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Wetware computing and organoid intelligence is an emerging research field at 
the intersection of electrophysiology and artificial intelligence. The core concept 
involves using living neurons to perform computations, similar to how Artificial 
Neural Networks (ANNs) are used today. However, unlike ANNs, where updating 
digital tensors (weights) can instantly modify network responses, entirely new 
methods must be  developed for neural networks using biological neurons. 
Discovering these methods is challenging and requires a system capable of 
conducting numerous experiments, ideally accessible to researchers worldwide. 
For this reason, we developed a hardware and software system that allows for 
electrophysiological experiments on an unmatched scale. The Neuroplatform 
enables researchers to run experiments on neural organoids with a lifetime of 
even more than 100 days. To do so, we streamlined the experimental process 
to quickly produce new organoids, monitor action potentials 24/7, and provide 
electrical stimulations. We also designed a microfluidic system that allows for fully 
automated medium flow and change, thus reducing the disruptions by physical 
interventions in the incubator and ensuring stable environmental conditions. 
Over the past three years, the Neuroplatform was utilized with over 1,000 brain 
organoids, enabling the collection of more than 18 terabytes of data. A dedicated 
Application Programming Interface (API) has been developed to conduct remote 
research directly via our Python library or using interactive compute such as 
Jupyter Notebooks. In addition to electrophysiological operations, our API also 
controls pumps, digital cameras and UV lights for molecule uncaging. This allows 
for the execution of complex 24/7 experiments, including closed-loop strategies 
and processing using the latest deep learning or reinforcement learning libraries. 
Furthermore, the infrastructure supports entirely remote use. Currently in 2024, 
the system is freely available for research purposes, and numerous research 
groups have begun using it for their experiments. This article outlines the system’s 
architecture and provides specific examples of experiments and results.
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1 Introduction

The recent rise in wetware computing and consequently, artificial biological neural 
networks (BNNs), comes at a time when Artificial Neural Networks (ANNs) are more 
sophisticated than ever.

The latest generation of Large Language Models (LLMs), such as Meta’s Llama 2 or 
OpenAI’s GPT-4, fundamentally rely on ANNs.
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The recent acceleration of ANN use in everyday life, such as in 
tools like ChatGPT or Perplexity combined with the explosion in 
complexity in the underlying ANN’s architectures, has had a 
significant impact on energy consumption. For instance, training a 
single LLM like GPT-3, a precursor to GPT-4, approximately required 
10 GWh, which is about 6,000 times the energy a European citizen 
uses per year. According to a recent publication the energy 
consumption projected may increase faster than linearly (De Vries, 
2023). At the same time, the human brain operates with approximately 
86 billion neurons while consuming only 20 W of power (Clark and 
Sokoloff, 1999). Given these conditions, the prospect of replacing 
ANNs running on digital computers with real BNNs is enticing 
(Smirnova et al., 2023). In addition to the substantial energy demands 
associated with training LLMs, the inference costs present a similarly 
pressing concern. Recent disclosures reveal that platforms like 
OpenAI generate over 100 billion words daily through services such 
as ChatGPT as reported by Sam Altman, the CEO of OpenAI. When 
we break down these figures, assuming an average of 1.5 tokens per 
word—a conservative estimate based on OpenAI’s own tokenizer 
data—the energy footprint becomes staggering. Preliminary 
calculations, using the LLaMA 65B model (precursor to Llama 2) as 
a reference point, suggest energy expenditures ranging from 450 to 
600 billion Joules per day for word generation alone (Samsi et al., 
2023). While necessary for providing AI-driven insights and 
interactions to millions of users worldwide, this magnitude of energy 
use underscores the urgency for more energy-efficient 
computing paradigms.

Connecting probes to BNNs is not a new idea. In fact, the field of 
multi-unit electrophysiology has an established state of the art 
spanning easily over the past 40 years. As a result, there are already 
well-documented hardware and methods for performing functional 
electrical interfacing and micro-fluidics needed for nutrient delivery 
(Gross et al., 1977; Pine, 1980; Wagenaar et al., 2005a; Newman et al., 
2013). Some systems are also specifically designed for brain organoids 
(Yang et  al., 2024). However, their research is mostly focused on 
exploring brain biology for biomedical applications (e.g., mechanisms 
and potential treatments of neurodegenerative diseases). The 
possibility of using these methods for making new computing 
hardware has not been extensively explored.

For this reason, there is comparatively less literature on methods 
that can be used to reliably program those BNNs in order to perform 
specific input–output functions (as this is essential for wetware 
computing, not for biomedical applications). To understand what 
we need for programming of BNNs, it is helpful to look at analogous 
problem for ANNs.

For ANNs, the programming task involves finding the network 
parameters, globally denoted as S below, that minimize the difference 
L computed between expected output E and actual output O, for given 
inputs I , given the transfer function T  of the ANN. This can 
be written as:

L f O E= ( ), , with O T I S= ( ),

where f  is typically a function that equals 0 when O E= .
The same equation applies to BNNs. However, the key differences 

compared to ANNs include the fact that the network parameters S 
cannot be individually adjusted in the case of BNNs, and the transfer 

function T  is both unknown and non-stationary. Therefore, alternative 
heuristics must be developed, for instance based on spatiotemporal 
stimulation patterns (Bakkum et al., 2008; Kagan et al., 2022; Cai et al., 
2023a,b). Such developments necessitate numerous electrophysiological 
experiments, including, for instance, complex closed-loop algorithms 
where stimulation is a function of the network’s prior responses. These 
experiments can sometimes span days or months.

