
TYPE Original Research

PUBLISHED 21 June 2024

DOI 10.3389/frai.2024.1368569

OPEN ACCESS

EDITED BY

Jong Youl Choi,

Oak Ridge National Laboratory (DOE),

United States

REVIEWED BY

Ankita Shukla,

University of Nevada, Reno, United States

Elaine Wong,

Oak Ridge National Laboratory (DOE),

United States

*CORRESPONDENCE

Steve Abel

s.a.abel@durham.ac.uk

RECEIVED 10 January 2024

ACCEPTED 27 May 2024

PUBLISHED 21 June 2024

CITATION

Abel S, Criado JC and Spannowsky M (2024)

Training neural networks with universal

adiabatic quantum computing.

Front. Artif. Intell. 7:1368569.

doi: 10.3389/frai.2024.1368569

COPYRIGHT

© 2024 Abel, Criado and Spannowsky. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Training neural networks with
universal adiabatic quantum
computing

Steve Abel 1,2*, Juan Carlos Criado 3 and

Michael Spannowsky 1

1Institute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom,
2Theoretical Physics Department, CERN, Geneva, Switzerland, 3Departamento de Física Teórica y del

Cosmos, Universidad de Granada, Granada, Spain

The training of neural networks (NNs) is a computationally intensive task requiring

significant time and resources. This article presents a novel approach to NN

training using adiabatic quantum computing (AQC), a paradigm that leverages

the principles of adiabatic evolution to solve optimization problems. We propose

a universal AQC method that can be implemented on gate quantum computers,

allowing for a broad range of Hamiltonians and thus enabling the training of

expressive neural networks. We apply this approach to various neural networks

with continuous, discrete, and binaryweights. The study results indicate that AQC

can very e�ciently evaluate the global minimum of the loss function, o�ering a

promising alternative to classical training methods.

KEYWORDS

adiabatic quantum computing, quantum computing, neural networks, binary neural

networks, NN training

1 Introduction

Adiabatic quantum computing (AQC) is a paradigm of quantum computation that

harnesses the principle of adiabatic evolution to solve computational problems (Farhi et al.,

2001, 2002, 2006). In this approach, one must design a quantum Hamiltonian, whose

ground state encodes the solution to the problem at hand. A quantum system with a

time-dependent Hamiltonian is then employed to obtain this ground state. Initially, the

Hamiltonian of this system should be simple enough for its ground state to be analytically

known. Finally, it should coincide with the designed “target” Hamiltonian. The adiabatic

theorem then guarantees that, if the evolution is sufficiently slow and the system is

initialized in the ground state, it will remain in the ground state throughout the process.

The computational prowess of AQC is equivalent to that of the conventional quantum

computation model, implying that both models are polynomially equivalent (Aharonov

et al., 2007). In other words, it is considered to be a universal quantum computing

paradigm. Moreover, AQC has been realized experimentally in various systems, including

solid-state single-spin systems under ambient conditions (Biamonte and Love, 2008; Xu

et al., 2017). The purpose of this article is to demonstrate how AQC can be used to greatly

enhance the training of neural networks (NNs).

Generally, NNs, similar to all self-adaptive optimization algorithms, consist of three

core parts:

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1368569
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1368569&domain=pdf&date_stamp=2024-06-21
mailto:s.a.abel@durham.ac.uk
https://doi.org/10.3389/frai.2024.1368569
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1368569/full
https://orcid.org/0000-0003-1213-907X
https://orcid.org/0000-0003-3571-994X
https://orcid.org/0000-0002-8362-0576
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

1. A system that encodes a complex function: typically, for

an NN, this function is constructed as the composition of

linear transformations and non-linear activation functions. The

elements of the matrices that define these linear transformations

are free parameters. When sufficiently many free parameters are

present, they can be tuned so that the NN approximates any

given function.

2. An output layer’s loss function that dictates the NN’s task: in the

supervised learning framework, which we adopt in this article,

one has a training dataset that provides a number of examples

of desired inputs and corresponding outputs of the NN. The loss

must then then be a function that is minimal when the outputs

of the NN for the given inputs coincide with the desired outputs.

3. A training method to minimize the loss function: this may be

any algorithm that tunes the free parameters of the NN so that

they minimize the loss. In classical computing, this is usually

performed through gradient descent-based methods.

It is the last of these three, namely, the training of NNs, which

typically demands the greatest time, effort, and resource, and poses

the greatest challenge to their development and deployment.

In previous exploratory studies (Abel and Spannowsky, 2021;

Abel et al., 2021, 2022b), we showed that a NN can be trained

by encoding it in a transverse Ising model on a quantum

annealer (Lanting, 2017). The study also demonstrated that such an

approach, utilizing quantum tunneling, can train a NN optimally,

reliably, and quickly. Furthermore, the trained parameters can be

extracted and used in a classical network for deployment. However,

the restriction to a transverse Ising model as the Hamiltonian

for quantum annealing greatly limits the expressivity of the NN.

Essentially, this restriction means that the loss function can only be

a quadratic function of binary variables. If a binary encoding for the

free parameters of the NN is employed, the resulting loss function

depends at most quadratically on the weights. Typical machine

learning applications require more complex loss functions. This

problem might be reduced by encoding higher-order polynomials

using auxiliary variables and quadratic constraints, but this implies

a large number of additional qubits. This is the cost of employing an

Ising model. Essentially any polynomial ground-state Hamiltonian

can be expressed by means of reducing it to quadratics (see Abel

et al., 2022b for examples), but the number of qubits grows rapidly.

Thus, to address these obstacles, this article proposes a universal

AQC approach that can be used to train a neural network and

extract the optimally trained network weights. The much wider

variety of Hamiltonians that can be used within the universal AQC

paradigm allows us to include correlations and non-linearities in

our models, allowing adiabatic quantum training to be applied to

larger and more expressive networks. In fact, the general form of

the Hamiltonian allows one to encode, in principle, any given loss

function.

We will present two techniques for performing the AQC:

the “matrix method”, in which the system is expressed in

terms of truncated Hilbert space components and the “Pauli-spin

method”, in which it is expressed directly with Pauli-spin matrices.

We apply these methods to simulated quantum-gate computers,

showing the applicability of AQC training on near-term devices.

Furthermore, we apply the “Pauli-spin method” to the training

of both continuous neural networks and networks with discrete

and binary weights. The latter usually rely on non-gradient-based

optimization algorithms and are classically very difficult to treat.

In the burgeoning domain of computational intelligence, neural

networks are heralded as the cornerstone of machine learning,

particularly excelling in classification and regression tasks. Their

influence permeates both everyday applications and advanced

scientific research. Hence, being able to enhance their capabilities

and streamline their training through the innovative lens of

quantum computing is of considerable significance.

