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Background: The most common Assisted Reproductive Technology is In-Vitro 
Fertilization (IVF). During IVF, embryologists commonly perform a morphological 
assessment to evaluate embryo quality and choose the best embryo for 
transferring to the uterus. However, embryo selection through morphological 
assessment is subjective, so various embryologists obtain different conclusions. 
Furthermore, humans can consider only a limited number of visual parameters 
resulting in a poor IVF success rate. Artificial intelligence (AI) for embryo selection 
is objective and can include many parameters, leading to better IVF outcomes.

Objectives: This study sought to use AI to (1) predict pregnancy results based 
on embryo images, (2) assess using more than one image of the embryo in the 
prediction of pregnancy but based on the current process in IVF labs, and (3) 
compare results of AI-Based methods and embryologist experts in predicting 
pregnancy.

Methods: A data set including 252 Time-lapse Videos of embryos related to 
IVF performed between 2017 and 2020 was collected. Frames related to 19  ±  1, 
43  ±  1, and 67  ±  1  h post-insemination were extracted. Well-Known CNN 
architectures with transfer learning have been applied to these images. The 
results have been compared with an algorithm that only uses the final image of 
embryos. Furthermore, the results have been compared with five experienced 
embryologists.

Results: To predict the pregnancy outcome, we applied five well-known CNN 
architectures (AlexNet, ResNet18, ResNet34, Inception V3, and DenseNet121). 
DeepEmbryo, using three images, predicts pregnancy better than the algorithm 
that only uses one final image. It also can predict pregnancy better than all 
embryologists. Different well-known architectures can successfully predict 
pregnancy chances with up to 75.0% accuracy using Transfer Learning.

Conclusion: We have developed DeepEmbryo, an AI-based tool that uses three 
static images to predict pregnancy. Additionally, DeepEmbryo uses images that 
can be obtained in the current IVF process in almost all IVF labs. AI-based tools 
have great potential for predicting pregnancy and can be used as a proper tool 
in the future.
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1 Introduction

Infertility affects approximately 186 million people worldwide, 
affecting an estimated 8–12 percent of child-bearing couples (Inhorn 
and Patrizio, 2015). In recent decades, many couples have turned to 
in-vitro fertilization (IVF) to help them conceive. IVF includes 
controlled ovarian stimulation, egg retrieval, sperm preparation, 
fertilization, embryo culture in a laboratory for 1–6 days, and embryo 
transfer to the uterus of patients.

Despite significant developments in IVF technology over the last 
decade, the success rate remains below expectations (Dyer et al., 
2016). Only 10–30% of transferred embryos result in a live delivery, 
and many patients require multiple cycles to become pregnant 
(Wang and Sauer, 2006; Doostabadi et  al., 2022; Harrison 
et al., 2022).

Although many factors influence the success of IVF cycles, 
including medical diagnosis, maternal age, the quality of embryo and 
gamete, and endometrium receptivity, the embryo selection process is 
one of the essential key factors to ensuring a successful pregnancy and 
ensuring the patient’s shortest time to pregnancy (Minasi et al., 2016).

Increasing the number of embryos transferred per cycle can 
increase the chances of pregnancy. However, the chances of having 
multiple pregnancies as a most significant risk of Assisted 
Reproductive Technology (ART) also increase. Selection of the best 
embryo and Single Embryo Transfer (SET) has been proven to 
decrease multiple pregnancy. The most prevalent approach for best 
embryo selection is the morphological evaluation of embryos using 
an optical light microscope by experienced embryologists (Machtinger 
and Racowsky, 2013). The primary disadvantages of this procedure are 
its subjective nature and intra- and inter-operator variability among 
embryologists of various skill levels (Baxter Bendus et al., 2006; Storr 
et al., 2017).

