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Time series classification is a challenging research area where machine learning

and deep learning techniques have shown remarkable performance. However,

often, these are seen as black boxes due to their minimal interpretability. On

the one hand, there is a plethora of eXplainable AI (XAI) methods designed

to elucidate the functioning of models trained on image and tabular data. On

the other hand, adapting these methods to explain deep learning-based time

series classifiers may not be straightforward due to the temporal nature of

time series data. This research proposes a novel global post-hoc explainable

method for unearthing the key time steps behind the inferences made by deep

learning-based time series classifiers. This novel approach generates a decision

tree graph, a specific set of rules, that can be seen as explanations, potentially

enhancing interpretability. The methodology involves two major phases: (1)

training and evaluating deep-learning-based time series classification models,

and (2) extracting parameterized primitive events, such as increasing, decreasing,

local max and local min, from each instance of the evaluation set and clustering

such events to extract prototypical ones. These prototypical primitive events are

then used as input to a decision-tree classifier trained to fit themodel predictions

of the test set rather than the ground truth data. Experiments were conducted

on diverse real-world datasets sourced from the UCR archive, employingmetrics

such as accuracy, fidelity, robustness, number of nodes, and depth of the

extracted rules. The findings indicate that this global post-hoc method can

improve the global interpretability of complex time series classification models.

KEYWORDS

deep learning, Explainable Artificial Intelligence, time series classification, decision tree,

model agnostic, post-hoc

1 Introduction

Due to the affordability of sensors, time series data have become prevalent in

various domains, including finance (Zhang et al., 2019), healthcare (Liu et al., 2022;

Strodthoff et al., 2020), recognition of human activity (Mekruksavanich and Jitpattanakul,

2021; Joshi and Abdelfattah, 2021), and environmental monitoring (Shu et al., 2019).

Time series classification involves categorizing or assigning a class label to a given

time series, a critical task in scenarios where sensor or financial data analysis is

essential for informed business decisions. Various algorithms have been devised for
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time series classification. Deep learning models have shown

exceptional effectiveness in tasks such as computer vision, natural

language processing, and time series classification. However, these

models are often deemed opaque due to their complex architecture

and lack of transparency, giving rise to research in Explainable

Artificial Intelligence (XAI) to address this limitation (Longo et al.,

2023). XAI is a growing field of research that aims to address

this issue by (i) developing techniques that aim at providing

understandable and transparent explanations of machine learning

models and (ii) evaluating and assessing their impact on humans

(Theissler et al., 2022; Di Martino and Delmastro, 2022; Vilone

and Longo, 2023). Several XAI methods have been proposed for

deep learning-based time series classification models to overcome

these issues. These techniques include using commonly used XAI

methods for computer vision (Schlegel et al., 2019), such as Local

Interpretable Model-agnostic Explanations (LIME)(Ribeiro et al.,

2016), Saliency Maps (Simonyan et al., 2013), and Layer-wise

Relevance Propagation (LRP)(Bach et al., 2015).

However, adapting existing XAI methods for image and tabular

data to time series data presents unique challenges due to the need

to account for the temporal nature of the data (Schlegel et al., 2019;

Theissler et al., 2022). Thesemethods often produce heatmap-based

explanations that are hard to interpret and primarily developer-

focused (Rojat et al., 2021; Jeyakumar et al., 2020). Moreover,

feature importance methods such as bespoke LIME and SHAP fail

to capture temporal dependencies by treating each time step or

segment independently.

This research addresses these limitations by offering global rule-

based explanations using parameterized event primitives, which

represent specific types of events such as increasing or decreasing

trends, local maxima, and local minima. These parameterized

events effectively capture and convey inherent temporal patterns,

making explanations more intuitive and comprehensible (Kadous,

1999). The approach generates a decision tree that provides a set

of rules assumed to be more understandable to humans, making

it easier for non-experts to comprehend a model’s predictions.

Decision trees are considered interpretable by design and can

provide insights into the relationships between features and the

output (Molnar, 2020). Furthermore, they can be easily visualized,

facilitating comprehension of inference chains (Vilone and Longo,

2023).

The main contribution of this research is a novel

global post-hoc XAI method to explain the inference

process of deep learning-based time series classification

models using a decision tree based on parameterized

event primitives.

Finally, we point out that our approach is a good

starting point for further improvement and the generation of

explanatory descriptions that back up AI decisions of time series

classification models.