2 Challenges in training neural
networks

This study initially discusses the difficulties one may encounter

when training a neural network. In the training phase, the goal is to

reach the global minimum of the so-called cost or loss function.

However, the optimization landscape of neural networks often

contains multiple local minima. This problem is only exacerbated if

the network is small. Overall, in a space of high dimensionality, the

most critical points are likely to be saddle points. Thus a gradient

descent method is usually effective. Conversely, on the small neural

networks, the global minimum can be much more difficult to find.

Indeed, several other issues can arise during training in spite of

the implementation of correct algorithm. Here, we briefly list these

challenges and the typical approach that can be employed to deal

with them in classical training:

• Slow progress, fluctuations or instability: tackled by

optimizing the learning rate to either speed up or slow

down convergence.

• Badly conditioned curvature: “ravines” in the landscape of

values of the loss function in the free-parameter space imply

that different directions require different learning rates to be

optimal. That is, one must take larger steps in the directions in

which the loss function varies slowly and smaller steps in those

in which it changes rapidly. The Adam algorithm can address

this by adapting learning rates individually for each parameter.

• Local Optima: the algorithm might become trapped in a local

minimum of the loss function, since a small trial step in

any direction will increase the loss. This is usually addressed

by using random restarting points to explore every basin of

attraction. It is also worth noting that in a large dimensionality

parameter-space, the most critical points are saddle points.

Thus, this is a problem that afflicts small NNs compared to

large NNs.

• Weight degeneracy: the output of an NN is often invariant

under some permutation of its parameters, but the optimal

values of the parameters themselves are not. Indeed, this

study demonstrates an example of this phenomenon in a later

section. This is addressed by a random initialization of the

weights and biases, which breaks the symmetry.

• Dead and Saturated Units: activations at the ends of

their range cause plateaus in the loss-function landscape.

Initializing biases with positive values can help avoid the

problem, although it can also signal a redundancy in the

network that one would like to reduce by pruning out

redundant weights. This problem is often an indication that

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

the NN can be “pruned”, that is, that part of the network

is effectively redundant and can be removed. Unfortunately,

determining precisely how a network can be pruned is

difficult.

Following on from the last of these points, it is worth

emphasizing that the paradigm of neural networks uses a set of

continuous weights and biases on which a gradient descent can

be performed. However, arguably, this causes great redundancy

because, in many situations, a reasonable solution to the

optimization of the network is, in principle, achievable with weights

that are discrete or even binary (i.e., just “on” or “off”) if only we

can find the correct discrete values.

To appreciate the redundancy that is inherent in continuous

weights and biases, consider the example of a classification task

when there are only two features. In principle, the classification

curve can be written as the Taylor expansion of the level-curve of

some function z(x1, x2) of the features x1 and x2. However, if this

classification curve happens to be well approximated by a quadratic

function, for example, then it would require only six continuous

coefficients. In contrast, the neural networks would typically have

many more continuous weights and biases. However, if we accept

that these six continuous Taylor coefficients are well approximated

if we know them to four binary places (i.e. to one part in 16),

then only 24 binary weights taking values of 0 or 1 should in

principle be able to describe the same classification curve. Because

of this redundancy, there is indeed quite some interest in training

discretely weighted networks and networks where both the weights

and activation functions are binary (Courbariaux et al., 2015; Ding

et al., 2019; Roth et al., 2020; Livochka and Shekhovtsov, 2021; Yuan

and Agaian, 2023).

However, we can immediately appreciate that such a system of

discrete weights is classically problematic precisely because it runs

into both the “weight degeneracy” and the “dead and saturated

units” problems mentioned in our list of challenges. Moreover

the “local optima” problem is generic. Indeed it is for these

reasons that the classical training of discretely weighted and binary

systems requires special treatment (Roth et al., 2020; Livochka and

Shekhovtsov, 2021).

3 Adiabatic quantum computing on
gate quantum computers

Here, we discuss AQC and its general implementation on gate

quantum computers.

Although it is interesting for the reasons outlined above to

allow our eventual systems of interest to be relatively discrete in

nature, it will be useful in establishing the basic principles first

to consider systems of function of continuous variables. Thus in

this section, we will focus on the specific task of finding all the

global minima of a function V(w) of one variable in the interval

w ∈ [0, 1] (We refer weights and biases using the variable w.).

AQC is equivalent in this context to solving for the ground state

in one-dimensional quantum mechanics with w corresponding to

the single space dimension. Studying such familiar cases will allow

us to confirm that our system behaves as expected.

The first example we will look at is the following cosine

potential which has two degenerate minima in the interval w ∈
[0, 1]:

V(w) = 1+ cos(4πw) , (1)

which appears as the dashed line in Figure 1.

There are various ways in which one might wish to encode

the problem of minimizing this potential. It is necessary to ensure

that the chosen method is both effective and yields an advantage

(in the sense that the difficulty does not scale exponentially with

the problem size). Here, we shall consider two encoding methods,

namely, the “matrix method” and the “Pauli-spin method”.

3.1 The matrix method

The Matrix method is the most direct: it entails evolving

the wavefunction from some starting state using the Schrödinger

Hamiltonian,

Ĥ = p̂2

2m
+ V(ŵ) ,

where m is the mass and p̂ is the momentum operator conjugated

to the position operator ŵ, obeying [ŵ, p̂] = ih̄. We will henceforth

take h̄ = 1. To proceed, we must cast Ĥ into its matrix form in

a truncated Hilbert space. To do this, we adopt periodic boundary

conditions and define a basis of eigenstates of the kinetic piece in

the Hamiltonian working in the w-basis:

〈w|n〉 = e2π inw ,

where n ∈ Z labels the Fourier modes. The Hamiltonian matrix

elements are then given by

Hnℓ =
∫ 1

0
〈n|w〉〈w|Ĥ|ℓ〉dw

= 4π2n2

2m
+ Ṽ(n− ℓ) ,

where Ṽ(n) =
∫ 1
0 V(w)e−2π inwdw is the Fourier transform ofV(w),

which we can easily calculate for any n, ℓ ∈ Z. Thus, we can in

principle take the resulting matrix Hnℓ and use it to evolve the

wavefunction ψ(w, t) from an initial state ψ(w, 0) = cn(0)〈w|n〉,
using the Trotterized Schödinger evolution,

cn(t) = e−iHnℓtcℓ(0)

≈
(
e−iHnℓδt

)t/δt
cℓ(0) ,

where δt is a small time step. Up to this point, everything is

expressed in simple quantum mechanics. However, we wish to

encode the wavefunction and its evolution in terms of qubits. This

can be performed by truncating the Hilbert space to size 2N with

n ∈ [−2N−1, 2N−1]. This allows us to identify each index nwith one

of the 2N possible eigenvalues of N tensored qubits. The simplest

choice for this identification is to treat n like the computational-

basis index: that is we associate the binary expression for each n

with the eigenvalues of the N tensored binary operators

T = 1

2
(1+ Z) , (2)