Furthermore, despite extensive research and many suggested 
embryo grading systems, no agreement on the best reliable 
methodology for predicting pregnancy has been reached. Some 
technology has been introduced to help better assessments of 
embryos, such as the time-lapse imaging (TLI) system that enables 
continuous observation of embryo growth without disrupting the 
embryo’s micro-environment. However, there might be  a lot of 
variability in the decisions made by embryologists to select the best 
embryo based on time-lapse images (Kirkegaard et  al., 2015). 
Furthermore, Time-lapse microscopy is unavailable in every IVF 
laboratory and for each patient (Dolinko et al., 2017).

Because of image-based diagnosis and decision-making 
difficulties, computer-based prediction models based on artificial 
intelligence (AI) for analyzing human embryo images have recently 
received interest (Rad et al., 2020). Quantitative assessment of embryo 
parameters using images can increase success, eliminate mistakes, and 
lead to quicker, low-priced, and more accessible results, leading to a 
more accurate prediction of embryo development and implantation 
potential. The AI algorithm might learn how embryos develop over 
time and utilize that knowledge to choose the best embryos improving 
objectivity throughout the embryo selection process. AI tools are 
quick and have a consistent standard in every laboratory (Bormann 
et al., 2020). Moreover, AI systems may be able to discover previously 
unknown connections between different characteristics of embryos. 
AI systems also offer significant economic benefits to healthcare 
systems (Borna and Sepehri, 2024).

Deep learning techniques, namely convolutional neural networks 
(CNNs), have recently been employed to solve various medical 
imaging challenges. In computer vision, CNNs have become the most 
popular and successful type of image analysis models. Its application 
in medical images includes and is not limited to polyp detection and 
segmentation (Ji et al., 2021), skin cancer detection (Mazoure et al., 
2022), and segmentation and detection in Covid-19 X-ray images 
(Ahmed et al., 2021; Gourdeau et al., 2022). Similarly, there has been 
considerable interest in using machine learning-based algorithms to 
analyze embryos. Researchers in this field have focused most of their 
attention on using various machine learning tools to identify the best-
quality embryo based on their implantation potential. Handcrafted 
features (human input) are required for classical machine learning 
techniques to work efficiently. Various classical machine learning 
methods are available for embryo assessment, including logistic 
regression models, support vector machines (SVM), Bayesian 
classifiers, and random forests and their combinations (Barash et al., 
2018; Matsubayashi et al., 2018; Miyagi et al., 2019).

The new deep learning algorithms do not need handcrafted 
features and learn features at the pixel level. Deep learning algorithms 
have been applied to two kinds of data available in IVF labs for embryo 
selection. Some studies used deep learning algorithms on a single final 
image of embryos (Khosravi et  al., 2019; Bormann et  al., 2020; 
Chavez-Badiola et al., 2020; Huang et al., 2022). Other studies applied 
deep learning algorithms to time-lapse images of embryos (Lee et al., 
2021; Liao et al., 2021; Sawada et al., 2021; Berman et al., 2023; Sharma 
et al., 2024). While deep learning approaches are more accurate on 
TLIs than just single images, TLI facilities are unavailable in most IVF 
laboratories. Furthermore, there is a notable gap in methodologies 
that utilize a series of images taken at different stages of embryo 
development which would align with the capabilities of most existing 
IVF labs, rather than relying solely on single-image analyses or 
comprehensive time-lapse systems.

This study proposes, DeepEmbryo, a non-invasive AI-based 
assessment algorithm to predict clinical pregnancy outcomes using 
three static images captured by optical light microscopy at different 
times post-insemination. DeepEmbryo was trained to automatically 
segment and use transfer learning to assess the pregnancy result of 
human embryos to aid in embryo selection during IVF. Using transfer 
learning helps us to overcome issues related to the limited data. 
DeepEmbryo works only based on three images that can be obtained 
from equipment already accessible in most IVF laboratories despite 
TLI. Its results are also more accurate than using just a single 
embryo image.

The main contribution of this paper is to provide a tool to select 
the best embryos without the need to change the current setting or 
process in IVF labs and with a better result than just using the single 
final image of embryos. Furthermore, we compare the performance of 
our models with embryologists experts in order to validate models for 
using in real world cases.