To facilitate long-term experiments involving a global network of 
research groups, we  designed an open innovation platform. This 
platform enables researchers to remotely perform experiments on a 
server interfaced with our hardware. For example, our Neuroplatform 
enhances the chances of discovering the abovementioned stimulation 
heuristics. It should be noted that, outside of the field of neuroplasticity, 
similar open platforms were already proposed in 2023 (O’Leary et al., 
2022; Armer et  al., 2023; Elliott et  al., 2023; Zhang et  al., 2023). 
However, to our knowledge, there are no platforms specifically 
dedicated to research related to biocomputing.

2 Biological setup

The biological material used in our platform is made of brain 
spheroids [also called minibrains (Govindan et  al., 2021), brain 
organoids (Qian et al., 2019), or neurospheres (Brewer and Torricelli, 
2007)] developed from Human iPSC-derived Neural Stem Cells 
(NSCs), following the protocol of Prof. Roux Lab (Govindan et al., 
2021). Based on the recent guidelines to clarify the nomenclature for 
defining 3D cellular models of the nervous system (Paşca et al., 2022), 
we  can call those brain spheroids “forebrain organoids” (FOs). 
Generation of brain organoids from NSCs has been already described 
for both mouse (Ciarpella et al., 2023), and human models (Lee et al., 
2020). Our protocol is based on the following steps: expansion phase 
of the NSCs, induction of the 3D structure, differentiation steps (using 
GDNF and BDNF), and maturation phase (Figures  1A,B). The 
Figure 1C is an image of the FO obtained using electronic microscope, 
it shows that it is a compact spheroid. The average shape of FOs 
obtained with this protocol are spheroids of a diameter around 500 μm 
(Govindan et al., 2021). Our experiments show that the FOs obtained 
can be  kept alive in an orbital shaker for years, as previously 
demonstrated (Govindan et al., 2021).

Gene expression analysis of mature FOs vs. NSCs showed a 
marked upregulation of genes characteristic to neurons, 
oligodendrocytes and astrocytes in FOs compare to NSCs. More 
precisely, FOs expressed genes typically enriched in the forebrain, 
such as striatum, sub pallium, and layer 6 of motor cortex (Govindan 
et  al., 2021). Pathway enrichment analysis of FOs vs. NSCs 
demonstrated activation of biological processes like synaptic activity, 
neuron differentiation and neurotransmitter release (Govindan 
et al., 2021).

At the age of 12 weeks, FOs contain a high number of ramified 
neurons (Govindan et  al., 2021), and they are mature enough to 
be  transferred to the electrophysiological measurement system 
(Figure  1A). In this setup, they have a life expectancy of several 
months, even with 24/7 experiments that include hours of electrical 
stimulations. This setup has a quick turnaround with occasional 
downtime – about 1 h – during organoid replacements. Therefore, the 
platform maintains a high availability for experiments.
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3 Hardware architecture

3.1 Introduction

The remotely accessible hardware includes all the systems which 
are required to preserve homeostasis, monitor environmental 
parameters and perform electrophysiological experiments. These 
systems can be controlled interactively using our custom Graphical 
User Interface (GUI) or via Python scripts. All data is stored in a time-
series database (InfluxDB), which can be accessed either via a GUI or 
via Python scripts. The users typically connect to the system using the 
Remote Desktop Protocol (RDP).

The platform is composed of several sub-systems, which can 
be  accessed remotely via API calls over the internet, typically 
through Python.

3.2 Multi-Electrode Array (MEA)

Our current platform features 4 MEAs. The MEAs were designed 
by Prof. Roux’s Lab form Haute Ecole du Paysage, d’Ingénierie et 
d’Architecture (HEPIA) and are described in Wertenbroek et  al. 
(2021). Each MEA can accommodate 4 organoids, with 8 electrodes 
per organoid (Figure 1E).

The MEA setup utilizes an Air-Liquid-Interface (ALI) approach 
(Stoppini et al., 1991), in which the organoids are directly placed on 
electrodes located atop of a permeable membrane (Figure 1D), with 
the medium flowing beneath this membrane in a 170 μL chamber. As 
a result, a thin layer of medium, created by surface tension, separates 
the upper side of the organoids from the humidified incubator air. 
This arrangement is further protected by a lid partially covering the 
MEA (Figure 1F). This ALI method enables a higher throughput and 
higher stability compared to submerged approaches, since no 
dedicated coating is required, and it is less prone to have the organoids 
detaching from the electrodes.

3.3 Electrophysiological stimulation and 
recording system

The electrodes in our system enable both stimulation and 
recording. The respective digital-to-analog and analog-to-digital 
conversions are performed by Intan RHS 32 headstages. Stimulations 
are executed using a current controller that ranges from 10 nA to 
2.5 mA, and recordings are obtained by measuring the voltage on 
each electrode at a 30 kHz sampling frequency with a 16 bits 
resolution giving an accuracy of 0.15 μV. The headstages are 

connected to an Intan RHS controller, which in turn is connected to 
a computer via a USB port. The Figure 2A shows the electrical activity 
recorded for each of the 32 electrodes. It can be noticed that the 
recorded activity is different between each electrode. This difference 
comes from the facts that each set of 8 electrodes records a different 
FO and that for a given FO, electrodes record at a different location. 
This display is refreshed in real-time and also available 24/7 on our 
website at the URL https://finalspark.com/live/. We compared the 
recording characteristics of this ALI setup to MCS MEA 
(60MEA200/30iR-Ti) monitoring a submerged FO, using the exact 
same Intan system for voltage conversion. The overlays of an action 
potential recorded, respectively, with the ALI and submerged versions 
are shown in Figures 2C,D and show similar signal characteristics.