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

FIGURE 1

Tunneling vs. adiabatic evolution in the cosine potential, V(w) = 1+ cos(4πw), with a truncation at energy level 〈w|n〉 = e
2πnwi, where n ∈ [−15, 15]. In

the tunneling example, we take m = 10, while in the second adiabatic example, we take masses of m = 100 (equivalently V can be multiplied by 100)

in order to get well-localized peaks in the ground state. The evolution time must be increased accordingly. The schedule function is taken to be

simply linear, s(t) = t.

where Z is the Pauli Z-spin matrix for each qubit. Thus, for

example, |n = −2N−1〉 ≡ |000 . . . 000〉, |n = 0〉 ≡ |000 . . . 010〉,
|n = 3〉 ≡ |110 . . . 010〉, and so forth.

To perform the time evolution, our 2N×2N Hamiltonianmatrix

must then be accordingly decomposed into sums of tensor products

of the Pauli-spin matrices, which act on the N tensored qubits,

and then the evolution of the initial state Trotterized as above.

To implement this step in the process, here and throughout, we

will make extensive use of the Qibo package of programs, which

allow fast evaluation of quantum circuits taking full advantage

of hardware accelerators (Efthymiou et al., 2021, 2022, 2023;

Robbiati et al., 2023). This package allows one to automate the

decomposition step and implement the Trotterized time evolution

induced by a symbolic Hamiltonian defined in terms of Pauli-spins,

which is rendered as a quantum gate circuit. Moreover, simulation

is feasible up to an order of 25 qubits.

As a warm-up exercise, it is interesting to consider an initial

wavefunction localized in one of the minima and observe its

tunneling to the other degenerate minimum. This is shown for

exhibiting potential of Eq. (1) in the first panel in Figure 1, where

we choose a Gaussian localized in the left minimum for the initial

state. We perform the time evolution as a simulation using Qibo’s

“StateEvolution” module, which, as we discussed, produces and

evolves the circuit corresponding to the symbolic Hamiltonian

(Importantly, Qibo allows one to put the same Trotter evolution

directly onto real machine.).

The wavefunction indeed tunnels to the second minimum, as

expected. However, in this initial example, we can also see why

quantum tunneling per se is not always beneficial for locating global

minima. There is no energy dissipation in an idealized setting, thus

the initial wavefunction never stops moving unless it is already

in an energy eigenstate. It would, for example, be very hard to

determine the global minimum if the minima were only slightly

non-degenerate. This can be contrasted with dissipative systems

such as those utilized in quantum annealers in Abel et al. (2022a,b),

Criado and Spannowsky (2023), and Criado et al. (2023).

Hence to determine the true global minimum, we can use AQC

as envisaged in Farhi et al. (2001, 2002, 2006). That is, we begin

the system in the ground state of a trivial Hamiltonian Ĥ0 and

adiabatically evolve the system to the complicated Hamiltonian of

interest, Ĥ. As a function of time, the total Hamiltonian ĤA for

adiabatic evolution in the AQC paradigm takes the form

ĤA(t) = (1− s(t)) Ĥ0 + s(t) Ĥ , (3)

where s(t) is the so-called schedule function with s(0) = 0 and

s(tfinal) = 1. If the evolution is sufficiently adiabatic, the system will

always remain in the ground state. The result is the desired ground

state of the complicated Hamiltonian of interest. For the present

example, we can take Ĥ0 to be the purely kinetic Hamiltonian with

V = 0, for which the n = 0 state, 〈w|ψ〉 = 〈w|000 . . . 010〉 = 1, is

trivially the ground state solution.

We performed the adiabatic evolution within Qibo using

models.AdiabaticEvolution, with the schedule taken to be

linear for simplicity, s = t/tfinal. The resulting evolution is

shown in the second panel in Figure 1. Notably, the complicated

Hamiltonian’s eventual ground state function is time-independent

as it should be and correctly responds to the two minima

degenerately. Thus, for locating the global minima, the mass (or,

more generally, the kinetic to potential terms ratio in Ĥ) plays

an important role. The higher the mass is relative to V(w), the

sharper the peak around the global minima. This is, of course,

to be expected because approximating the potential around each

minimum, wmin, as a simple harmonic oscillator (SHO), the

wavefunction is of the form

ρ0(w) = |ψ0|2 ≈ (m)1/4 e−4π
√
m(w−wmin)

2
.

We show this dependence explicitly in Figure 2, which displays

the expected m1/4 behavior in the amplitude of the peaks. This

feature will be important in later discussions.

It is instructive and useful for our later discussion to perform

the same kind of comparison in a polynomial potential with a

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

FIGURE 2

The e�ect of mass on the ground state. Around each minimum, the

ground state approximates the Gaussian ground state of the SHO

with V(w) = 8π2
w

2, namely, ρ0(w) = |ψ0|2 ≈ (m)1/4 e−4π
√
m(w−wmin)

2

(normalized such that each of the two peaks contributes 1/2).

metastable minimum, where the system can be trapped. A simple

case is the following quartic potential:

V(w) = λ(18w4 − 35w3 + 22w2 − 5w+ 0.372573) ,

where λ is an overall factor to scale the potential. The potential is

shown as the gray dashed line in Figure 3. To examine tunneling, we

begin the system in the approximate ground state of the metastable

minimum at w+ = 0.1848. Expanding around this point, we find

an approximate SHO potential with V(w) ≈ λ(0.372573+ 2π(w−
w+)2) (and hence SHO parameters m� = 2

√
λπm). Thus to

demonstrate tunneling, we begin the system in theGaussian ground

state,

ψ0(w) = (4m/π)1/8 e−
√
λπm(w−wmin)

2
.

The subsequent evolution is shown in the first panel in

Figure 3.We also notice that tunneling does not help locate minima

without some element of dissipation. Indeed the wavefunction

either oscillates wildly between the minima on longer timescales

or remains relatively stuck: it is quite challenging to control the

behavior, which depends sensitively on the choice of both λ and

m. This can be contrasted with AQC which correctly reproduces

the ground state in the second panel. This only selects the true

global minimum even when the twominima are almost degenerate.