2 Methods and materials

2.1 Data

Data were retrospectively collected from infertile couples who had 
been previously diagnosed with infertility at the Research and Clinical 
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Center for Infertility, Yazd Reproductive Sciences Institute, Shahid 
Sadoughi University of Medical Sciences, Yazd, Iran, from July 2017 
to February 2020.

GnRH agonists/antagonists procedures were employed to induce 
ovarian hyperstimulation, followed by IVF/ICSI and fresh or frozen–
thawed embryo transfer. A quantitative beta hCG test was done 
15 days after embryo transfer. A beta hCG level of 50 mIU/mL was 
considered positive.

The images were taken at 10-min intervals with a single red LED 
(635 nm) using the EmbryoScope® time-lapse imaging equipment 
(Vitrolife, Sweden). The monitoring ended when the embryo was 
transferred or vitrified. Using the imaging system software, images of 
each patient were exported as videos. Individual embryo videos were 
split into frames to obtain pictures from all time points. The images 
were extracted at a resolution of 256 × 256 pixels. From all frame 
series, we extracted images related to 19 ± 1, 44 ± 1, and 68 ± 1 h post 
insemination (hpi). The images were then categorized into positive or 
negative samples (according to the pregnancy outcome). Figure 1 
shows two sets of embryo images at different hpi from different classes.

The images are from time-lapse frames and were divided at the 
embryo level into two groups: training and testing. The training group 
received two-third of the images, while the test group received the 
remaining one-third. The training and test sets did not overlap. In 
other words if one of the embryos related to the patient who has two 
embryos is in the training data, the other embryo is definitely in the 
training data and not in the test data.

Image augmentation is a well-known approach for regularizing 
the network in supervised learning. Rotation, horizontal flip, and 
vertical flip are examples of general augmentations. We need a large 
number of training samples to reach the best results, so data 
augmentation is used to expand the number of original input data by 

creating more training data samples. A variety of randomized 
processes are used in augmentation, including:

 • Rotating by an angle [0, 360]
 • Zooming in or out [0.8, 1.2]
 • Shear transform [0.8, 1.2]
 • Adding light Gaussian [m = 0, v = 0. 003] or Speckle noises [m = 0, 

v = 0. 006]

We created 30 samples from each single input sample using 
various augmentation techniques such as rotation, zooming, 
shearing, and translation for data augmentation. As a result, the 
total number of training samples was increased by a factor of 30. 
As a result, there are 5,040 increased training samples in total 
(Table 1).

2.2 Transfer learning

CNN networks typically require significant amounts of input 
images to learn features effectively and discriminate between different 
classes of data, depending on the difficulty of the problem at hand. 
One way to deal with the limited data sizes is Transfer Learning (TL).

Transfer Learning has had a lot of success in computer-aided 
medical image processing while being a relatively new technique. It 
has been used both for the classification and segmentation of 
medical images.

A common transfer learning technique for improving a 
pre-trained model to target a new task is Fine-tuning. A low learning 
rate is usually used to avoid overfitting, and some model parameters 
may need to be frozen.

FIGURE 1

Samples of the positive (lower row) and negative (upper row) embryos in different hpi: 19  ±  1, 44  ±  1, 68  ±  1.
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FIGURE 2

DeepEmbryo has two steps. The first step segments three input images and determines the border of the embryo parts from other parts of the images. 
The second step of the algorithm uses transfer learning and segmented embryos to classify input embryos.

Transfer learning is the key to working with small datasets, such 
as medical images, that are impractical to acquire in large amounts. 
Deep learning models require a lot of data, computing power, and 
time to train from scratch. To tackle these issues, pre-trained models 
and only fine adjustments are used.

In DeepEmbryo, since our dataset contains a limited number of 
images, we used transfer learning to fine-tune last onelayer of five 
popular pre-trained [with ImageNet weights (Deng et al., 2009)] deep 
neural networks. Freezing many parameters helps DeepEmbryo use 
the pre-trained models as a feature extractor. The pre-trained models 
used in DeepEmbryo were AlexNet (Krizhevsky et  al., 2012), 
ResNet18 (He et al., 2016), ResNet36 (He et al., 2016), Inception v3 
(Szegedy et al., 2016), and DenseNet-121 (Huang et al., 2017).

