, the performance of the model. Careful consideration

and validation of the chosen ranking method are necessary to

ensure its suitability for the specific clinical domain and dataset.

The whole procedure for building the WBBN model

is explained further using definitions, formulas, and

pseudocode. The end product is a clinical decision

support system used as a predictive model termed the

WBBN model.

3.1 Weighted bayesian belief network
model

The Weighted Bayesian Belief Network classifier comprises a

collection of n distinct records, constituting a training dataset T

= {r1, r2, . . . , rn}. Each record constitutes a set of m attributes

{a1, a2, a3, ..., am}, with each attribute possessing a unique value

vi from its domain, forming a record ri = {v1, v2, v3, ..., vm}. In a

weighted context, each {attribute, value} pair is assigned a weight,

creating a triplet {ai, vi, wi}, where attribute ai with value vi is

assigned a weight wi, and 0 < wi ≤ 1, considering value vi as a

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1357121
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kharya et al. 10.3389/frai.2024.1357121

nominal value. The weight calculated for each attribute implies the

significance of the symptoms of the disease. The following section

shows how the calculated weights are incorporated into a dataset

and how associations between weighted attributes are generated.

The application of Bayesian theory to generate robust rules for

constructing the proposed model is explained by employing the

designed pseudocode.

3.2 Definition, formula, and pseudocode

Here, Definitions 1 and 2 explain how to incorporate the

weighted concept in the dataset.

3.2.1 Attribute weight
Within a weighted framework, the allocation of weights to

attributes is contingent on their predictive capabilities. This study

employs a novel method for automatic weight assignment to

compute these weights.

3.2.2 Attribute set weight
The weight assigned to the attribute set X is represented as

weight (X) and is calculated by determining the average weight of

all the constituent attributes through the formula “(1)”.

Weight (X) =

∑|x|
i=1 Weight(ai)

No. of attributes in X
(1)

3.2.3 Weight of record
If the dataset comprises n attributes, the record weight is

represented as weight (rk), which is calculated by considering the

average weight of attributes in the row using equation “(2)”.

Weight (rk) =

∑|rk|
i=1 Weight(ai)

No. of attributes in a tuple
(2)

3.2.4 Weighted support_two attributes
The weighted support between two attributes is calculated

using “(3)”.

WS (A1 → A2) =

∑A1
i=1

∑A2
j=1 W

(

rij
)

∑n
k=1 W (rk)

(3)

3.2.5 Weightedsupport_multi attributes
Within the domain of ARM, the multi-attribute association

rules, denoted as A1, A2→A3, represent a specific scenario in

association rule mining. In this context, the rule’s antecedent plays a

determining role in its consequent, where A1, A2, andA3 constitute

the set of {attribute, value} pairs. The fraction of weights attributed

to records containing the attributes above and values about the

total weight of all records is quantified by the calculation outlined

in “(4).”

WS (A1,A2 → A3) =

∑A1
i=1

∑A2
j=1

∑A3
k=1 W

(

rijk
)

∑n
k=1 W (rk)

(4)

3.2.6 Weighted support_class
Consider an association rule denoted as X→ Y, where weighted

support (WS) signifies the proportion of weights assigned to all

records containing the specified attributes and value sets relative to

the total weight of all records. In this context, X represents a non-

empty set of attributes, such as {A1, A2, ..., An}, and Y denotes the

class label. The calculation for weighted support can be performed

as outlined in “(5).”

WS
(

X → ClassLabel
)

=

∑X
i=1 W (ri)

∑n
k=1 W (rk)

(5)

3.2.7 Two attribute’s weighted confidence
Suppose the rule A1→A2, with two attributes as A1 and A2,

is articulated as the fractional value derived from the weighted

support of the two attributes (A1→A2) relative to the weighted

support of A1. This relationship is represented as “(6).”

WC (A1 → A2) =
WS (A1 → A2)

WS(A1)
(6)

3.2.8 Weighted confidence for multi attributes
The rule, such as A1, A2→A3, where A1, A2, and A3 represent

multi-attributes, is denoted as the fractional value derived from the

weighted support of A1, A2→A3 about the weighted support of A1,

A2. This expression is illustrated as “(7).”