The rest of the paper is structured as follows: Section

2 reviews existing XAI methods that have been used to

explain deep learning-based time series classifiers. Section

3 outlines the proposed approach. In Section 4, the

experimental results are presented and discussed in detail.

Finally, Section 5 concludes the article and highlights possible

future directions.

2 Related work

In recent years, the surge of interest in Explainable Artificial

Intelligence (XAI) methods has gained attention to address the

transparency and interpretability challenges posed by complex

models within the field of machine learning. In particular, two

pivotal paradigms within the XAI framework are attributions and

attentions (Theissler et al., 2022).

Attribution methods, encompassing techniques such as LIME

(Ribeiro et al., 2016), Saliency Maps (Simonyan et al., 2013), SHAP

(Lundberg and Lee, 2017), and LRP (Bach et al., 2015), have played

a critical role in computer vision for elucidating salient features

within input data. The application of these methods has seamlessly

transitioned to the domain of time series analysis, as evidenced by

the works of Schlegel et al. (2019), particularly the work described

in Neves et al. (2021) and Sivill and Flach (2022), adapted LIME

for direct application to time series data. Advancing the discourse

on time series classifiers, Zhou et al. (2021) have enriched the

interpretability landscape by enhancing Class Activation Maps

(CAM) and Grand-CAM with backpropagation. Simultaneously,

the work described in Siddiqui et al. (2019) introduced TSViz, a

saliency map-based methodology later integrated into TSXplain

(Munir et al., 2019) for unearthing the logic behind Deep Neural

Networks (DNNs) in time series. These methodologies combine

salient regions, instances, and statistical features, thereby fostering

natural language explanations.

In the realm of time series data, Vielhaben et al. (2023) have

introduced DFT-LRP, a tailored variant of Layer-wise Relevance

Propagation (LRP). This methodology is purposefully designed

to cater to the intricacies of time series data and involves the

incorporation of a virtual inspection layer preceding the input layer,

an innovative step facilitating the transformation of time series data

and enabling the propagation of relevance attributions through

Layer-wise Relevance Propagation (LRP).

Despite the efficacy of attributions, their application to time

series data is not without challenges, due to the non-intelligible

nature of time series (Schlegel and Keim, 2021). Heat maps,

often used in the visualization of attributions, are promising for

domain experts, but pose challenges for general users (Jeyakumar

et al., 2020). Additionally, the assumption of feature independence

inherent in attributions is frequently violated when considering

adjacent observations within time series data (Watson, 2022).

Similarly, attention mechanisms, notably exemplified by Karim

et al. (2017), share a challenge in visual interpretation similar to that

faced by attribution methods, often relying on heatmaps.

In the midst of the prevailing emphasis on local interpretability

in XAI research, particularly in time series data, it is crucial to

recognize researchers contributing to global insights in time series

classifiers. The work described in Oviedo et al. (2019) generalizes

CAM to encompass all instances within a class, offering an average

CAM for comprehensive insight. Moreover, Siddiqui et al. (2019)

focus on clustering filters, while Cho et al. (2020) concentrate on

clustering input sequences, both enriching global understanding

through grouping based on activation patterns.

Despite the multitude of Explainable Artificial Intelligence

(XAI) methods dedicated to explaining specific instances in

time series data, there is a noticeable gap. There is a lack of
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methods not tied to a specific model and can easily provide

comprehensive global insights. Our novel approach presents a

global model-agnostic method to explain deep learning-based time

series classifiers using a decision tree. This approach aims to

maintain the temporal dependency inherent in time-series data

while providing explanations in an understandable format.

Our methodology falls within the domain of surrogate-based

approaches, as we leverage linear models like decision trees to

mimic the inference process of deep learning time series classifiers.

The method produces a set of rules or a decision tree graph as

an explanation, making it transparent and easy to comprehend.

Decision tree-based explanations are intuitive and structured,

representing the logic of an ML model as a set of rules that can

be easily interpreted and visualized. Therefore, they are considered

naturally transparent and intelligible by scholars (Vilone et al.,

2020).

3 Proposed method

This section introduces a novel model-agnostic post-hoc

Explainable Artificial Intelligence (XAI) method for deep learning-

based time series classifiers. Figure 1 illustrates the diagram of our

proposed method, which consists of three distinct phases. In what

follows, we provide a detailed explanation of the method.

3.1 Phase I: training and evaluating

The initial phase of the method involves preparing the data and

subsequently training and evaluating the targeted deep-learning

models for explanation.