2.3 DeepEmbryo algorithm

DeepEmbryo has two Steps. The first step is the Image 
Segmentation Step of the algorithm. The second step uses the output 

of the first step and Transfer Learning to classify input embryos. 
Figure  2 shows an overview of the DeepEmbryo algorithm. For 
preparing this dataset one thousand of embryo images were annotated 
by an embryologist and static augmentation methods were also used. 
The pictures were from different frames.

2.4 Image segmentation step

The embryo’s segmentation can greatly help automated embryo 
image analysis (Rad et al., 2020). The segmentation can be thought of 
as a classification problem, with each pixel in the image being classified 
as either embryo or background. The microscope photos are the input 
of this phase, and embryo parts of the images are the output. After 
that, we used the embryo part as input for the classifier.

In our study, we  utilized the U-Net architecture, specifically 
adapted for biomedical image segmentation, to accurately delineate 
the boundaries of embryos in time-lapse images (Ronneberger et al., 
2015). U-Net is particularly effective for such tasks due to its 
architecture designed to efficiently utilize a limited amount of training 
data and achieve precise segmentations (Rad et  al., 2020). Our 
implementation features a depth of five layers, which allows for an 
extensive feature extraction and improved image details capture, 
crucial for accurate segmentation.

The network architecture comprises a contracting path to capture 
context, characterized by a sequence of two 3 × 3 convolutions 
followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling 
operation for downsampling. At each downsampling step, the number 

TABLE 1 Summary of data used in this study.

Section Negative Positive Total

Train 120 48 168

Augmented train 3,600 1,440 5,040

Test 60 24 84

Total 180 72 252
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of feature channels is doubled, enhancing the network’s ability to learn 
complex features at different scales.

The expansive path, crucial for precise localization, includes 
upsampling of the feature map followed by a 2 × 2 convolution, known 
as “up-convolution,” which halves the number of feature channels. 
This is followed by concatenation with the correspondingly cropped 
feature map from the contracting path, and two 3 × 3 convolutions, 
each followed by a ReLU. This setup ensures detailed feature 
integration across different levels of the network.

The final layer of our U-Net employs a 1 × 1 convolution that 
provide a mask to separate background from embryo pixels. As there 
is exactly one embryo in each image, we used provided masks to 
produce segmented outputs and crop input microscopy images. After 
this step we  will resize cropped images to fit the input of the 
classification algorithms. The numbers presented in Figure  3 
accurately reflect the real values and parameters utilized in our U-Net 
model, ensuring transparency and reproducibility of our results.

2.5 Classification step

DeepEmbryo uses three images to predict pregnancy results. As 
in Figure 4, it uses a well-known CNN architecture with pre-trained 
weights to extract features of each image. After that, one integration 
layer and one fully connected layer help the algorithm learn from 
extracted features.

In our approach, each of the three time-lapse images undergoes 
separate processing through a Convolutional Neural Network (CNN). 
At the end of each CNN, the output layer produces a vector of size 10, 
encapsulating the distilled features critical for the subsequent analysis. 
These three vectors, each representing a different developmental stage 
of the embryo, are then concatenated into a single vector. This 
combined vector is subsequently passed through a fully connected 
layer, which integrates the information from all three stages to produce 
a final output. The output of the fully connected layer is a scalar value 
between 0 and 1, which represents the probability of a successful 

pregnancy outcome. This method ensures that the model leverages 
temporal insights from multiple stages of embryo development, 
enhancing the predictive accuracy of the system.

2.6 SI-DeepEmbryo

To compare with DeepEmbryo, we designed a specific model of 
DeepEmbryo named SI-DeepEmbryo (Single Image–DeepEmbryo), 
which like DeepEmbryo, has two steps; however, it uses only one final 
microscopic image of 68 h timpepoint embryos. Figure 5 shows the 
classification step of SI-DeepEmbryo.

