
TYPE Original Research

PUBLISHED 04 September 2024

DOI 10.3389/frai.2024.1387936

OPEN ACCESS

EDITED BY

Chunlei Liu,

Children’s Medical Research Institute, Australia

REVIEWED BY

Yuqi Han,

Beijing Institute of Technology, China

Hu Wang,

University of Adelaide, Australia

Yufeng Wang,

Beihang University, China

*CORRESPONDENCE

Sarada Krithivasan

sarada.krithi@ibm.com

†PRESENT ADDRESS

Sarada Krithivasan,

IBM Research, Yorktown Heights, NY,

United States

RECEIVED 18 February 2024

ACCEPTED 15 May 2024

PUBLISHED 04 September 2024

CITATION

Krithivasan S, Sen S, Venkataramani S and

Raghunathan A (2024) MixTrain: accelerating

DNN training via input mixing.

Front. Artif. Intell. 7:1387936.

doi: 10.3389/frai.2024.1387936

COPYRIGHT

© 2024 Krithivasan, Sen, Venkataramani and

Raghunathan. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

MixTrain: accelerating DNN
training via input mixing

Sarada Krithivasan1*†, Sanchari Sen2, Swagath Venkataramani2

and Anand Raghunathan1

1Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN,

United States, 2IBM Research, Yorktown Heights, NY, United States

Training Deep Neural Networks (DNNs) places immense compute requirements

on the underlying hardware platforms, expending large amounts of time and

energy. An important factor contributing to the long training times is the

increasing dataset complexity required to reach state-of-the-art performance

in real-world applications. To address this challenge, we explore the use of input

mixing, where multiple inputs are combined into a single composite input with

an associated composite label for training. The goal is for training on the mixed

input to achieve a similar e�ect as training separately on each the constituent

inputs that it represents. This results in a lower number of inputs (ormini-batches)

to be processed in each epoch, proportionally reducing training time. We find

that naive input mixing leads to a considerable drop in learning performance and

model accuracy due to interference between the forward/backward propagation

of the mixed inputs. We propose two strategies to address this challenge

and realize training speedups from input mixing with minimal impact on

accuracy. First, we reduce the impact of inter-input interference by exploiting

the spatial separation between the features of the constituent inputs in the

network’s intermediate representations. We also adaptively vary the mixing ratio

of constituent inputs based on their loss in previous epochs. Second, we propose

heuristics to automatically identify the subset of the training dataset that is

subject to mixing in each epoch. Across ResNets of varying depth, MobileNetV2

and two Vision Transformer networks, we obtain upto 1.6× and 1.8× speedups

in training for the ImageNet and Cifar10 datasets, respectively, on an Nvidia RTX

2080Ti GPU, with negligible loss in classification accuracy.

KEYWORDS

deep learning, training, input mixing, runtime e�ciency, GPUs (graphics processing

units)

1 Introduction

The success of deep neural networks has come at a cost of rapidly rising computational

requirements for training. This increase is due to a combination of rising dataset

and model complexities. For example, in the context of image classification, training

dataset complexity increased significantly from MNIST and CIFAR-10/100 (50,000–

60,000 images) to ImageNet-1K (1.2 million) and ImageNet-21K (14.2 million). This

is supplemented by a growth in model complexity required to achieve state-of-the-art

performance (Stojnic et al., 2023). The impact of increased training computation is both

monetary (cost to train) and environmental (CO2 emissions) (Strubell et al., 2019). A study

fromOpenAI (Amodei et al., 2018) reports that training costs of deep neural networks have

been doubling every 3.5 months, greatly outpacing improvements in hardware capabilities.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1387936
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1387936&domain=pdf&date_stamp=2024-09-04
mailto:sarada.krithi@ibm.com
https://doi.org/10.3389/frai.2024.1387936
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1387936/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

1.1 Prior e�orts on accelerating DNN
training

Several methods have been proposed to accelerate DNN

training. We divide them into a few broad categories, such as

enabling the use of large-scale parallelism (e.g., hundreds or

thousands of servers) in DNN training (Goyal et al., 2017; You et al.,

2017), training on reduced-resolution inputs (Touvron et al., 2019;

Tan and Le, 2021), training at reduced precision (Sun et al., 2019),

pruning to reduce the model size during training (Lym et al., 2019),

input instance skipping (Jiang et al., 2019; Zhang et al., 2019) and

dataset condensation (Mirzasoleiman et al., 2020; Killamsetty et al.,

2021).