WC (A1,A2 → A3) =
WS (A1,A2 → A3)

WS(A1,A2)
(7)

3.2.9 Weighted confidence for class
It is defined as the fractional value obtained from the weighted

support of (X→ClassLabel), where X represents the set of attributes

and the weighted support of X. This representation is shown

as “(8).”

WC
(

X → ClassLabel
)

=
WS(

(

X → ClassLabel
)

WS(X)
(8)

Applying the previously stated definitions and formulas,

Weighted_class Association rules will be generated. Subsequently,

the subsequent definitions and formulas are formulated to compute

robust rules for constructing a predictivemodel rooted inWeighted

Bayesian Theory. In this context, WBC and WBL are delineated

following the joint probability distributions of the weighted class

association rules.

The joint probability distribution for every Weighted_class

Association rule is calculated using the BBN standard formula as

shown in “(9)”.

P (A1,A2, . . . . . . .,An) =

N
∏

i=1

P(Ai|Parents (Ai)) (9)

3.2.10 Weighted Bayesian Confidence
The characterization of Weighted Bayesian confidence for the

rule A→ B, where A represents a set of predictors and B is the class
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label, is illustrated by the expression P(B|A). This is presented in the

following context, as indicated in “(10).”

WBC (A → B) = P(B/A)

=
WS(A,B)

WS(A)
(10)

Here, WS(A, B) is the value of joint probability distribution

calculated from equation (10). Here, the Weighted Bayesian

Confidence value shows the strength of the rules.

3.2.11 Weighted Bayesian Lift
A given rule A→B is characterized as WBC/P(B) and is

calculated for the association rule A→B using the Bayesian

network, as outlined in “(11)” and “(12).”

WBL =
WBC

P(B)
(11)

P(B/A)

P(B)
=

WS(A,B)

WS (A)WS(B)
(12)

The WBL value ranges between 0 (zero) and∞ (infinity).

If WBL equals to 1, A and B are considered independent.

When WBL is greater than 1, it indicates that the descendant

B is positively dependent on the antecedent A, implying a positive

correlation between A and B.

If WBL is less than 1, it suggests that the descendant B is

negatively dependent on the antecedent A, signifying a negative

correlation between A and B (Harpaz et al., 2010; Soni and Vyas,

2013).

Here, Weighted Bayesian Lift values show the correlation

between the antecedent and descendent of the rules. The WBBN

model is built using two interestingmeasures,WBC andWBL (Butt

et al., 2021; Chang et al., 2022). Bayesian networks inherently deal

with uncertainty by modeling probabilistic dependencies between

variables. WBC and WBL extend this concept by quantifying

the confidence and lift of rules derived from the Bayesian

network. This helps account for the uncertainty associated with

individual rules and their predictive power. WBC and WBL

introduce a weighting mechanism that considers the strength

of evidence supporting each rule. This weighting ensures that

more reliable and informative rules are given higher importance

in the model construction process. By prioritizing rules with

higher confidence and lift values, the resulting model becomes

more robust and capable of making accurate predictions. By

incorporating WBC and WBL metrics into the model construction

process, the resulting WBBN model becomes more adept at

capturing complex relationships and patterns in the data. Rules

with higher confidence and lift values are more likely to

accurately represent meaningful associations between variables,

thereby improving the predictive power of the model. This leads

to more reliable predictions and better performance in real-

world applications.

The pseudocode is presented in algorithm to show the

clean steps required to generate WBAR to build the predictive

model. Weighted Bayesian_class Association Rules are extracted

using the above formulas and WBAR Pseudocode to build the

WBBN predictive model using Apriori Algorithm. Here, the

procedure Partial_WeightedRule_Generator() is called from

WBAR pseudocode to find weighted associations between

Two_attributes, Multi_attributes, and finally with Class_labels

to generate WARs. After that, the joint probability distribution

for all the WARs using eq 9 is calculated. Using the calculated

value of each rule, WBC and WBL are computed using “(10)” and

eq “(12)”, respectively. WBC shows the reliability or strength of

Weighted Bayesian rules, andWBL shows the correlation (positive,

negative, and independent) of Weighted Bayesian rules. At last,

the model is built using the WBARs with the highest WBC and

WBL values.