2.7 Ethic

The study was approved by the Research Ethics Committees of 
Tarbiat Modares University (IR.MODARES.REC.1401.107). Written 
informed consent was obtained from all the patients for primary data 
collection as well as secondary analysis before starting treatment. The 
study followed the guidelines and protocols described in the routine 
practice of the IVF unit. No further interventions were used during 
treatment. During the data analysis, none of the authors had access to 
the patients information.

3 Results

3.1 Implementation details

To achieve optimal performance of the DeepEmbryo 
algorithm, careful consideration was given to the selection of 
hyperparameters. These parameters play a crucial role in the 
training process and the overall accuracy of the model. Below, 
we provide a justification for the choice of each key hyperparameter 
utilized in our study:

FIGURE 3

The architecture of U-Net used as the first step of DeepEmbryo for segmentation of embryo images.
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3.1.1 Learning rate (0.001)
The learning rate was set at 0.001 to ensure a balance between 

training speed and the risk of overshooting the global minimum in 
the loss landscape. This value allows for gradual and stable 
convergence during training, minimizing the potential for erratic 
updates that could derail the learning process. A learning rate 
scheduler was also implemented to reduce the learning rate by a factor 
of 0.1 every 30 epochs, further aiding in fine-tuning the model’s 
accuracy by allowing for finer adjustments as the model approaches 
optimal performance.

3.1.2 Batch size (32)
A batch size of 32 was chosen based on experimental trials that 

balanced computational efficiency with model stability. This size is 
large enough to ensure meaningful gradient updates and effective 
generalization, yet small enough to prevent excessive memory 
consumption and allow for more iterations per epoch, facilitating a 
more nuanced model training process.

3.1.3 Epochs (100)
The model was trained for 100 epochs, a decision based on 

preliminary experiments indicating that this number of epochs was 
sufficient for the model to converge to a stable solution without 
overfitting. The chosen number of epochs ensures that the model has 

ample opportunity to learn from the training data across multiple 
passes, while the early stopping criterion (monitored on validation 
loss) provides a safeguard against overfitting by terminating training 
if the validation performance does not improve for a consecutive 
number of epochs.

These hyperparameters were selected through a combination of 
empirical testing and best practices in the field of deep learning. The 
configurations were iteratively refined to strike an optimal balance 
between model performance and computational efficiency, as 
evidenced by the improved accuracy and robustness of DeepEmbryo 
in predicting pregnancy outcomes from IVF embryo images.

3.2 Evaluation metrics

Precision, Recall, Accuracy, and F-Score are the four measures 
we use to measure DeepEmbryo’s quality. Precision shows how precise 
the model is in the detection of positive samples.

 
Percision TP

TP FP
=

+  
(1)

Recall indicates how many of the positive instances are identified 
by the algorithm.

 
Recall TP

TP FN
=

+  
(2)

The Accuracy of the model refers to how well it performs across 
all classes of data.

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +  

(3)

FIGURE 4

Schematic of classification step of DeepEmbryo, which uses three images and a combination of results of three pre-trained CNN to predict the 
outcome of pregnancy.

FIGURE 5

Classification step of SI-DeepEmbryo, which uses transfer learning 
and a single image to predict the outcome of pregnancy.
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In all the above equations, the TP indicates positive instances 
correctly identified as positive, and TN measures the number of 
negative instances correctly identified as negative. FP is the number of 
negative instances incorrectly identified as positive, and FN signifies 
the number of positive instances that are falsely missed.

In addition to Precision, Recall, and Accuracy, the F-Score (also 
known as the F1-Score) is a crucial metric used to evaluate the 
performance of our model. The F-Score provides a harmonic mean of 
precision and recall, offering a balance between the two by considering 
both the false positives and false negatives. It is particularly useful in 
scenarios where an even balance between precision and recall 
is desired.