As an example of the latter, we show in Figure 4 the evolution of

the cosine potential (performed using the “matrix method”) with

a tiny linear term 1V(w) = ǫw, where ǫ = 0.02, which causes

non-degeneracy in the two minima. Even though the two minima

are imperceptibly non-degenerate, the adiabatic process ultimately

finds the true global minimum. The behavior is quite striking

because it is initially degenerate, and only toward the end of the

process, the true minimum is selected. As for the cosine potential,

the global minimum can be more precisely located by increasing

the mass or increasing the parameter λ, subject to the constraint

that the Trotterization should remain a good approximation (i.e.,

FIGURE 3

Tunneling vs. adiabatically evolving the ground state in a quartic

potential. Here, for tunneling, the initial wavefunction is chosen to

be the ground state of the approximate SHO potential around the

false minimum (with λ = 4, m = 100). For the adiabatic evolution,

we take λ = 8,m = 200 to ensure a localized peak at the origin. We

also show (overlaid dotted line) the ground state of the SHO

approximation, which is obtained by expanding around the global

minimum at w = 0.8.

|H|δt ≪ 1). However, in the present context, the most important

aspect of this example is that we can see that AQC completely

avoids the “Badly Conditioned Curvature” problem mentioned in

our list of challenges in Section 2.

We should, for completeness, attach a caveat to this picture:

the oscillation back and forth that we can observe in the tunneling

solutions is partly due to the fact that the systems we consider in

these illustrative examples are only one-dimensional and periodic.

Quantum tunneling in many physical systems of interest (for

example, phase transitions in cosmology) is higher dimensional

and takes place in non-compact volumes. In such situations, the

tunneling process is one-way because there is a large degenerate

volume of global minima: excess energy after tunneling is dissipated

in dynamics, for example, in accelerating bubble walls.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

FIGURE 4

AQC for the exact same system as in Figure 1 but with not quite

degenerate minima (the energetic di�erence between the two

minima being 1Vmin ≈ 0.01). During the evolution the ground state

ultimately selects the true minimum provided the process remains

adiabatic.

FIGURE 5

Energies released during the adiabatic evolution in Figure 3 showing

the isolated ground-state energy.

3.2 The Pauli-spin method

Despite the straightforward nature of the matrix method for

adiabatic evolution, it is not the most convenient approach for

training NNs because the matrix Hℓn would grow exponentially

with the number of variables (i.e. weights) in the system, requiring

us to store a 2N × 2N matrix in general. Therefore, it is typically

more efficient (we will make a more detailed comparison of the

relative efficiencies later in Subsection 4.4) to use the “Pauli-spin

method”. In this method, the variables and hence the Hamiltonian

are encoded in a binary fashion in the eigenvalues of Pauli-spins.

That is, we assign bin values for the variables themselves instead

of the wavefunction by defining the binary T operators as in Eq. (2).

For example, in the single variable case, we encode w discretely as a

fractional binary composed of N of the binary spins, Tℓ. Hence, the

operator corresponding to w is given by

ŵ = 2−N
N−1∑

ℓ=0

2ℓTℓ . (4)

The above encoding yields binned values for possible

measurements of the variable, 〈ŵ〉 ∈ {wr} = {0, 1
2N

, 2
2N
. . . , 1− 1

2N
}.

Thus, any particular state |ψ〉 is defined as

|ψ〉 =
∑

r

|wr〉〈wr|ψ〉 ,

with r = 0 . . . 2N−1 labeling the possible bin values wr and with

ρ(wr) = |〈wr|ψ〉|2 yielding the probability for measuring the

state in that particular bin. Primarily, this replaces the momentum

truncation with a direct variable discretization.

This is the general structure for encoding variables. How should

we now go about constructing the adiabatic evolution? For the

target Hamiltonian Ĥ, the main aspect to note is that in this

discretized variable formulation of the problem, the momentum

and hence the kinetic p̂2/2m terms would be hard to encode (such

terms would have to be encoded by the finite difference which

would greatly complicate the Hamiltonian). However, we also note

that the kinetic terms in the Hamiltonian did not significantly

contribute to locating the global minimum of V(w); their primary

role it to provide spread in the profile of the eventual ground

state. Indeed from Figure 2, it is clear that if we were to take

the limit m → ∞ keeping V(w) unchanged, then the final

wavefunction would be a spike at the global minimum, which

would for optimization be virtually the ideal outcome. Thus, to

determine the global minimum of a potential V(w), we may delete

the kinetic terms and set

Ĥ = V(ŵ) , (5)

where the operator ŵ is to be replaced by its encoding in terms

of Zℓ spins given in Eq. (4). It should be noted that, unlike the

matrix approach, we are now constrained to consider polynomial

potentials. In some of the applications we consider below, in

Section 4, the type of potential required to train a given model is

precisely a polynomial. In others, however, it is a non-polynomial

function involving the composition of linear transformations and

non-polynomial activation functions. As discussed in Section 4,

this does not represent a problem in practice, since any bounded

continuous function in a bounded domain may be approximated

arbitrarily well by a polynomial function. For a given application,

one can thus first find a suitable polynomial approximation and

then apply the method to it. Moreover, a modest amount of

reduction can be performed on the Hamiltonian. For example,

upon expanding the polynomial V̂ , we may find powers of Pauli

matrices that can be reduced using TℓTℓ = Tℓ (These reductions

are more significant when fewer qubits are used to define each ŵ).

To play the role of the trivial Hamiltonian in the adiabatic

evolution, Ĥ0, we can use the commonly adopted transverse AQC

choice,

Ĥ0 = 1

2

N−1∑

ℓ=0

(1− Xℓ) , (6)

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

FIGURE 6

Adiabatically evolving to find the global minimum of the quartic

potential using a Pauli-spin encoding of w. Here we show the

evolving smoothed histogram of the ground state ρ(w) ≡ |ψ (w)|2
with w encoded in N = 7 qubits.

where Xℓ is the X Pauli-spin matrix for the ℓ’th qubit. It can be

easily noted that 1
2N/2

∏
ℓ(|0〉ℓ + |1〉ℓ) is the ground state of this

Hamiltonian (because X(|0〉 + |1〉) = (|0〉 + |1〉)). On expansion,

we see that this is the state with degenerate probability in each w

bin, which has 〈Ĥ0〉 = 0.

Finally, we put these two Hamiltonian components, namely, Ĥ0

of Eq. (6) and Ĥ of Eq. (5), into the adiabatic evolution equation in

Eq. (3), and the system is evolved from the initial Ĥ0 ground state

using the Trotterized circuit generated by Qibo. The result for the

quartic potential is shown in Figures 5, 6. As expected, it is highly

peaked around the global minimum.

4 The training of neural networks

4.1 The general method

In this section, we will demonstrate that the AQC optimization

algorithm outlined in the previous section can be used to train

machine-learning models, where we will now replace the single

ŵ operator with a large number of weights and biases. We will

focus on the supervised learning framework, which aims to find a

function Y(x) that approximately reproduces a given set of outputs

ya from a given set of inputs xi. A classification problem is when the

outputs, called labels in that context, take values in a small discrete

set. Otherwise, the problem becomes general non-linear regression.