3.2 Phase II: transforming the test set

Parameterized Event Primitives (PEPs) are extracted from

the test set of the deep learning model as shown in Figure 1.

Parameterized Event Primitives (PEPs) are enlisted to extract events

defined by a tuple of parameters and a finding function presumed

to manifest in the domain. Extracting PEPs from a time series helps

to represent the temporal characteristics of events as parameters,

which facilitates learning for interpretable models such as decision

trees (Kadous, 1999). In this study, an event refers to a specific

pattern or behavior that is expected to occur in the domain. These

events are defined using Parameterized Event Primitives such as

increasing or decreasing trends, local maxima, and local minima,

which are intuitive and meaningful to users.

The methodology outlined in Kadous (1999) is implemented

with a modification (in Subsection 3.2.3 at the event attribution

stage) that aims to count the number of events within a cluster

(eventcluster_num), rather than simply indicating their presence or

absence with a binary representation. This refinement contributes

to a noticeable improvement in the decision tree performance,

particularly manifesting significant improvements in specific

datasets. The accuracy of the decision tree assumes paramount

importance, given its consequential impact on the enhancement of

fidelity. Subsequently, the sections detail each step for transforming

the test data to train and evaluate the surrogate decision tree.

3.2.1 Extracting Parameterized Event Primitives
In this step, we extract Parameterized Event Primitives (PEPs)

from each evaluation set time series sequence. Let a time series

sequence be denoted as x = x1, x2, . . . , xn, where xi represents the

time series value at time i. The function that extracts the events

takes a series as input and returns a list of extracted events, denoted

as E. For example, considering the increasing event, Einc can be

represented as the set of tuples where each tuple contains the

time when a positive gradient begins (tstart), the duration until the

gradient stops increasing (dura), and the average gradient values

(gradavg). This can be formally denoted as:

Einc =







(tstart1 , dura1, gradavg1
),

(tstart2 , dura2, gradavg2
), . . .







Figures 2A, B show examples of extracted events from a single

time series. Figure 3 shows the average number of extracted events

per class for each parameterized event primitive across the entire

Ford A dataset evaluation set.

3.2.2 Event clustering
Each parameterized event, denoted as E, undergoes a flattening

process to apply a clustering algorithm (for instance, flattening

increasing events across all the test set cases). The KMeans

clustering algorithm was used in this experiment, with the

silhouette method determining the optimal number of clusters.

The optimal number corresponds to the highest average silhouette

score, as illustrated in Figure 4.

This iterative procedure is executed for all four extracted

parameterized events: increasing events (Einc), decreasing events

(Edec), local maxima events (Emax), and local minima events (Emin).

Figure 5 visually represents a set of clusters generated by the

clustering algorithms for each parameterized event.

Each cluster, denoted as Ci,j, where i signifies the type of

parameterized event and j represents the cluster index, serves as the

foundation unit for the subsequent event attribution step.

3.2.3 Event attribution
At this step, the extracted events E and the set of clusters

Cj are taken as input. The output of this process is a data

frame D, where instances are represented along rows and clusters

along columns. Each cell Di,j denotes the number of events

from the extracted set of events belonging to each cluster for a

specific instance:

Di,j =

n
∑

k=0

I(Ei,k ∈ Cj)

Here, k represents the index of the event in the list

of the extracted events of i instance of the dataset, and n

represents the length of the event (i.e., n = len(E)), and
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FIGURE 1

Design of the proposed method: (Phase I) Initial data preprocessing for training and evaluating a deep learning-based time series classifier. (Phase II)

Sub-steps include (a) Extraction of Parameterized Event Primitives (PEPs) from the test set, encompassing events like increasing, decreasing, flat,

local maximum, and local minimum. (b) Clustering of PEPs, (c) Event attribution by counting events belonging to each cluster using the extracted

events and predefined clusters, (d) Concatenating each data frame of PEPs produced during the event attribution step, and (e) Training and testing of

the decision tree using the transformed test set and the model prediction. (Phase III) Evaluation of decision tree rules using objective metrics,

including accuracy, fidelity, complexity, and robustness.

FIGURE 2

Examples of events extracted from a single time series (A) increasing and decreasing events (B) local max and local min events.

I(·) is the indicator function that equals 1 if the condition

inside the parentheses is true and 0 otherwise. Figure 6 depicts

the average number of events in each cluster within the

event E.