Algorithm: WBAR PSEUDOCODE

Procedure partial_weightedrule_generator(n,d,a[optional])

[procedure to extract n attribute partial rules with high

weighted confidence over a given dataset Dand A is the Highly

associated attribute sets of cardinalities n-1]

1. Most frequent n-attribute sets are extracted as FREQ_ITEMS

using the given in_weighted_support_threshold value.

2. For every member L ∈ FREQ_ITEM repeat 2.1 & 2.2

3. Generate all non-empty subsets of L as S

a. For every member X ∈ S Generate the weighted association

rules X→ L-X and add it RULE_SET

b. For every rule ∈ to RULE_SET, Calculate

Weighted_confidence.

4. Partial rules are extracted using the given

min_weighted_confidence_threshold and add it to

PARTIAL_RULE_SET.

5. For every rule ∈ PARTIAL_RULE_SET of the form p→q,

append the consequent attribute q to the antecedent attribute

set p to form, attribute set PQ, and add it to the set n-

highly_associated_attributes.

6. Return n-highly_associated_attributes.

Pseudocode: WBAR

[This algorithm extracts strong Weighted Bayesian_class

association rules over a Clinical dataset D with n attributes]

Given Input Data: Database D with n attributes

and Binary_ClassLabel.

Outcome Generated: Weighted Bayesian_class

Association Rules.

1. Apply discretization on the attributes of D.

2. Apply the automated weight assignment method to assign

weights to attributes.

3. Generate weighted 2- highly_associated_attributeset.

a. X[2]= Partial_Weightedrule_generator (2,D)

4. Repeat step 4.1 for k=3,4,.....,n

a. X[k] = Partial_WeightedRule_generator(k,D,X[k-1]) to

Generate weighted k - Highly_Associated_AttributeSet
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TABLE 3 Generation of strong rules based on WBC and WBL when min_WS = 10% and min_WC = 50% with achieved accuracy.

S.No Minimum
threshold on
weighted
approach

Training dataset Testing dataset No.of rules
based on WS

and WC (WARs)

No. of strict rules
based on WBC

and WBL
(WBARs)

Accuracy

1 Support= 10%;

Confidence= 50%

100% 100% 24 15 89.53

2 80% 20% 20 12 92

3 70% 30% 15 10 91

4 60% 40% 22 14 90

TABLE 4 Generation of strong rules based on WBC and WBL when min_WS = 40% and min_WC = 80% with achieved accuracy.

S.No Minimum
threshold on
weighted
approach

Training dataset Testing dataset No.of rules
based on WS

and WC (WARs)

No. of strong
rules based on
WBC and WBL

(WBARs)

Accuracy

1 Support= 40%;

Confidence= 80%

100% 100% 10 5 89

2 80% 20% 12 7 95.8

3 70% 30% 10 7 85

4 60% 40% 24 10 92

5. Calculate the associations of n-highly_associated_

attributesset with classlabel

a. WR= Partial _WeightedRule_generator (n+1,D,X[n])

6. For every w ∈WR, repeat steps 6.1 and 6.2

a. Calculate the joint probability distribution of w.

b. Calculate the Weighted Bayesian confidence (WBC) and

Weighted Bayesian Lift (WBL) for w.

7. To build the model, generate the strong WBAR rules with the

highest WBC and WBL.

4 Experimental results

A benchmark medical dataset related to PIDD is utilized to

assess the effectiveness of the WBBN model by applying weighted

Bayesian_class association rules. The construction of the model

involves utilizing Java version 1.8 for the front end and MySql

8 as the backend tool. Different proportions of the dataset are

employed to train and test to learn the innovative predictive

model, employing various thresholds for Min_Weighted support

and Min_Weighted confidence. The outcomes of four distinct

experimental scenarios are tabulated using Tables 3–6. In this

study, the WBBN model undergoes thorough training and testing

using a distinct distribution of the PIDD dataset comprising 768

records. The primary evaluative parameter employed in this study

is accuracy, which is the correctness of predictions made by a

predictive model for diabetes diagnosis or classification (Nayak

et al., 2023; Panigrahi et al., 2023; Pati et al., 2023).