3.4 Micro-fluidics

To sustain the life of the organoids on the MEA, Neuronal 
Medium (NM) needs to be constantly supplied. Our Neuroplatform 
is equipped with a closed-loop microfluidic system that allows for a 
24/7 medium supply. The medium is circulating at a rate of 15uL/min. 
The medium flow rate is controlled by a BT-100 2 J peristaltic pump 
and is continuously adjusted according to needs, for instance during 
experimental runs. The peristaltic pump is connected to the 
PC-control software using an RS485 interface, for programmed (i.e., 
in Python) or manual operations (Figure 2B). Additionally, Figure 3A 
depicts this microfluidic closed-loop circuit.

The microfluidic circuit is made of 0.8 mm (inside diameter, ID) 
tubing. Continuous monitoring of the microfluidic circuit and flow 
rate is achieved by using Fluigent flow-rate sensors, which connect 
to the Neuroplatform control center via USB. Data related to 
medium flow rate is stored in a database for later access. Figure 2E 
shows the cyclic variations in flow induced by the cams of the 
peristaltic pump.

A secondary microfluidic system is used to replace the medium 
in the closed-loop with fresh medium every 24 h, a process illustrated 
in Figure 3A. This replacement is fully automated through a Python 
script and performed in the following consecutive steps:

 1. Set the rotary valve to select the path from the reservoir F50 to 
the syringe pump

 2. Pump 2 mL of old medium using the syringe pump
 3. Set the rotary valve to select the path from the syringe pump to 

the waste F50
 4. Push 2 mL of old medium to the waste using the syringe pump
 5. Set the rotary valve to select the path from the new medium in 

the F50 in the fridge to the syringe pump

FO generation and MEA setup. (A) Protocol used for the generation of forebrain organoids (FO). Neural progenitors are first thawed, plated and expanded 
in T25 flasks. They are then differentiated in P6 dishes on orbital shakers, and finally manually placed on the MEA. (B) Representative images showing 
various stages of FO formation and differentiation, taken at different time points. The scale bar represents 250 μm. (C) Image of a whole FO taken with 
scanning electron microscope. The scale bar represents 100 μm. (D) Microscope view of the FO (in white) sitting on the electrodes of the MEA, and the 
membrane. The hole in the membrane is not visible on the picture since it is hidden by the FO. The scale bar represents 500 μm (E) Overview of the MEA, 
where the 32 electrodes are visible as 4 sets of 8 electrodes each. An FO is placed atop of each set of 8 electrodes, visible as a darker area. For each FO, 
the 2 circles correspond to a 2.5 mm circular membrane with a central hole. The scale bar represents 1 mm. (F) Cross-sectional view of the MEA setup, 
illustrating the air-liquid interface. The medium covering the FO is supplied from the medium chamber through the porous membranes.

FIGURE 1 (Continued)
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FIGURE 2

Recording system and user interface. (A) Electrical activity measured in μV over one second for each of the 32 electrodes. Each set of 8 electrodes records a 
different FO. (B) Graphical User Interface for manually controlling each of the microfluidic pumps. (C) Overlays of FO action potential recorded by the ALI 
system of the Neuroplatform. (D) Overlays of FO action potentials recorded with an MCS system. (E) Fluctuations of the flowrate of the medium within the 
microfluidic system, illustrating the cyclic variations induced by the peristaltic pump operating at 1 round per minute with 10 cams. (F) Temporal variations of 
the red component of the medium color, triggered by a sudden change in medium acidity, resulting in phenol red color change.
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 6. Pump 2 mL of fresh medium using the syringe pump
 7. Set the rotary valve to select the path from the syringe pump to 

the reservoir F50
 8. Push 2 mL of fresh medium using the syringe pump

3.5 Cameras

Each MEA is equipped with a 12.3-megapixel camera that can 
be  controlled interactively or programmatically (i.e., through a 
Raspberry Pi) for still image capture or video recording. The camera 
is positioned below the MEA, while illumination is provided by a 
remotely controlled LED situated above the MEA. Figures  3B,C 
illustrate this assembly (the aluminum wrapping is used in order to 
minimize the noise). This setup is particularly useful for detecting 
various changes, such as cell necrosis, possible organoid displacement 
caused by microfluidics, variations in medium acidity (using color 
analysis since our medium contains Phenol red), contamination, 
neuromelanin production (which can happen when uncaging 
dopamine), overflows (where the medium inadvertently fills the 
chamber above the membrane), or bubbles in the medium. For the 
latter two events, dedicated algorithms automatically detect these 
issues and trigger an alert to the on-site operator.