The F-Score is calculated using the following equation:

 
F Precision Recall

Precision Recall
1 2= ×

×
+  

(4)

The F1 Score thus ranges from 0 to 1, where a higher value 
indicates better model performance with an ideal balance between 
precision and recall. This metric is particularly important in our study 
for evaluating the effectiveness of DeepEmbryo in accurately 
predicting pregnancy outcomes from embryo images, given the 
critical need for both precision and recall in medical 
diagnostic processes.

3.3 DeepEmbryo results

A performance evaluation of the proposed method is presented 
in this section based on the metrics presented in Section 3.2. In order 
to accomplish this, SI-DeepEmbryo and DeepEmbryo algorithms 
without pre-trained weights were evaluated and compared in the first 
part of this section. This section of the paper also evaluates the original 
SI-DeepEmbryo and DeepEmbryo (with TL).

In order to prove the effectiveness of Transfer Learning, the results 
of SI-DeepEmbryo and DeepEmbryo with no pre-trained architecture 
has shown in Table 2.

As shown in Table 2, SI-DeepEmbryo with three architectures 
(AlexNet, ResNet18, ResNet34) cannot learn from data which means 
they classify all samples in one class. SI-DeepEmbryo achieved an 
accuracy of 58 and 56% with Inception V3 and DenseNet121, 
respectively. DeepEmbryo cannot classify instances using AlexNet and 
predict the same class for all instances. DeepEmbryo overfits when it 
uses ResNet18 and DensNet121. When using ResNet34 and Inception 
V3, DeepEmbryo can achieve 58 and 67% accuracies, respectively.

When it comes to using Transfer Learning, The SI-DeepEmbryo 
makes highly accurate classifications of embryo images. It achieves an 
accuracy of 69.44% by using only a single embryo image. The 
Accuracy of DeepEmbryo is even better, and it can classify embryos 
with an accuracy of 75.0%. In this section, we  investigate 
obtained results.

The segmentation step of DeepEmbryo can differentiate between 
embryo and non-embryo with a Dice Coefficient of 93.21%. This high 
score shows that the DeepEmbryo can almost always detect and show 
the exact border of embryos in the IVF images.

After segmentation, the classification step of DeepEmbryo can 
predict which embryo results in pregnancy with high Accuracy. 
Table 3 compares the performance of the DeepEmbryo when it uses 
different well-known CNN architectures. According to these results, 
the SI-DeepEmbryo does not perform the same when using different 
pre-trained CNN architectures. In particular, ResNet18 outperforms 
other proposed models in Recall and Accuracy. ResNet34 obtained the 
best Precision and obtained second-best in Recall and Accuracy.

Table  4 shows that DeepEmbryo gained better results in 
comparison with SI-DeepEmbryo while using any CNN architecture. 
The best result of DeepEmbryo is when it uses pre-trained Inception 
V3. In particular, the best results of DeepEmbryo are better than the 
best results of SI-DeepEmbryo by 8.33% in Accuracy, 10.94% in 
Precision, and 8.33% in Recall.

To consider the potential risk of overfitting associated with our 
initial 66.6/33.3 training/testing split, we  conducted further 
experiments to evaluate the impact of varying the proportions of 
training and testing datasets on the model’s performance. 
We systematically tested additional splits of 70/30 and 80/20 to assess 
any potential improvements or detriments in model accuracy and 
generalization capability. The comparative analysis revealed that the 
differences in performance metrics across these splits were statistically 
insignificant. This indicates that while our initial split provided a 
sufficient quantity of data for training without leading to overfitting, 
altering the proportion of the dataset allocated to training versus 
testing does not significantly affect the robustness or the predictive 
accuracy of our models. These findings support the adequacy of our 
initial data partitioning strategy, ensuring that the model is both 
effective and efficient in utilizing the available data for training and 
validation purposes.

3.4 Human assessment

Five senior-level embryologists, each with a minimum of 5 years 
of experience from three different clinics, were involved in our study. 
They evaluated all embryo images within the test set of the 
DeepEmbryo system (three images for each embryo), providing 
critical assessments based on their extensive expertise.