3.2.4 Combination
Following the event attribution step, the resultant data frames

corresponding to each parameterized event are combined to

construct the training data set for the decision tree classifier. Upon
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FIGURE 3

Average number of extracted events for each parameterized event primitives on Ford A dataset. The ‘_ch1’ su�x denotes the channel number; in

this context, it signifies a univariate time series due to a single channel.

FIGURE 4

Optimal number of clusters obtained using silhouette method for (A) increasing events, (B) decreasing events, (C) local max events, and (D) local min

events, of FordA data.

FIGURE 5

Clusters produced by KMeans for (A) increasing events, (B) decreasing events, (C) local maxima events, and (D) local minima events, of the FordA

dataset.
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FIGURE 6

Number of events belonging to each parameterized event cluster.

the culmination of this process, a comprehensive training dataset is

acquired and employed to train the decision tree classifier.

3.2.5 Train decision tree classifier
After transforming the test set, the next step is to apply the

decision tree classifier. To do this, we split the transformed data

into training and testing sets, with 70% of the data used for training

and 30% used for testing.

3.3 Phase III: objective evaluation

To objectively and quantitatively assess the interpretability of

our method, we selected five metrics: accuracy, fidelity, robustness,

depth, and number of nodes. To achieve objectivity, we exclude any

human intervention in the evaluation process. Accuracy measures

the fraction of correct predictions made by the model, while fidelity

evaluates the consistency between the model’s decision and the

explanation provided by the decision tree. Depth and number of

nodes measure the complexity of the decision tree. Robustness

measures the XAI method’s resilience to minor input changes that

do not affect the model predictions. Refer to Table 1 for an in-depth

presentation of the objective evaluation metrics.

4 Experimental settings

4.1 Datasets and models

We specifically chose four univariate time series datasets (ECG

200, Gunpoint, FordA, and FordB) from the 2018 UCR archive

to assess the effectiveness of our proposed method. The ECG200

dataset comprises a set of time series. Each series traces the

electrical activity recorded during one heartbeat. The dataset has

two classes: normal heartbeat and myocardial infarction. The

GunPoint time series dataset is a widely used benchmark for

evaluating the performance of time series classification algorithms.

It consists of 200 univariate time series representing hand

movement trajectories of one male and one female actor to classify

handmovement into point gesture and gun gesture. The FordA and

FordB datasets contain time series data of engine noise collected

during standard operating conditions to classify the presence or

absence of symptoms. However, the FordB dataset is gathered

in a noisy environment. Refer to Table 2 for detailed statistics

on the datasets. In terms of class distribution, ECG200 displays

a slight imbalance, with Class 0 comprising 67 instances and

Class 1 comprising 133 instances, resulting in a ratio of ∼2:1. In

contrast, Gunpoint demonstrates a balanced distribution, with both

classes containing 100 instances each. Similarly, FordA and FordB

datasets maintain balanced distributions, with each maintaining

a 1:1 ratio. FordA contains 2,527 instances in Class 0 and 2,394

instances in Class 1, while FordB showcases 2,261 instances in

Class 0 and 2,185 instances in Class 1. Despite ECG200’s slight

imbalance, it does not significantly affect the analysis. To ensure

consistent class distributions across training and test sets, we

employed stratified splitting for all datasets. All datasets underwent

minimal preprocessing, with batch-wise standardization applied

before training using the TSStandardize() function from the tsai

library.

We used two difficult-to-interpret architectures in our

experimental setup: LSTM with a Fully Convolutional Network

(LSTM-FCN) and a standalone Fully Convolutional Neural

Network (FCN). These models were constructed using the

PyTorch-based tsai library (Oguiza, 2023), with the current default
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TABLE 1 Objective evaluation metrics for rule-based explanation.

Metric Definition Formula

Accuracy The proportion of correctly predicted instances (c) out of the total instances (N). A =
c
N

Fidelity Ratio of input instances where the surrogate model agrees (a) with the actual model, divided by the total

number of instances (N)

F =
a
N

Complexity The complexity or simplicity of the generated explanation is measured by the number of nodes and depth C = # Depth, #Nodes

Robustness The persistence of methods (the surrogate model (g(xn)) in our case) to withstand small perturbations (δ) of the

input that does not change the prediction of the model (f (xn)).

R =

∑N
n=1[g(xn)=g(xn+δ)]

N

TABLE 2 Statistics of four datasets used in the experiment.

Name Data size No. classes Length

ECG 200 200 2 96

Gunpoint 200 2 150

Ford A 4,921 2 500

Ford B 4,446 2 500

TABLE 3 Mean test and validation accuracy with standard deviation for

FCN and LSTM-FCN models on four datasets.