Changes of acidity, for example, can be detected by measuring the 
average color over a pre-defined window. Figure  2F shows the 
evolution of the medium’s red color component, with data points 
recorded hourly. The noticeable sudden drop is attributed to the 
pumping of medium with a slightly different acidity. This change in 
acidity results in a color alteration of the phenol red present in 
the medium.

3.6 UV light controlled uncaging

It is also possible to release molecules at specific timings using a 
process called uncaging. In this method, a specific wavelength of light 
is employed to break open a molecular “cage” that contains a 
neuroactive molecule, such as Glutamate, NMDA or Dopamine. A 
fiber optic of 1,500 μm core diameter and a numerical aperture of 0.5 
is used to direct light in the medium within the MEA chamber. The 
current system, Prizmatix Silver-LED, operates at 365 nm with an 
optical power of 260 mW. The uncaging system is fully integrated into 
the Neuroplatform and can be programmatically controlled during 
experiment runs via our API (see section 5.3).

3.7 Environmental measurements

The environmental conditions are monitored within two 
incubators. In both incubators, the following parameters are recorded: 
CO2, O2 concentrations, humidity, atmospheric pressure and 
temperature. Door-opening events are also logged since they have a 
major impact on measurements. The primary purpose of this 
monitoring is to ensure that experiments are performed in stable and 
reproducible environmental conditions.

All these parameters are displayed in real-time in a graphic 
interface showing both instant values as well as variations versus time 
of noise and flowrates (Figure 4A).

Incubator 1 houses the MEAs and the organoids used for 
electrophysiological experiments. In addition to the mentioned 
parameters, flowmeters are also utilized to report the actual flow rate 
of the microfluidic for each MEA, as depicted in the graph labelled 
“Pump” in Figure  4A. The system’s state is indirectly monitored 
through the noise level of each MEA, as shown in the graph labelled 
“Noise Intan” in Figure 4A. The noise level is calculated based on the 
standard deviation of the electrical signals recorded by the electrodes 
over a 30 ms period.

Incubator 2 houses the organoids which are kept in orbital 
shakers. Piezoelectric gyroscopes are used to measure the actual 
rotation speed of the orbital shakers.

Since all the data is logged in the database, it is also possible to 
access the historical measurements through a dedicated GUI 
(Figure 4B).

4 Software

4.1 General architecture

The core of the system relies on a computational notebook which 
provides access to 3 resources (Figure 5A):

 1. A database where all the information regarding the 
Neuroplatform system is stored

 2. The Intan software running on a dedicated PC, which is 
used for:

 • Recording the number of detected spikes in a 200 ms time window
 • Setting stimulation parameters

 3. A Raspberry Pi for triggering current stimulation according to 
stimulation parameters

4.2 Database

The Neuroplatform records monitored data 24/7 using InfluxDB, 
a database designed for time series. Other options are also available.

This database contains all the data coming from the hardware 
listed in Section 3.

The electrical activity of the neurons is also recorded 24/7 at a 
sampling rate of 30 kHz. To minimize the volume of stored data, 
we designed a dedicated process that focuses on significant events, such 
as threshold crossings that are likely to be  due to action potentials 
(spikes). The following pseudo code illustrates the implemented approach:

 - Each 1-min write buffer to database
 - Each 33 μs
 - For each electrode
 - If, at time t, the voltage exceeds a threshold T
 - Store (in buffer) 3 ms of data [t-1 ms, t + 2 ms]
 - Each 3 s update T

Additionally, a timestamp corresponding to each detected event 
is also stored in the database, along with the maximum value of 
voltage during the 3 ms spike waveform recording.
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The threshold T is computed directly from voltage values sampled 
each 33 μs, according to the following formula:

 T Mdn i= ∗ { }( )6 σ

Where σ i is the standard deviation computed over a set i of 30 ms 
consecutive voltage values, and Mdn( ) represents the median 

function computed over 101 consecutive σ i{ } values. The use of the 
median reduces the sensitivity to outliers, which is typically caused 
by action potentials. In our current setup, a multiplier of 6 on the 
median has proven to be a good compromise for achieving reliable 
spike detection.

Besides electric tension data, the number spikes recorded per 
minute is also computed and stored in the database every minute by 
a batch process.

FIGURE 3

Microfluidics. (A) Microfluidic system illustrating the continuously operating primary system, which ensures constant flow in the medium chamber, and 
the secondary system responsible for medium replacing every 48  h. (B) Side view of the assembly, featuring the camera and the MEA. The entire 
assembly is enclosed with aluminum foil to ensure the lowest possible noise level. (C) Front view of the assembly, showing the intake and outtake of 
the microfluidic system, as well as the LED used during image capture.
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4.3 Recording electrical activity

As previously discussed, the communication among neurons is 
captured by the MEA and converted into a voltage signal sampled at 

30 kHz. The Neuroplatform offers two basic access modes to the 
recorded neural activity:

 1. Raw: raw sampling values.

FIGURE 4

Graphic user interface to monitor critical parameters in the incubators. (A) Graphical User Interface displaying critical environmental conditions for the 
incubator 1, where electrophysiological experiments are performed, as well as the incubator 2, where FO are maintained on an orbital shaker. (B) The 
display shows environmental data for incubator 1 for specific time periods, extracted from the database, with door opening events displayed as dashed 
line. Noise, Temperature, humidity and pressure are indicated by different colored lines. The units of each measurement are normalized between 0 and 
1 for the selected time interval.
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 2. Optimized: waveforms of the raw signal near neuronal spikes, 
available directly from the database.