4.1 Minimum threshold setup

Examining the significance of the Minimum Threshold value

(Min_Thres) about weighted support and weighted confidence,

these factors directly impact the accuracy of the classifier model

outcomes. If the Min_Thres is set too low, it may include

irrelevant rules in the rule base. Conversely, setting the Min-

Thres too high may result in excluding valuable and essential

rules that exhibit high confidence (Chang et al., 2022). Moreover,

the model is empirically tested by setting different threshold

values to acquire the highest accuracy. Initially, the generation of

Weighted Association Rules (WARs) involves the consideration

of minimum threshold values for Weighted Support (WS)

and Weighted Confidence (WC) across two attributes, multi-

attributes, and incorporating a class label. This process follows the

steps delineated in the provided pseudocode. Subsequently, the

construction of the Weighted Bayesian Belief Network (WBBN)

model is achieved by utilizing Weighted Bayesian Confidence

(WBC) and Weighted Bayesian Lift (WBL) to generate robust

rules. Finally, using this strong rule model, WBBN is trained.

Test data are applied to the model to check the accuracy of

the WBBN model, and its achieved accuracy is also presented

in the following tables. The experimental outcomes, detailing the

generation of robust rules and their respective accuracies, are

tabulated using Tables 3–6.

The experimental setup shows that seven strict rules are

generated to develop the model when WBBN is trained with an

80% training dataset (614 records). Then, to check the accuracy,

it is tested using test data of 20% (154 records); the highest

accuracy acquired is 95.8% with Minimum WS = 40% and WC

= 80%, as shown in Table 4. Moreover, as a model should be

built using a minimum number of strong rules, WBBN uses

seven rules. The graphical representation of the results is shown
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TABLE 5 Generation of strong rules based on WBC and WBL when min_WS = 26% and min_WC = 60% with achieved accuracy.

S.No Minimum
threshold on
weighted
approach

Training dataset Testing dataset No.of rules
based on WS

and WC (WARs)

No. of strong
rules based on
WBC and WBL

(WBARs)

Accuracy

1 Support= 26%;

Confidence= 60%

100% 100% 20 10 89.53

2 80% 20% 22 11 93

3 70% 30% 21 10 90

4 60% 40% 10 7 92.55

TABLE 6 Generation of strong rules based on WBC and WBL when min_WS = 36% and min_WC = 70% with achieved accuracy.

S.No Minimum
threshold on
weighted
approach

Training dataset Testing dataset No.of rules
based on WS

and WC (WARs)

No. of strong
rules based
on WBC and
WBL (WBARs)

Accuracy

1 Support= 36%

Confidence= 70%

100% 100% 20 10 92.3

2 80% 20% 10 6 94

3 70% 30% 9 4 93

4 60% 40% 9 6 92.5

FIGURE 2

Empirical analysis of WBBN using pidd on di�erent parameters.

in Figure 2, which gives the highest accuracy of 95.8 % for the

PIDD dataset.

Now, this WBBN model is ready for class label

prediction. When new patient data are fed to the model,

it checks with the strong rules and assigns the class

label accordingly.

5 Comparative study

The WBBN model using the clinical dataset is evaluated

regarding the number of strong rules and accuracy. Table 7 shows

the results of the WBBN model using three clinical datasets:

the Pima Indian Diabetic dataset, the Heart Disease dataset, and
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TABLE 7 Performance of WBBN on various clinical datasets.

Datasets Min. weighted
threshold

Data distribution No. of strong rules
based on WBC and

WBL

Accuracy (%)

Training
dataset

Test dataset

Pima Indian Diabetic Dataset Support= 40%; Confidence= 80% 80%‘ 20% 7 95.8

Heart Disease Dataset Support= 36%; Confidence= 70% 70% 30% 7 92.7

Breast Cancer Support= 36%; Confidence= 70% 70% 30% 5 97.18

TABLE 8 Performance comparison of wbbn with existing classifiers on

the pima Indian diabetic dataset.