Embryologists used implantation potential (implanted or not 
implanted) to label the embryo pictures. The accuracies of both 
SI-DeepEmbryo and DeepEmbryo are better than all embryologists. 
The embryologists were not in complete agreement on how to classify 
the test set images, so we used a majority voting procedure. While the 
majority votes of embryologists reached an accuracy of 48.41%, each 
of them predicted the pregnancy results of embryos with 54.76, 50.79, 
60.32, 60.32, and 39.68%, respectively (Table 5).

TABLE 2 Results of using architectures without pre-trained weights in DeemEmbryo and SI-DeepEmbryo.

DeepEmbryo Type AlexNet ResNet18 ResNet34 Inception V3 DenseNet121

SI-DeepEmbryo Not learned Not learned Not learned 58.33% 56.77%

DeepEmbryo Not learned 58.33% Overfit 66.67% Overfit
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4 Discussion

Infertility has become a global health concern that affects people 
all over the world. Even though ART has made significant progress 
with its extensive worldwide development, the global infertility rate 
remains high.

The final morphology and morphology during embryo 
development are essential in detecting the best embryo for transfer. 
Routinely, sequential cleavage embryo assessment is considered 
embryo morphology in 19 ± 1, 43 ± 1, and 67 ± 1 hpi (Sakkas and 
Gardner, 2017). DeepEmbryo uses images belonging to 19, 42, and 66 
hpi, which means it fits the current process in IVF labs. No additional 
work needs for embryologists to use DeepEmbryo in their labs.

Several recent studies have used AI algorithms for grading or 
predicting the implantation potential of blastocyst-stage (extended 
embryo culture) embryos (Chen et al., 2019; Khosravi et al., 2019; 
Bormann et al., 2020; Chavez-Badiola et al., 2020). Extended embryo 
culture until the blastocyst stage may not be beneficial for all patients. 
The main drawback of prolonged culture for blastocyst transfer is an 
increase in the percentage of patients who do not have an embryo for 
transfer (from 2.9% on day 3 to 6.7% on day 5) (Gardner and Lane, 
2017). Hence, many ART clinics use the cleavage embryo transfer 
strategy yet. An algorithm designed to work based on cleavage-stage 
embryo images makes it useful for all ART clinics.

In this study, we  used a kind of combined algorithm 
(DeepEmbryo) to schedule time points to detect morphology features 
and the process of cleavage embryo development. The results show 
that DeepEmbryo can extract features from three different embryo 
images and predict pregnancy test results based on those features.

In the absence of objective, standardized criteria, it may 
be challenging to arrive at an accurate and efficient diagnosis and 
subsequent prognosis. Presently blastocyst selection is facing a 
similar problem since most accepted classifications rely on subjective 
evaluative processes performed by embryologists. A 
non-morphokinetic classification is also based on characteristics that 
do not require measurements, perhaps for the sake of simplicity. In 
this way, they ignore variables or characteristics that cannot be clearly 
identified by the naked eye but could be  indicative of 
development potential.

Transfer learning can help DeepEmbryo to learn even with limited 
data. Without transfer learning, DeepEmbryo could not tune millions 
of parameters with a limited medical dataset. With transfer learning, 

DeepEmbryo only changes parameters related to a few last layers, 
which means DeepEmbryo can converge even with a limited dataset.

Image segmentation also helped a lot in the simplicity of input 
data. While original images had many pixels related to the culture 
medium, the segmented part only has pixels related to the embryo. 
Furthermore, embryo location is not fixed in all images. For example, 
it is at the bottom of the image in one training instance and at the top 
of the image in another instance. So by eliminating parts of images 
that are unrelated to the embryo, DeepEmbryo can learn better 
from data.