In addition to the aforementioned features, the Neuroplatform 
offers even more advanced methods. For instance, it includes counting 
spikes over a fixed time period of 200 ms following stimulation, with 
a 10 ms delay suppressing the stimulation artifact.

From a technical perspective, accessing the number of spikes can 
be accomplished in two different ways:

 - Retrieving the number of spikes per minute from the database
 - Through direct communication with the PC managing the Intan 

controller for spike count

The second approach is required when the stimulation protocol 
demands real-time responsiveness. This is typically the case for certain 
closed-loop strategies. For instance, closed-loop stimulation strategies 

have been deployed in primary cortical cultures for effective burst 
control (Wagenaar et al., 2005a,b) and for goal-directed learning (Samsi 
et al., 2023).

4.4 Syntax for stimulations

Programmatically stimulating the FO on the Neuroplatform is 
accomplished by sending an electrical current to the MEA electrodes. The 
electrical current profile can be parameterized in a variety of ways, which 
is partly shown in Figure 5B. These parameters and controls include:

 - Basic shape of stimulation signal:

 o Bi-phasic
 o Bi-phasic with interphase delay
 o Tri-phasic

FIGURE 5

Software setup and electrical stimulation. (A) General architecture of the Neuroplatform. The Jupyter Notebook serves as the main controller, enabling 
initiation and reading of spikes, configuration stimulation signals and access to database via, e.g., Python (B) Parameters of the stimulation current: 
settings optimally these parameters can elicit spikes. Through the Python API, parameters that can be adjusted for the bi-phasic stimulation signals 
include the duration (D1) and amplitude (A1) of the positive current phase, and, respectively, D2 and A2 for the negative current phase. Additionally, the 
polarity of the biphasic signal can be reversed to start with a negative current.
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 - Stimulation duration and intensity:

 o Positive (A1) and negative (A2) electrical current intensity 
(typical 1uA, ranging from 0.1uA to 20uA)

 o Duration of positive (D1) and negative (D2) stimulation currents

 - Stimulation triggers

 o Single start
 o Table with collection of start triggers
 o Pulse trains

 - MEA electrodes

send_stim_param (electrodes, params)

5 Examples of electrophysiological 
experiments

To demonstrate the effectiveness of the Neuroplatform, the following 
sections will provide an overview of several experiments conducted on 
the Neuroplatform at FinalSpark’s Laboratories in Vevey, Switzerland.

5.1 Modification of spontaneous activity

The spontaneous electrical activity of the FO can be represented 
by the concept of “Center of Activity” (CA) (Bakkum et al., 2008) 
which is defined as a virtual position C  on the MEA described by:

 

( )8
1

8
1

,k k kk

kk

F X Y

F
=

=

⋅
=
∑

∑
C

Where X Yk k,( ) define the spatial position of the 8 electrodes and 
Fk is the number of spontaneous spikes detected. The interest of the 
concept of CA is that its position provides statistical information 
about the average location of the activity over the surface of the 
FO. The ability to change the position of the CA is interesting because 
it also shows the ability to memorize information in the state of the FO.

The coordinates of the CA can be modified using a high frequency 
stimulation. In the following experiment we use the following protocol:

 1) Compute the CA using the number of detected spikes 
over 500 ms

 2) Goto 1,100x
 3) Perform a 20 Hz stimulation during 500 ms using a bi-phasic 

current (negative first) of 2 μA of 200 μS, for both phases, on 
one electrode

 4) Wait 1 s
 5) Goto 5,100x

Figure  6A displays the 100 measured positions of the CA 
corresponding to the spontaneous activity before the 20 Hz stimulation in 
blue, and after the high-frequency stimulation in red (the average position 
is indicated by a cross). A close-up is shown in Figure 6B. The timestamps 
of the spontaneous activity, before and after stimulation, are presented in 

Figures 6C,D, respectively. Each graph shows one example of the 100 
records of 500 ms used to compute the CA location (showing a decrease of 
spontaneous firing activity of electrodes 3, 4 and 6). A noticeable shift in 
the average position (shown by a cross) of the CA can be observed before 
and after the high-frequency stimulation (as seen in Figure 6A), indicating 
a change of state of the biological network. A classifier based on a simple 
logistic regression is employed to predict if the network has received the 
20 Hz stimulation. In this particular experiment, the classification accuracy, 
computed from the confusion matrix, is 95.5%.

The Neuroplatform allows users to perform both the 
experimental part (including stimulation and reading operations) 
and the visualization of the CA displacement within the same Python 
source code. The 500 ms 20 Hz signal is generated directly by the 
Python source code shown below. The first trigger.send instruction 
sends the trigger for the stimulation on a specific electrode and time.
sleep pauses the execution for 50 ms.

Despite the common perception of Python as being less than ideal 
for real-time signal processing due to its inherent latency, our 
empirical data reveals a time accuracy of under 1 ms (on an Intel Xeon 
CPU E5-2690 v2 @ 3.00GHz), a level of precision that is satisfactory 
for the generation of tetanic signals.

5.2 Optimization of stimulation parameters

In this example, the objective is to identify the set of stimulation 
parameters that can elicit the maximum number of action potentials 
within 200 ms after a stimulation.