A machine learning model is a family of functions from which

the optimal Y(x) function for the available data has to be selected.

The process of finding this optimal function is known as training,

and it is typically done by minimizing a loss function L, which

measures the deviation of the predictions Y(xa) from the labels ya.

For example, one may define it as the mean squared error

L = 1

N

N∑

a=1

(
Y(xa)− ya

)2
.

Some of the most versatile models in this setting are neural

networks, which are constructed as the composition of layers Lk(z),

with each layer given by an affine transformation followed by the

element-wise application of a non-linear function fk:

Y(x) = Ln(· · · L1(x)),

Lk(z) = fk


∑

j

w
(k)
ij zj + b

(a)
i


 .

The parameters w and b are known as the weights and biases,

and the functions denoted by f are called the activation functions.

Various classical algorithms have been developed to optimize

the loss function L. Most of them are local optimization methods,

in which the weights and biases are updated iteratively in minor

increases. A common problem that these algorithms can only

partially address is that they can become trapped in local minima

for a non-convex loss function. Thus, quantum algorithms are

capable of preventing this problem by directly tunneling or

adiabatically evolving toward the global minimum, which work

qualitatively differently from classical gradient-based optimization

methods and prevent these problems.

In Section 3, we outlined two general methods for minimizing

arbitrary functions, namely, the “matrix method” and the “Pauli-

spin method”. We shall now apply the Pauli-spin method to

minimize the loss as a function of the free parameters of the neural

networks, which are weights and biases.

First, we provide some general remarks on the advantages

and disadvantages of the two methods in the neural-network

context. As we noted, the Pauli-spin method enables an efficient

representation of the Hamiltonian in terms of Pauli matrices at

the price of approximating the function through polynomials. In

the context of neural networks, this implies that the activation

function must be approximated by a polynomial, such that the

loss function becomes a polynomial in spin matrices of degree

given by the number of layers and the degree of the activation

function. Consequently, one only needs to store the non-vanishing

coefficients of this polynomial. This can be a significant advantage

over matrix encoding. The effects of the polynomial approximation

can be made arbitrarily small because any well-behaved activation

function can be approximated arbitrarily well by a polynomial in

a bounded domain. The range of values of the inputs to each

activation is bounded and known in advance, given the range of

values of the inputs x and the binary-encoded parameters w and

b. The disadvantage of the “Pauli-spin method” is that the nested

non-polynomial activation functions result in a large gate depth.

We will make more quantitative comparisons of the methods later

in Subsection 4.4.

4.2 Toy example

For concreteness, we will focus on a toy example, although the

method can be used to train any other neural networks. Our neural

network has two layers, the first mapping 2D points to 2D points

and the second mapping 2D points to numbers. We take activation

functions to be f1(x) = x2 and f2(x) = x and the biases b
(1)
i = 0 and

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

FIGURE 7

Left: The circle dataset and the corresponding decision boundary generated by the most probable final state after adiabatic evolution and

measurement. Right: A summary of some of the potential outcomes of the final measurement, including the corresponding Y(x) = constant

contours, the probability of measuring each of them, their energy, and the degeneracy [the number of equivalent states that generate the same Y(x)

function].

FIGURE 8

Left: The band dataset and the corresponding decision boundary generated by the most probable final state after adiabatic evolution and

measurement. Right: A summary of some of the potential outcomes of the final measurement, including the corresponding Y(x) = constant

contours, the probability of measuring each of them, their energy, and the degeneracy [the number of equivalent states that generate the same Y(x)

function].

b(2) = −1. The output is then given by

Y(x) =
(
w
(2)
1 w

(2)
2

)[(w(1)
11 w

(1)
12

w
(1)
21 w

(1)
22

)(
x1
x2

)]2
− 1,

where the square is to be understood as the element-wise square

function applied to a 2-vector. We use the Pauli-spin method, with

one qubit per parameter only. This leads to a system with a total of

6 qubits, which allow us to simulate it on a small classical computer

using Qibo as described in the previous section.

We will use this network to perform a binary classification

task, predicting a point to be signal if Y(x) ≥ 0 and background

otherwise. We therefore call the Y(x) = 0 contours the decision

boundary. The simple structure we have chosen allows for several

shapes of the decision boundary, from which the optimal one is to

be selected by the adiabatic computation.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

The two datasets we consider are a set of 1000 randomly chosen

2D points, with uniform distribution in the square [−1, 1]×[−1, 1].

In the first one, which we call the circle dataset, these 2D points are

labeled as y = 1 (signal) if x2+y2 > 1/2 and y = −1 (background)

otherwise. The optimal decision boundary for the circle dataset is

thus the circle x2 + y2 = 1/2, which our toy neural network can

achieve. In the second dataset, which we call the band dataset, they

are labeled y = 2 (signal) with probability given by max[1, (x+ y)2]

and with y = −2 otherwise. We make this choice so that the

data is not perfectly separable, but our neural network can achieve

the lowest value of the loss function when it generates a decision

boundary of 2(x2 + y2) = 1.

To train the neural networks, we generate the target

Hamiltonian Ĥ by replacing each weight in the loss function L by a

Z Pauli matrix. The initial trivial Hamiltonian Ĥ0 is given by Eq. (6).

We use Qibo to simulate the adiabatic time evolution in 10 steps

from t = 0 to t = 10, with a linear schedule s(t) = t/10. The

final state consists of a superposition of different computational-

basis states. In a real-world device, one would measure all of the Zℓ
to obtain the classical values of the weights in the network. Our

simulation shows that the correct contour for the circle dataset,

displayed on the left in Figure 7, is the most likely outcome of this

measurement, with a 93% probability. Similarly, the most likely

outcome for the band dataset, with 89% probability, is the optimal

contour, shown on the left in Figure 8. In practice, performing a

low number of AQC runs and selecting the final state with the least

energy is a viable strategy.

It should be noted that, similar to most neural networks, the

one we are considering has multiple symmetries because different

possible values of the weights give rise to the same function Y(x).

An example of such a symmetry consists of flipping both w
(1)
11 →

−w
(1)
11 and w

(1)
12 → −w

(1)
12 . Two states related to these symmetries

must have the same energy under the target Hamiltonian Ĥ. On

the right side of Figures 7, 8, we have collected the total probability

of measuring any of the states leading to each of the most likely

Y(x) functions.

One of the consequences of these symmetries is that theminima

of the loss function are degenerate, and therefore, we are morally

in the degenerate minima situation of Section 3. In the classical

setting, the random initial seed of the optimization algorithm

would select one of the degenerate minima. However, guided by

the discussion in section 3, it is clear that quantum training leads

to a different situation, in which the final quantum state is in a

superposition of the degenerate minima, all of which have equal

probability. It is thus the final measurement that plays the role

of randomly selecting one of the minima. Moreover, it is clear

that, generally, one cannot take many measurements and use the

expectation values of the weights for the classical values because

this would incorrectly average over these degenerate possibilities.