Dataset Classifier model Accuracy (%)

PIDD WBBN (proposed model) 95.8%

Naïve Bayes (Chang et al., 2022) 80%

SVM (Patil et al., 2022) 94.5%

MLP (Butt et al., 2021) 86.08%

ANN (Jader and Aminifar, 2022) 91%

Decision tree (Azad et al., 2022) 82.12%

the Breast Cancer dataset.WBBN model, built using seven strong

rules of PIDD, achieves an accuracy of 95.8% when the model is

trained using 80% of the dataset, and tested on 20% with provided

Min_Threshold. Again, the WBBN model built using seven strict

rules of the heart disease dataset acquires an accuracy of 92.7%

when the model is trained on 70% of the dataset and tested on 30%

of the data with the providedMin_Threshold. Similarly, theWBBN

model achieves the highest accuracy of 97.18%, as shown in Table 7.

The graphical representation of the results is shown in Figure 3.

Now, the exhaustive comparison of the proposedmodelWBBN

is done with existing classifiers developed in recent years using

the same diabetic dataset. The comparative study shows that the

proposed model WBBN gives outstanding results, as shown in

Table 8. In this comparison, the WBBN model achieves the highest

accuracy of 95.8%. This could be attributed to its ability to capture

complex relationships between features in the dataset. The superior

performance of WBBN indicates the potential effectiveness of

probabilistic modeling for classification tasks.

Here, Naive Bayes achieves an accuracy of 80%, which is notably

lower than WBBN. The simplicity of Naive Bayes, relying on the

assumption of feature independence, may not fully capture the

complex relationships in the dataset, leading to lower accuracy.

Again, SVM performs admirably with an accuracy of 94.5%,

slightly below WBBN. SVM’s ability to identify complex decision

boundaries in high-dimensional spaces might contribute to its

competitive performance. MLP and ANN achieve accuracies of

86.08% and 91%, respectively.

While these neural network models demonstrate reasonable

performance, they fall short of WBBN, possibly due to suboptimal

architecture or training parameters. Decision Tree achieves an

accuracy of 82.14%, which is relatively lower than other models.

Inherent limitations of Decision Trees in capturing complex

relationships and tendency to overfit might contribute to their

lower accuracy.

To increase the visualization of a comparison, a graph has been

plotted for PIDD clinical datasets on various existing classifiers

such as Naïve Bayes, SVM, MLP-NN, K-NN, Random forest,

and Decision Tree, which are commonly used in the clinical

industry, as shown in Figure 4. In conclusion, while WBBN

demonstrates superiority in accuracy over other classifiers on

the Pima Indian Diabetic Dataset, further research is needed

to explore its interpretability, scalability, and generalization

capabilities. Additionally, addressing the limitations and challenges

encountered during the evaluation processes, such as dataset bias

and class imbalance, would provide valuable insights for enhancing

the effectiveness of classifiers in practical applications, particularly

in healthcare and related domains.

6 Conclusion and future work

The construction of the WBBN model involves incorporating

the property of the clinical dataset, specifically the notion that

“not all symptoms are equally important for prediction.” This is

achieved by assigning varying weights to attributes based on their

predictive capabilities. The experimental findings demonstrate that

the weighted concept contributes to achieving higher accuracy

in the clinical domain compared with other available predictive

models. The experiments were conducted using three distinct

clinical datasets, namely, the Breast Cancer dataset, Heart Disease

dataset, and PIDD from the UCI archive, yielding outstanding

results. This achievement represents a significant contribution

to the medical sector. In the future, the innovative weighted

model could be extended to non-clinical datasets to benefit other

sectors. Extending the weighted model to non-clinical datasets

requires careful consideration of domain-specific characteristics,

data quality, feature engineering, interpretability, generalization,

ethical considerations, and scalability. While the weighted model

may offer advantages in terms of performance and interpretability,

addressing the challenges and limitations inherent in applying the

model to diverse datasets beyond the medical domain is essential

for its successful adoption and deployment in non-clinical sectors.

Additionally, addressing the “Sharp Boundary problem in the

medical field” could be achieved by incorporating fuzzy theory and

developing a fuzzy weighted model.
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FIGURE 3

Performance of WBBN on various clinical datasets.

FIGURE 4

Comparison of WBBN with other classifiers using the pid dataset.
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