Depending on the FOs, their composition, and maturity, only 
specific combinations of electrodes and parameters can elicit spikes. 
In our experiment, we use an 8-electrode MEA and cycle through 
several stimulation signal parameters as shown in 
Figure  7A. Consequently, we  need to test a total of 342 different 
parameter-electrode combinations. The following pseudo code 
illustrates the Python script used in this experiment.

 1) For each set of stimulation parameters
 2) For each stimulation electrode
 3) For each recording electrode
 4) During 15 s, every 250 ms
 5) Decide between stimulating, or recording spontaneous activity, 

with a 50% probability
 6) Record number of spikes during 200 ms

The aim of probabilistic stimulation and no stimulation in step 5 
is to evaluate the difference between elicited and spontaneous spikes 
in a way that ensures there is no bias.

The bar chart in Figure 7A displays a segment of the experimental 
results. It shows a 15-s recording from a single electrode, 
corresponding to one execution of step 4 in the pseudo code above. 
Each bar represents the spike count during a 200 ms period, repeated 
every 250 ms. The orange bars in this plot are the result of the 
parameters selected in step  1 of the pseudo code. The blue bars 
represent no-stimulation periods, thus corresponding to the 
spontaneous activity of the neurons.
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FIGURE 6

Center of activity modification. (A) Graph showing the 2D layout of the 8 electrodes, the X and Y axis are normalized units showing the spatial 
coordinates of the electrodes. All electrodes can be used for both stimulation and reading. A 20  Hz stimulation signal is applied to electrode 6. The 100 
blue circles represent the positions of the Center of Activity (CA) before 20  Hz stimulation, while the 100 red circles indicate the positions after the 

(Continued)
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From Figure 7A, we can see that this particular combination of 
electrode and parameters reliably elicits responses.

In practice, the Python script can also be used to automatically 
display the 342 graphs similar to Figure 7A, allowing the operator to 
select the optimal set of parameters. Additionally, it can compute a 
scalar metric to characterize the “efficiency” of the parameters, and 
automatically identify the optimal parameters.

An example of a parameter maximization metric is given in the 
equation below. Let us denote ∝r  and ∝s the average number of spikes 
recorded spontaneously or after a stimulation, respectively, and σ r and 
σ s as their standard deviations. The following metric is used:

 
m r s

r s
=

−

( )
µ µ
σ σmax ,

The set of parameters that maximize this metric can then 
be utilized to perform other experiments requiring elicited spikes, 
such as investigating the effect of pharmacological agents on a 
biological network’s ability to react quickly to stimulation.

5.3 UV light-induced uncaging of 
molecules

‘Uncaging’ is a pivotal technique in cellular biology, enabling the 
precise control of molecular interactions within cells (Gienger et al., 
2020). It involves the use of photolabile caged compounds that are 
activated by specific light wavelengths, releasing bioactive molecules in 
a targeted and timely manner. This method is particularly valuable for 
studying dynamic processes in neural networks and intracellular 
signaling, offering real-time insights into complex biological mechanisms.

Our Neuroplatform is equipped with all necessary components to 
perform uncaging. In this example, we  investigate closed-loop 
stimulation, where dopamine is used to reward the network when 
more spikes are elicited by the same stimulation. The release of the 
dopamine is achieved through the uncaging of CNV-dopamine using 
the UV system described in section 3.6.

Figure  7B shows the flow chart of the closed-loop uncaging 
process. The optimal stimulation parameters are first found using the 
technique shown in 5.2 (in this case, a current of 4uA, biphasic with 
100uS per phase), which is sent successively to each of the 8 electrodes 
with a delay of 10 ms between each electrode.

Figure 7C shows the response timestamps of the 8 electrodes for 
a period of 1,200 ms, 600 ms before and after the stimulation. The 
stimulation event is indicated by the vertical red line. It is interesting 
to observe that in this particular case, most of the elicited spikes 
originate from 2 electrodes, specifically electrode 112 and 
electrode 119.

The Python source code implementing the closed-loop process 
illustrated in Figure 7B is provided below. We would like to highlight 

here how concise the code is. With only 13 lines of code, the entire 
closed-loop process has been implemented.

The graph in Figure 7D shows the variation in the number of 
spikes elicited during the execution of the script above across 5 h. A 
general increase in the number of elicited spikes can be observed. 
However, it is obviously not possible to establish causality between the 
closed-loop strategy and the observed increase with this single 
experiment alone. The primary purpose of this closed-loop 
experiment is to demonstrate the flexibility offered by 
the Neuroplatform.

6 External users of the Neuroplatform

Access to the Neuroplatform is freely available for research 
purposes. For researchers lacking lab infrastructure, the 
Neuroplatform provides the capability to conduct real-time 
experiments on biological networks. Additionally, it allows others to 
replicate results obtained in their own lab. The database is shared 
between all research groups, however the Python scripts and Jupyter 
Notebooks are in private sections.

In 2023, 36 academic groups proposed research projects, of which 
8 were selected. At the time of writing, 4 of these have already yielded 
some results:

 • University Côte d’Azure, CNRS, NeuroMod Institute and 
Laboratoire JA Dieudonné: investigates the functional 
connectivity of FO and how electrical stimulation can modify it.

 • University of Michigan, investigates stimulation protocols that 
induce global changes in electrical activity of a FO.