4.3 Binary neural networks

The limited number of qubits available in current quantum

computers makes it more interesting to consider them for training

smaller machine-learning models. A valuable class of such models,

withmany real-world applications, are binary neural networks (Qin

et al., 2020; Yuan and Agaian, 2023). These are neural networks in

which the weights can only take the values 0 or 1, the biases are set

to 0, and the activation functions are given by

f




n∑

j=1

wijxj


 = 2




n∑

j=1

wijxj −
n

2


 ,

where the wij and the xj are the weights and inputs of the

corresponding layer and 2 is the Heaviside step function. The ith

output of each layer is 1 if at least half of the terms wijxj are 1, and

zero otherwise.

Binary neural networks promise several advantages. In

particular, using activation functions with 0 or 1 gives a

naturally “pruned” network. This leads to enhancement of both

explainability and interpretability as defined and discussed in Qin

et al. (2020) and Leblanc and Germain (2022). Binary neural

networks can be directly encoded in quantum computers without

any loss of expressiveness that we encountered with a polynomial

approximation of activation functions and with the discretization

of continuous weights. The model trained in a quantum device can

be exactly the same as the one implemented in a classical computer.

This can be easily observed by noting that the binary 0/1 weights

can be encoded using the binary Tℓ operators constructed from

Pauli Zℓmatrices via Eq. (2). The activation functions can be viewed

as polynomials in the Tℓ’s, through the identity

f (Ti) =
⌊n/2⌋∑

m=0

∑

i1<...<im

∏

j6=i1 ,...,im

Tj

∏

k=i1 ,...,im

T̄k, (7)

where T̄ = 1− T. For example,

f (T1,T2,T3) = T1T2T3 + T1T2T̄3

+ T1T̄2T3 + T̄1T2T3 .

The discrete nature of binary neural networks makes them

even more difficult to train with conventional classical methods,

which are, as we have seen, typically based on the gradient descent

method (Qin et al., 2020; Yuan and Agaian, 2023). In principle,

adiabatic quantum training completely avoids this issue, as it can

be performed using the same procedure as we outlined above for

quasi-continuous neural networks.

Since the outputs are binary (assuming that the labels y are

binary as well), one can use a simpler linear loss function,

L =
∑

a

(−1)yaY(xa) .

With such a loss function those points xa with either label,

ya = 0 or ya = 1, are penalized by one unit in the loss function if

there is an incorrect prediction, Y(xa) 6= ya (That is {ya,Y} = {0, 1}
is incorrect and contributes 1L = 1 vs. {ya,Y} = {0, 0} which
contributes 1L = 0. Likewise, {ya,Y} = {1, 1} is correct and

contributes1L = −1 vs. {ya,Y} = {1, 0} contributes1L = 0.).

To test this approach, we prepare a dataset of images with 2× 2

binary pixels, labeling them with y = 1 (signal) if there are two

pixels set to 1, one directly above the other, and y = 0 (background)

otherwise. We select seven signal and seven background samples to

balance the dataset. We then split the dataset into 5 (signal) + 5

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

FIGURE 9

Dataset and predictions from an adiabatically-trained binary neural network. The predictions are generated using the weights determined by the

most likely outcome after the final measurement.

FIGURE 10

Binary neural network accuracies in the training (left) and the test (right) sets from the weights generated by running the training several times and

selecting those with the best performance in the training set as a function of the number of runs. The central lines indicate the average accuracy

value, and the bands show the standard deviation interval (both computed by repeating the process 1,000 times for each value of the number of runs).

(background) training images to be included in the loss function

and 2 + 2 test images to check the generalization properties of the

trained model. The selection and splitting are performed randomly

from the 16 possible binary images. The resulting train/test datasets

are displayed in Figure 9.

For the binary neural networks, we choose one with two

layers, with the first having four inputs and two outputs and the

second having two inputs and one output. The total number of

weights, which are in one-to-one correspondence with the qubits,

is 10.

To train the network, we use Qibo to simulate an adiabatic

computation as described in the previous section, with Ĥ is now

determined by substituting the expression for the weights in terms

of qubits into the loss functionL and the polynomial representation

of the step function in Eq. (7). The predictions generated by the

most likely weights after the final measurement are shown in

Figure 9. They are 100% accurate in both the training and the test

sets. The probability of obtaining these perfectly accurate weights

in the final measurement is 18%. To assess the efficiency of the

training, this can be compared with the portion of the space of

weights that generates such predictions, which is 0.2%.

Since the best values of the weights are obtained with the

highest probability but not with certainty, it is profitable to perform

several runs of the adiabatic computation and select the one that

results in the highest accuracy in the training set. In Figure 10, we

show how the accuracy of the trained network on both the training

and the test sets improves with the number of runs. To obtain it,

we generate a pool of 1000 sets of trained weights, with distribution

given by the final state of the adiabatic evolution, before the final

measurement. For each value of the number of runs n shown

in Figure 10, we select n sets of weights from the pool and pick

the maximum accuracy. This process is repeated 1,000 times, and

the average and standard deviation of the resulting accuracies are

displayed in the figure.

The nature of these highly accurate results may seem unusual

in comparison with those typical for larger datasets. However, for

a small dataset, it is reasonable that it can be exactly described by a

simple model. In fact, the dataset was constructed with the simple

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

rule that y = 1 if and only if there are two “on” pixels, one directly

above the other. When a 100% accuracy is achieved in the training

set, two options are obtained: either the model has learned this

rule or it has overfitted, learning to identify only the data points

in the training set but unable to generalize. If this was the case,

one would expect roughly random results on the test set, giving

approximately 50% accuracy. Instead, as shown in Figure 10, the

model gives similar accuracies in the training and test sets for the

same number of runs, which indicates no overfitting and points to

the model having learned the underlying rule.

We compare the results of the quantum training with those

of a classical analog trained using the Adam gradient descent

algorithm. To construct this analog, we replace the step functions

with sigmoids, replace the binary weights with continuous ones,

and add a penalty term to the loss function of the form w2(w− 1)2

for every weight. The effect of this penalty term is to drive the

weights to values 0 or 1. The classical values displayed in Figure 10

correspond to the same process as for the quantum ones described

above, using a pool of 1,000 values generated through 1,000 classical

training runs.

The quantum training exhibits a better performance and

generalization, with the accuracy in both the training and the test

sets quickly approaching 100%, while the classical training tends to

get stuck in local minima that lead to accuracies of approximately

80% in the training set, with lower ones in the test set, indicating

poor generalization.