Dataset FCN LSTM FCN

Test
Acc

Valid Acc Test
Acc

Valid Acc

ECG200 0.87± 0.05 0.86± 0.07 0.86± 0.05 0.85± 0.05

GunPoint 0.99± 0.03 0.98± 0.07 0.98± 0.06 0.98± 0.07

FordA 0.90± 0.04 0.90± 0.04 0.91± 0.05 0.91± 0.05

FordB 0.88± 0.03 0.89± 0.04 0.86± 0.04 0.86± 0.04

configuration featuring kernel sizes of 7, 5, 3 for the convolutional

layers and corresponding filter sizes of 128, 256, 128 specifically for

the FCN. The FCN architecture comprises three one-dimensional

convolutional layers, each integrated with batch normalization

and ReLU activation, a Global Average Pooling (GAP) layer, and

a softmax layer. The LSTM-FCN architecture combines Long

Short Term Memory (LSTM) and Fully Convolutional Networks

(FCN). The fully convolutional block consists of three stacked

temporal convolutional blocks with filter sizes of 128, 256, and

128, respectively. The time series input is passed into the FCN and

LSTMblock. The output of the global pooling layer integrated at the

end of FCN architecture and the LSTM block is concatenated and

passed onto a softmax classification layer. Twomodels were trained

and tested on the four selected datasets. The smaller datasets,

ECG200 and Gunpoint, were partitioned into 60% for training,

15% for validation, and 25% for testing. The larger datasets,

FordA and FordB, were partitioned into 70% for training, 15%

for validation and 15% for testing. Both models demonstrated

outstanding results. To prevent overfitting, early stopping was used

during training with a patience of 15 and aminimum delta of 0.001.

Furthermore, each model was trained 100 times using the Monte

Carlo cross-validation technique with random training, validation,

and test splits to ensure stable accuracy. The average performance

of the models is presented in Table 3.

4.2 Transforming the test set

After transformation, the test set used for evaluating the deep

learning models, as explained in the Subsection 3.2, is employed

to train and test the decision tree classifier to generate rules as

an explanation. Unlike approaches focusing on local explanations

for individual instances within the test set, our method provides

a holistic understanding of the inference process of the black

box model.

In this study, implemented PEPs include increasing and

decreasing events, yielding three parameters (start time

(start), duration (durationevent), and the average value of

the gradient (avg_gradient). Local max and local min events

are also considered, providing two parameters (time of the

maximum/minimum (timemax/min) and the corresponding

value (valuemax/min).

5 Result and discussion

The objective evaluation results for the proposed XAI method

are presented in Table 4, showcasing the mean and standard

deviation of various objective evaluation metrics. The method was

applied to four different datasets for two different models: Fully

Convolutional Network (FCN) and LSTM FCN, and objectively

evaluated using the metrics depicted in Table 1. Figure 7 illustrates

the graph derived from a decision tree classifier trained on

transformed data, as explained in Section 3C.

For the FCN model, the accuracy values of the decision

tree range from 0.74 to 0.81, reflecting how well the decision

tree approximates the underlying complex model. Fidelity values,

ranging from 0.84 to 0.89, indicate the agreement between the

decision tree and the predictions of the deep learning model. The

number of depth and nodes varies from 3 to 8 and 10 to 42,

respectively, indicating the complexity of the decision tree graph or

rules. The robustness scores range from 0.64 to 0.78, indicating its

stability against insignificant data changes that do not affect model

performance.

On the LSTM-FCN side, the accuracy values range from 0.73

to 0.81. The fidelity values, ranging from 0.84 to 0.89, indicate a

high degree of alignment between the rule-based explanations and

the predictions of the deep learning model. The LSTM-FCNmodel

exhibits a more concise representation with a depth range of 4 to 8

and several nodes ranging from 10 to 41. The robustness scores for

LSTM-FCN range from 0.64 to 0.79, almost similar to that of FCN.
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TABLE 4 Mean and standard deviation of the objective evaluation of the rule-based explanation.

Dataset FCN LSTM FCN

Acc Fidelity #Depth #Node Rob. Acc Fidelity #Depth #Node Rob.