 • Free University of Berlin, investigates stimulation protocols 
that induce changes in the electrical activity of a 
FO. Additionally, this research employs machine learning 
tools to extract information from neural firing patterns and to 
develop well-conditioned responses. Moreover, it utilizes both 
shallow and deep reinforcement learning techniques to 

stimulation. The cross mark the average position. (B) A closer look at the two groups of CA. (C) Timestamps depicting the spontaneous activity over 
500  ms for each of the 8 electrodes before the high-frequency stimulation. (D) Spontaneous activity observed after the high-frequency stimulation, 
showing a lower activity of electrodes 6, 4 and 3, compared to (C).

FIGURE 6 (Continued)
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FIGURE 7

Neural activity stimulation and dopamine uncaging. (A) Graph depicting the number of spikes recorded over 250  ms. The spike counts in orange were 
measured following a stimulation, while those in blue were measured during periods without stimulation. For clarity in visualization, a small bar is 
displayed even when no spikes are detected. (B) Diagram illustrating the different steps involved in the closed-loop uncaging process of dopamine, 

(Continued)
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identify optimal training strategies, aiming to elicit 
reproducible behaviors in the FO.

 • University of Exeter, Department of Mathematics and Statistics, 
Living Systems Institute, investigates storing and retrieving of 
spatiotemporal spiking patterns, using closed-loop experiments 
that combine mathematical models of synaptic communication 
with the Neuroplatform.

 • Lancaster University Leipzig and University of York: 
characterizes computational properties of FOs under the 
reservoir computing model, with a view to building low-power 
environmental sensors.

 • Oxford Brookes University, School of Engineering, Computing 
and Mathematics: investigating the properties of emerging 
dynamics and criticality within neural organizations using 
the FOs.

 • University of Bath, ART-AI, IAH: using the free energy principle 
and active inference to study the learning capabilities of neurons, 
embodied in a virtual environment.

 • University of Bristol: stimulating of FOs based on data gathered 
from an artificial tactile sensor. Use machine learning techniques 
to interpret the FO’s output, investigating their ability to process 
real-world data.

7 Discussion and conclusion

The Neuroplatform has now been operational 24/7 for the past 
4 years. During this time, the organoids on the MEA have been 
replaced over 250 times. Considering that we  place at least 4 
organoids per MEA, and change all the organoids simultaneously, 
this amounts to testing over 1,000 organoids. Initially, their 
lifetime was only a few hours, but various improvements, 
especially related to the microfluidics setup, have extended this to 
up to 100 days in best cases. It is important to note that the 
spontaneous activity of the organoids can vary over their lifetime, 
a factor that must be taken into consideration when conducting 
experiments (Wagenaar et al., 2006). Additionally, we observed 
that the minimum current required to elicit spikes, computed 
using the method described in section 5.2, is increasing over the 
lifetime of the organoid. This phenomenon may be linked to an 
impedance increase caused by glial encapsulation (Salatino 
et al., 2017).

The 24/7 recording strategy as described in section 4.2, results in 
the constant growth of the database. As of this writing, its size has 
reached 18 terabytes. This volume encompasses the recording of over 
20 billion individual action potentials, each sampled at a 30 kHz 
resolution for 3 ms. This extensive dataset is significant not only due 
to its size but also because it was all recorded in a similar in-vitro 
environment, as described in section 3.2. We are eager to share this 
data with any interested research group.

8 Future extensions

In the future, we plan to extend the capabilities of our platform 
to manage a broader range of experimental protocols relevant to 
wetware computing. For example, we  aim to enable a remote 
control over the injection of specific molecules into the medium, 
facilitating remote experiments that involve pharmacological 
manipulation of neuronal activity. This expansion will provide 
additional degrees of freedom for the automatic optimization of 
parameters influencing neuroplasticity.

Currently, as detailed in Chapter 2, only one differentiation 
protocol is used for generating organoids. We  plan to introduce 
additional types of organoid generation protocols soon, with the aim 
of exploring a broader range of possibilities.

Although 32 research groups requested to access to the 
Neuroplatform, our current infrastructure only allows us to 
accommodate 7 groups, considering our own research needs as well. 
We are in the process of scaling-up the AC/DC hardware system to 
support more users simultaneously. Additionally, we are currently 
limited to executing close-loop algorithms for neuroplasticity on one 
single FO, as these algorithms require sending in real-time adapted 
simulation signals to each FO. Our software is being updated to run 
closed-loops in parallel on up to 32 FO.