Unlike the naked eye, computer-aided image processing tools can 
detect key image characteristics in a fast, objective, and replicable way. 
In this study, we  compare the performance of our model with 5 
embryologists. In the future, this technology will enter the laboratories 
and be used before selecting the embryo for implantation into the 
uterus so that embryos with a higher chance of pregnancy can 
be suggested to the embryologist. There were several limitations to this 
study. For example, it was not possible to collect data from several 
centers and data was collected from only one center. Also, due to the 
nature of the model, it is not possible to interpret the results. The 
utilization of embryo images in 19 ± 1, 43 ± 1, and 67 ± 1 hpi, which are 
routinely used for sequential cleavage embryo morphology assessment 
in IVF labs, was a strength of the current study. Using these images, 
there is no need to perform additional work or modify standard 
operating procedures in order to apply DeepEmbryo in embryology 
labs. Moreover, we comparing the performance of models with five 
senior-level embryologists in order to validate models.

According to our results, AI-based deep learning tools can 
be  promising for investigating embryo characteristics to predict 
pregnancy and as an ideal candidate for the embryo selection method 
in the future. More studies need to be  performed using a larger 
population pool to validate the prediction model and subsequent 
clinical applications. Multicenter data can help in this regard 
substantially. It may be helpful to combine the clinical information, 
including clinical details of the patient, with images of the embryos for 
a more accurate pregnancy prediction.

5 Conclusion

This study has successfully introduced DeepEmbryo, an advanced 
AI-based algorithm designed to refine the process of embryo selection 

TABLE 3 SI-DeepEmbryo results with different CNN architecture and transfer learning, bold and italic indicate best and second-best, respectively.

AlexNet ResNet18 ResNet34 Inception V3 DenseNet121

Recall (%) 55.55 66.67 63.88 61.11 58.33

Precision (%) 56.92 66.87 68.51 61.25 67.41

Accuracy (%) 55.55 66.67 63.88 61.11 58.33

TABLE 4 DeepEmbryo Results with Different Well-known CNN and Transfer Learning.

AlexNet ResNet18 ResNet34 Inception V3 DenseNet121

Recall (%) 66.66 75.00 69.88 75.00 69.44

Precision (%) 76.00 75.71 69.93 79.45 72.90

Accuracy (%) 66.66 75.00 69.88 75.00 69.44
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in IVF treatments. Utilizing a novel approach by analyzing three static 
images captured at distinct post-insemination intervals, DeepEmbryo 
employs renowned CNN architectures with the augmentation of 
transfer learning. This method has demonstrated a substantial 
improvement in predicting pregnancy outcomes, significantly 
surpassing traditional morphological assessments and evaluations 
made by experienced embryologists.

Our results reveal that DeepEmbryo, by integrating multiple time-
point images, can achieve an accuracy rate of up to 75.0% in 
forecasting pregnancy success. This multi-image analysis approach 
underscores the immense potential of AI to transform embryo 
selection into a more objective, reliable, and precise process. 
Importantly, DeepEmbryo’s methodology is compatible with current 
IVF lab procedures, requiring no additional modifications to existing 
workflows or equipment, thus facilitating its seamless integration into 
clinical practice.

The comparative analysis across different CNN architectures and 
the investigation into the optimal data split for training and testing 
have yielded valuable insights into leveraging AI in IVF contexts. 
Furthermore, the inclusion of human assessments in our study 
accentuates the subjective variability present in conventional embryo 
evaluation methods and bolsters the argument for adopting a 
standardized, AI-driven evaluation model.

Despite the promising outcomes, this study’s limitations, such as 
the singular center data source and the absence of multicenter data, 
must be acknowledged. Future research should focus on corroborating 
the efficacy of DeepEmbryo across diverse datasets and examining the 
potential of merging clinical patient data with embryo imaging for an 
even more refined prediction of pregnancy outcomes.

DeepEmbryo stands as a pivotal advancement in applying AI to 
assist reproductive technologies, offering the prospect of enhancing 
IVF success rates through improved embryo selection. By moving 
toward a data-driven decision-making paradigm that leverages the 
comprehensive analysis of multiple embryo images, DeepEmbryo 
paves the way for supporting couples on their path to parenthood with 
greater certainty and optimism.
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