4.4 Comparative estimates of scaling

The different approaches to encoding the loss function

presented here incur different computational costs in calculating

the target Hamiltonian Ĥ and other gate complexities in the

quantum circuit that implements the adiabatic time evolution.

It is worth comparing the different approaches to see how they

scale with meta-parameters, e.g.., the number of hidden layers and

the total number of qubits. To compare, we assume that Ĥ is

decomposed as a polynomial in Pauli matrices to encode in a time-

evolution circuit. The number of gates in the circuit will then be

bounded from above by a quantity proportional to the number of

terms T in this polynomial, multiplied by its degree D.

A Hamiltonian for a system of Nq qubits is in general an

2Nq × 2Nq matrix. Thus, for the generic “matrix approach”, one

needs to compute 22Nq quantities in the preparation stage of the

calculation. The decomposition of Ĥ in terms of Pauli matrices

will thus require 22Nq matrix multiplication and trace operations.

Finally, the resulting polynomial in Pauli matrices will have degree

D = 22Nq and roughly T = 22Nq terms, so the number of

gates scales roughly as 24Nq . However, the loss functions of neural

networks typically lead to a very sparse Ĥ, so there is scope for

significant improvement on these scalings.

Using the “Pauli-spin method” is one possible strategy to take

advantage of sparsity. The maximum number of terms in Ĥ is then

several chains of length 2Nq of identity or Pauli Z matrices. One

needs to compute the coefficient to each of these chains in Ĥ, thus

the maximum number of quantities to compute in this approach

is a factor 2Nq that is smaller than in the general case. In practice,

this number might be much smaller. Moreover, these quantities are

computed directly by replacing the binary encoding of the weights

with the loss function, without the need for decomposition of Ĥ

into a basis involving matrix multiplications and traces. The degree

of the Ĥ polynomial is, in this case, independent of the number of

qubits and increases with the number of layers of the network, but

not with the number of weights per layer.

Thus, the scaling of both T and D improves significantly for

relatively shallow networks in the Pauli-spin approach. To simplify

the discussion, we consider a neural network with L layers, all

having a polynomial activation with degree d, and anM×Mmatrix

of weights with no biases. The number of terms in the Ĥ polynomial

is then

T . MdL .

This can be shown by induction on L. For a network with a

single layer, L = 1, the number of terms is bounded by the number

of terms in a degree-d polynomial inM variables:

T <

(
d +M

d

)
M→∞∼ Md .

Similarly, adding a layer to an (L − 1)-layer network gives

several terms bounded by the number of terms in a degree-

d polynomial in variables that are degree-MdL−1
polynomials

themselves. This equation shows that the number of terms,

and thus the gate complexity, is polynomial in M in this

approach. On the other hand, the scaling with the number

of layers is much worse: it is doubly exponential. It will

thus quickly saturate the generic bound for Pauli-spin encoded

functions of 2Nq , so the latter is the stronger one for deep

neural networks.

In the case of binary neural networks with step-function

activations, the degree of the activation polynomials is d = M.

Thus, the advantages over classical algorithms provided by their

quantum training are obtained at the price of anMM scaling of the

number of terms with the number of weights per layer. A potential

source for improvement on this front is binary activations with a

lower degree or a lower number of terms. An example of such an

activation would be one that required all inputs of the layer to be 1

for it to be 1, otherwise being 0.

In terms of real-world applications, there are already simple

problems to which this training method would be applicable. One

simple example in the realm of High Energy Physics is event

classification for events generated by simulations of proton-proton

collisions at the LHC. Abel et al. (2022b) for example, considered

events in which the final state contains two top quarks. The

classification was to determine whether (y = 1) or not (y =
−1), with the signal corresponds to the two tops being the decay

products of a hypothetical new particle, the so-called Z′, and with

the background (corresponding to the label y = −1) corresponding

to the signal being from Standard Model physics, and with the

features being the highest transverse momentum of a b-jet and

missing energy. Our method would clearly be applicable to this

example as it has the same dimensionality of features. Extending

to more interesting cases is a matter of scaling the network in

the manner described above. For Nf features, we require at least

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

Nq ≈ N2
f
qubits. Thus, the current bottle-neck is the simulation of

such a large number of qubits which would restrict such an analysis

to order five features or less, with the caveat being that the number

of gates grows rapidly as 24Nq . However, going beyond simulation

on genuine devices would solve the former problem, with the

main practical hurdle being fault tolerance across many gates.

Therefore, due to the reduction in gate number discussed above,

the Pauli-spin method appears to offer significant advantage for

long-term prospects.

5 Conclusion

Neural networks are ubiquitous optimization tools used

in science and everyday tasks. The most time and resource-

consuming part of their design is the training process. In

this study, we have demonstrated the potential of Adiabatic

Quantum Computing as a powerful tool for training neural

networks. Our study addresses the computational challenges

encountered when classically training NNs. We have demonstrated

that AQC can effectively be implemented on gate quantum

computers to train neural networks with continuous and

discrete weights, as well as the so-called binary networks.

Our findings indicate that AQC offers a robust and efficient

approach to finding the global minimum of the loss function,

thereby optimizing the NN. It is then possible to extract the

optimally trained network parameters for deployment as a classical

neural network.

The proposed methodology involving the “matrix

method” and the “Pauli-spin method” effectively encodes

and solves this optimization problem. As we leveraged the

Qibo package to facilitate fast and accurate quantum circuit

evaluation, our approach is scalable and practical for near-term

quantum devices.

Compared to previous quantum approaches, which were

based on quantum annealing using a transverse Ising model

Hamiltonian, the AQC approach that we have proposed in this

article enhances the expressivity of the trained neural networks

and expands the applicability of quantum training methods to

the gate quantum computing paradigm. The limitation of this

computational method for any optimization problem is purely

technical, i.e., posed by the number of qubits and the coherence

time of the quantum device. The method is, however, absolutely

general and can be applied to any optimization task. Thus, we

have provided scaling arguments to assess how severe the technical

limitations are and how much future devices have to improve

to be able to address real-life problems. Current devices and

simulators, unfortunately, can only perform calculations for small-

scale systems, but this is, in general, the limitation for any form of

quantum computing proposed.

Extending this methodology to more complex neural network

architectures and loss functions would be of interest in expanding

its applicability to broader classes of problems. Thus, this approach

opens up new avenues for harnessing the computational prowess

of quantum computation in the realm of machine learning,

particularly in the training of neural networks.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

SA: Conceptualization, Investigation, Methodology, Software,

Writing – original draft, Writing – review & editing. JC:

Conceptualization, Investigation, Methodology, Software, Writing

– original draft,Writing – review& editing.MS: Conceptualization,

Investigation, Methodology, Software, Writing – original draft,

Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. SA and MS

were supported by the STFC under grant ST/P001246/1. SA was

supported by a Cern Associateship. JC was supported by grant

RYC2021-030842-I funded byMCIN/AEI/ 10.13039/501100011033

and by NextGenerationEU/PRTR.