9 Methods

9.1 Brain organoid generation

Human forebrain organoids were originated as described in 
Govindan et al. (2021). Briefly, Human Neural Stem Cells derived from 
the human induced pluripotent stem (hiPS) cell line (ThermoFisher), 
were plated in flasks coated with CellStart (Fisher Scientific) and 
amplified in Stempro NSC SFM kit (ThermoFischer) complete medium: 
KnockOut D-MEM/F12, 2 mM of GlutaMAX, 2% of StemPro Neural 
supplement, 20 ng/mL of Human FGF-basic (FGF-2/bFGF) 
Recombinant Protein, and 20 ng/mL of EGF Recombinant Human 
Protein (Fisher Scientific). Cells were then detached with StemPro™ 
Accutase (Gibco) and plated in p6 at the concentration of 250,000 cells/
well. The plates were sealed with breathable adhesive paper and leads, 
placed on an orbital shaker at 80 rpm, and culture for 7 days at 37°C 5% 
CO2. After one week the newly formed spheroids were put in 
differentiation medium I (Diff I), containing DMEM/F-12, GlutaMAX™ 
supplement (Gibco), 2% BSA, 1X of Stempro® hESC Supplement, 20 ng/
mL of BDNF Recombinant Human Protein (Invitrogen), 20 ng/mL of 
GDNF Recombinant Human Protein (Gibco), 100 mM of N6,2′-O-
Dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt, and 
20 mM of 2-Phospho-L-ascorbic acid trisodium salt. After one week, 
brain spheroids were put in differentiation medium II (Diff II) made of 
50% of Diff I and 50% of Neurobasal Plus (Invitrogen). After 3 weeks of 
culture in Diff II, brain organoids were plated in Neurobasal Plus and 

which is repeated 240 times. (C) Timestamps of action potentials from the 8 electrodes before and after stimulation (shown as red line), showcasing 
the elicited spikes. (D) Graph displaying the number of elicited spikes over the 240 steps of the closed-loop (in blue) alongside the activation events of 
the UV light source (red).

FIGURE 7 (Continued)
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kept in the orbital shaker until the transfer on the MEA. Medium was 
change once per week.

9.2 Electron microscopy analysis of FOs

Mature FOs were fixed in 2.5% Glutaraldehyde in 0.1 M phosphate 
buffer pH 7.4, at RT. After 24 h the samples were processed as 
described in Cakir et al. (2019) at the Electron Microscopy Facility of 
University of Lausanne. The whole FO images were acquired with 
Quanta FEG 250 Scanning Electron Microscope.

9.3 Transfer of FOs on MEA

MEA connected with the microfluid system was moved from the 
incubator and placed on a 12.3-megapixel camera system (with an 
optical lens of 16 mm of focal, giving a magnification power of 21x) 
inside the cell culture hood. The lid was removed to access the top of 
the liquid/air interface. Sterile Hydrophilic PTFE MEMBRANE Hole 
‘confetti’ (diameter 2.5 mm, diameter of the hole 0.7 mm) (HEPIA) 
were positioned on top of each electrode and left there 2 min to absorb 
the medium. FOs were collected from the plate using wide bore 
pipette tips (Axygen) and placed in the middle of confetti, in a 10 μL 
drop of medium. The position of the organoids was adjusted with the 
help of sterile forceps. After all the organoids were put on place, the 
chamber was covered with the plate sealer Greiner Bio-One™ 
BREATHseal™ Sealer (Fisher Scientific), and with the MEA lid. MEA 
containing the organoids were placed immediately back in the cell 
incubator and were ready to be used for recording and stimulation. A 
similar procedure was used for the positioning of organoids on MCS 
MEA (60MEA200/30iR-Ti). In this case the Hydrophilic PTFE 
MEMBRANE was not used and organoids were directly laid on the 
electrodes in a 30 μL drop of medium. Recording of organoid activity 
was performed immediately afterwards.

9.4 System design and assembly

Cell culture media was stored in a 50 mL Falcon tube with a multi-
port delivery cap (ElveFlow) and stored at 4°C. Each reservoir delivery 
cap contained a single 0.8 mm ID × 1.6 mm OD PTFE tubing (Darwin 
Microfluidics), sealed by a two-piece PFA Fittings and ferrule threaded 
adapter (IDEX), extending from the bottom of the reservoir to an inlet 
port on the 4-port valve head of the RVM Rotary Valve (Advance 
Microfluidics SA). Sterile air is permitted to refill the reservoir through 
a 0.22-μm filter (Milian) fixed to the cap to compensate for syringe 
pump medium withdrawal. A similar PTFE tubing and PFA Fittings and 
adapters were used to connect the syringe pump to the 4-port valve head 
of the RVM Rotary Valve (Advance Microfluidics SA). Each PTFE 
tubing coming from the distribution valve connects with a 50 mL falcon 
tube inside the cell culture incubator (Binder) and to a borosilicate glass 
bottle (Milian) to collect discarded cell culture medium.

A secondary microfluid system made of 0.8 mm ID × 1.6 mm OD 
PTFE tubing, were used to connect each 50 mL falcon tube inside the 
cell culture incubator with its own MEA (HEPIA). The connection 
was through a precise peristaltic pump BT100-2 J (Darwin 
Microfluidics) containing 10 rollers. A compute module (Raspberry 
Pi 4) controlled the peristaltic pump and the Rotary Valve, through a 

custom application program interface (API), using RS485 interface 
and RS-232 interface, respectively. A Fluigent flow-rate sensor 
connected via USB to the Raspberry Pi 4 allowed the monitoring of 
the flow rate inside the microfluidic system between the peristaltic 
pump and the MEA. Python was used to develop the software required 
to carry out automation protocols.

9.5 Uncaging of dopamine

Carboxynitroveratryl (CNV)-caged dopamine (Tocris 
Bioscience) was dissolved in Neurobasal Plus at the concentration of 
1 mM, and injected in the fluidic system. After 3 h from the injection, 
the uncaging experiment started as described in paragraph 5.3. UV 
Silver-LED fiber-coupled LED (Prizmatix) was used to uncage the 
dopamine at the wavelength of 365 nm for 800 ms each time.
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