ECG200 0.79±0.10 0.89±0.06 3±2 10±6 0.78± 0.12 0.80±0.12 0.89±0.06 4±2 10±5 0.76±0.14

GunPoint 0.74±0.12 0.88±0.11 4±2 12±5 0.64±0.18 0.73±0.11 0.88±0.07 4±2 12±5 0.64±0.17

FordA 0.78±0.03 0.84±0.04 8±3 42±34 0.76±0.04 0.79±0.04 0.84±0.05 8±4 41±38 0.77±0.05

FordB 0.81±0.04 0.87±0.05 8±4 42±34 0.77±0.06 0.81±0.04 0.86±0.05 7±4 37±33 0.79±0.08

FIGURE 7

Visualization of decision tree graph produced by the proposed method applied to ECG data for the FCN model.

We fine-tuned the decision tree through a post-pruning technique,

specifically using cost complexity pruning.

The list of rules extracted in the following demonstrates

the findings of our experiment in the ECG200 data set. Each

rule highlights the importance of particular time steps and

the corresponding events occurring at those steps, significantly

impacting the model prediction. Notably, the decision tree features

represent clusters of each Parameterized Event Primitives (PEPs),

and the nodes in the graph or rules symbolize the centroids of these

clusters. For instance, let (t, v) represent the centroids obtained

from Cluster 1 of local maxima. After post-processing, these

centroids can be denoted as a Local Maximum event at time t with

a value of v. It’s important to note that for local maxima and local

minima, the centroids consist of the variables time (t) and value

(v). In the case of increasing and decreasing events, the centroids

include time (t), duration (d), and average value (v̄). Additionally,

if domain experts provide definitions for the conditional part of

the rules, we can generate human-readable explanations for better

comprehension.

1. increases from time 70 to 71 with average value 0.79 ≤ 12.5 and

decreases from time 23 to 29 with an average value -0.07 ≤ 3.5

⇒Myocardial Infarction

2. increases from time 70 to 71 with average value 0.93 > 12.5 and

decreases from time 23 to 29 with an average value -0.07 < 3.5

⇒ Normal Heartbeat

3. increases from time 70 to 71 with average value 0.79 > 12.5 ⇒

Normal Heartbeat

The objective evaluation results shed light on the effectiveness

of our novel post-hoc XAI method in explaining the inference

process of deep learning-based time series classification models.

The competitive accuracy results show the reliability of the

decision trees generated to capture the essence of the underlying

deep learning models. Fidelity, which measures how well the

surrogate model predictions match the models’ decisions, showed

strong results for both types of models we tested. However, there is

still a need for additional metrics to ensure the faithfulness of the

generated explanation.

The robustness scores, especially for ECG200, FordA and

FordB on both FCN and LSTM-FCN, indicate the resilience of

the proposed XAI method in producing consistent and reliable

explanations for insignificant changes in the data that do not affect

the model prediction.

The decision tree graphs are relatively simple for smaller

datasets with a low number of nodes and depth. However, for

FordA and FordB, the number of depth and nodes, especially the

standard deviation, is higher. This is primarily attributed to our

automatic selection of the optimal alpha value for post-pruning

the decision tree. Manual selection of the optimal alpha value,

accounting for the number of nodes, depth, and accuracy, could

have created a more interpretable decision tree graph.
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These findings suggest that the proposed method can generate

interpretable explanations using relatively simple decision trees

that are easily understandable to users. The core strength of

our methodology lies in its ability to avoid time series data

segmentation, choosing instead the direct extraction and clustering

of parameterized event primitives to provide rule-based global

explanations. This approach not only simplifies the feature

space but also ensures the faithful representation of temporal

relationships within the time series in the resulting explanation

model. Despite this, it is crucial to recognize a potential limitation

concerning its performance on more complex datasets, especially

those with higher dimensionality, such as multivariate time series.

In such cases, the resulting decision tree graphs might become

more intricate and pose interpretation challenges. However, the

proposed method could be extended to address these challenges by

incorporating more sophisticated clustering or feature extraction

techniques.

6 Conclusion and future work

This paper introduced a novel model-agnostic XAI method for

deep learning-based time series classificationmodels. The proposed

method utilizes a decision tree graph to show the crucial time

steps in the model prediction. The study evaluated the explanation

generated by this approach using various objective metrics such

as accuracy, fidelity, depth, number of nodes and robustness. The

findings of this research provide a strong foundation for developing

more transparent and interpretable XAI methods for state-of-the-

art deep learning models in the future. Our experiments suggest

that the explanation becomes more interpretable with a reduced

depth and number of nodes. Moving forward, we plan to validate

this method on complex and multivariate time series datasets

and conduct a human-centered evaluation of the explanations

generated by this method in comparison to existing XAI methods

for time series.
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