Acknowledgments

We would like to thank Luca Nutricati for helpful

discussions and Stefano Carrazza and Matteo Robbiati for help

with Qibo.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Abel et al. 10.3389/frai.2024.1368569

References

Abel, S., Blance, A., and Spannowsky, M. (2022a). Quantum optimisation
of complex systems with a quantum annealer. Phys. Rev. A 106:042607.
doi: 10.1103/PhysRevA.106.042607

Abel, S., Chancellor, N., and Spannowsky, M. (2021). Quantum computing for
quantum tunneling. Phys. Rev. D 103:016008. doi: 10.1103/PhysRevD.103.016008

Abel, S., Criado, J. C., and Spannowsky, M. (2022b). Completely quantum neural
networks. Phys. Rev. A 106:022601. doi: 10.1103/PhysRevA.106.022601

Abel, S., and Spannowsky, M. (2021). Observing the fate of the false vacuum with
a quantum laboratory. P. R. X. Quantum. 2:010349. doi: 10.1103/PRXQuantum.2.
010349

Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., and Regev, O. (2007).
Adiabatic quantum computation is equivalent to standard quantum computation.
SIAM J. Comput. 37, 166–194. doi: 10.1137/S0097539705447323

Biamonte, J. D., and Love, P. J. (2008). Realizable Hamiltonians
for universal adiabatic quantum computers. Phys. Rev. A 78:012352.
doi: 10.1103/PhysRevA.78.012352

Courbariaux,M., Bengio, Y., andDavid, J.-P. (2015). BinaryConnect: TrainingDeep
Neural Networks with binary weights during propagations. arXiv [Preprint].

Criado, J. C., Kogler, R., and Spannowsky, M. (2023). Quantum fitting
framework applied to effective field theories. Phys. Rev. D. 107:015023.
doi: 10.1103/PhysRevD.107.015023

Criado, J. C., and Spannowsky, M. (2023). Qade: solving differential equations on
quantum annealers. Quantum Sci. Technol. 8:015021. doi: 10.1088/2058-9565/acaa51

Ding, R., Chin, T.-W., Liu, Z., and Marculescu, D. (2019). “Regularizing activation
distribution for training binarized deep networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (11408–11417).

Efthymiou, S., Lazzarin, M., Pasquale, A., and Carrazza, S. (2022).
Quantum simulation with just-in-time compilation. Quantum 6:814.
doi: 10.22331/q-2022-09-22-814

Efthymiou, S., Orgaz-Fuertes, A., Carobene, R., Cereijo, J., Pasquale, A., Ramos-
Calderer, S., et al. (2023). Qibolab: An Open-Source Hybrid Quantum Operating
System.

Efthymiou, S., Ramos-Calderer, S., Bravo-Prieto, C., Pérez-Salinas, A.,
García-Martín, D., Garcia-Saez, A., et al. (2021). Qibo: a framework for

quantum simulation with hardware acceleration. Quant. Sci. Technol. 7:015018.
doi: 10.1088/2058-9565/ac39f5

Farhi, E., Goldstone, J., and Gutmann, S. (2002). Quantum adiabatic evolution
algorithms versus simulated annealing. arXiv [Preprint]. Available online at: https://
arxiv.org/abs/quant-ph/0201031

Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., and Preda, D.
(2001). A quantum adiabatic evolution algorithm applied to random instances
of an np-complete problem. Science 292, 472–475. doi: 10.1126/science.105
7726

Farhi, E., Goldstone, J., Gutmann, S., and Sipser, M. (2006). Quantum computation
by adiabatic evolution. arXiv [Preprint]. doi: 10.48550/arXiv.quant-ph/0001106

Lanting, T. (2017). The D-Wave 2000q Processor. (2017).

Leblanc, B., and Germain, P. (2022). Seeking interpretability and explainability in
binary activated neural networks. arXiv [Preprint]. Available online at: https://arxiv.
org/abs/2209.03450

Livochka, A., and Shekhovtsov, A. (2021). “Initialization and transfer learning of
stochastic binary networks from real-valued ones,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW) (Nashville, TN: IEEE),
4655–4663.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020). Binary
neural networks: a survey. Pattern Recogn. 105:107281. doi: 10.1016/j.patcog.2020.
107281

Robbiati, M., Cruz-Martinez, J. M., and Carrazza, S. (2023).Determining Probability
Density Functions with Adiabatic Quantum Computing.

Roth, W., Schindler, G., Fräning, H., and Pernkopf, F. (2020). Training
discrete-valued neural networks with sign activations using weight distributions.
Lecture Notes Comp. Sci. 11907, 382–398. doi: 10.1007/978-3-030-46147-
8_23

Xu, K., Xie, T., Li, Z., Xu, X., Wang, M., Ye, X., et al. (2017). Experimental
adiabatic quantum factorization under ambient conditions based on a solid-
state single spin system. PRL 118:130504. doi: 10.1103/PhysRevLett.118.
130504

Yuan, C., and Agaian, S. S. (2023). A comprehensive review of binary neural
network. Artif. Intellig. Rev. 10464, 1–65. doi: 10.1007/s10462-023-10464-w

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1368569
https://doi.org/10.1103/PhysRevA.106.042607
https://doi.org/10.1103/PhysRevD.103.016008
https://doi.org/10.1103/PhysRevA.106.022601
https://doi.org/10.1103/PRXQuantum.2.010349
https://doi.org/10.1137/S0097539705447323
https://doi.org/10.1103/PhysRevA.78.012352
https://doi.org/10.1103/PhysRevD.107.015023
https://doi.org/10.1088/2058-9565/acaa51
https://doi.org/10.22331/q-2022-09-22-814
https://doi.org/10.1088/2058-9565/ac39f5
https://arxiv.org/abs/quant-ph/0201031
https://arxiv.org/abs/quant-ph/0201031
https://doi.org/10.1126/science.1057726
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://arxiv.org/abs/2209.03450
https://arxiv.org/abs/2209.03450
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1007/978-3-030-46147-8_23
https://doi.org/10.1103/PhysRevLett.118.130504
https://doi.org/10.1007/s10462-023-10464-w
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Training neural networks with universal adiabatic quantum computing
	1 Introduction
	2 Challenges in training neural networks
	3 Adiabatic quantum computing on gate quantum computers
	3.1 The matrix method
	3.2 The Pauli-spin method

	4 The training of neural networks
	4.1 The general method
	4.2 Toy example
	4.3 Binary neural networks
	4.4 Comparative estimates of scaling

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