1.2 Accelerating DNN training by mixing
inputs

Complementary to the aforementioned efforts, we propose the

use of input mixing, a technique that has traditionally been used

for data augmentation (Zhang et al., 2017; Yun et al., 2019), to

accelerate DNN training. Consider two training inputs x1 and

x2. A mixing function F is applied to x1 and x2 to produce

a mixed input X. The mixed input can be thought of as a

point in the input space that combines information from both

the constituent inputs that it represents. From the functional

perspective, training on a mixed input must produce a similar

effect on the model as training on the individual constituent

inputs. On the other hand, from a computational viewpoint,

mixing inputs reduces the number of input samples that need

to be processed during training. This reduction in the effective

size of the training dataset leads to fewer mini-batches in each

epoch, and thereby lower training time. Due to the nature of

input mixing, it is complementary to, and can be combined with,

the other approaches to accelerate training described above. In

mixTrain, we adopt computationally lightweight mixing operators

CutMix and MixUp that have been proposed for a different

purpose, viz. data augmentation (Zhang et al., 2017; Yun et al.,

2019). As illustrated in Figure 1, MixUp performs a simple

weighted linear averaging of the pixels of two inputs, while

CutMix randomly selects a patch of one input and pastes it onto

the other.

Realizing training speedups through input mixing raises

interesting questions, such as how to train networks on mixed

samples, which samples to mix, etc. We observe that indiscriminate

application of mixing leads to a considerable drop in learning

performance and model accuracy. On further investigation, we

find that this can be attributed to the interference between the

processing of the constituent inputs within each mixed input. To

preserve accuracy, we therefore propose techniques to mitigate

this interference. We find that for the CutMix operator, the

network’s internal features largely maintain spatial separation

between the constituent inputs in convolutional layers, but this

separation is lost in the fully connected layers. We thus propose

split propagation, wherein the features corresponding to each

constituent input are processed separately by the fully connected

layers. In contrast, with the MixUp operator, spatial separation

between the constituent inputs is not maintained. Here, wemitigate

the impact of interference through adaptive mixing, where the

weights of the constituent inputs are varied based on their losses

in previous epochs.

Additionally, we explore applying mixing selectively, i.e., only

to a subset of training inputs in each epoch. We design a loss-

driven metric to identify the training samples that are amenable

to mixing in each epoch. We find that inputs at the two ends

of the loss distribution, i.e., with very low and very high loss

magnitudes, are amenable to mixing. Low-loss inputs are mixed

because their functional performance remains largely unaffected

by mixing. In contrast, we mix samples with high loss because a

considerable percentage of such samples are unlikely to be learned

even when no mixing is applied. We show that mixTrain achieves

superior accuracy vs. efficiency tradeoffs compared to alternative

approaches such as input skipping and early termination. Finally,

we note thatmixTrain is designed in a completely hyper-parameter

free manner. This reduces the additional effort spent on hyper-

parameter tuning for different models.

The key contributions of this work can be summarized as

follows.

• To the best of our knowledge, mixTrain is the first effort to

accelerate DNN training by mixing inputs

• We propose two strategies to improve the learning

performance of mixTrain. First, we propose split propagation

and adaptive mixing to reduce the impact of interference

between the constituent inputs in a composite sample.

Second, we apply mixing selectively, i.e., only on a subset of

the training dataset in every epoch.

• Across our benchmarks consisting of both image recognition

CNNs (including ResNet18/34/50 and MobileNet) and

vision transformers, we demonstrate up to 1.6× and 1.8×

improvement in training time on the ImageNet and Cifar10

datasets respectively for ∼0.2% Top-1 accuracy loss on a

Nvidia RTX 2080Ti GPU, without the use of additional hyper-

parameters.

2 Related work

We now discuss related research efforts to accelerate DNN

training.

2.1 Hyper-parameter tuning

Many notable efforts are directed toward achieving training

efficiency by controlling the hyper-parameters involved in

gradient-descent, notably the learning rate and momentum. Akiba

et al. (2017), Goyal et al. (2017), and You et al. (2017) propose

learning rate tuning algorithms that significantly accelerate training

with no loss in accuracy, when distributed to over hundreds of

CPU/GPU cores.

2.2 Optimizers with fast convergence

This class of efforts includes optimizers that achieve improved

generalization performance within a certain training budget. These

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

techniques target the evaluation of the weight gradient every

iteration- for example, optimizers such as AvaGrad (Savarese et al.,

2019) and Adam (Kingma and Ba, 2015) adaptively compute the

learning rate across training epochs, resulting in faster convergence

than SGD in a similar number of epochs for certain tasks. Similarly,

techniques such as (Sutskever et al., 2013) utilize a momentum

parameter during training to achieve faster convergence.

2.3 Model size reduction during training

Model size reduction involves dynamically pruning (Yuan et al.,

2020; Hoefler et al., 2021) or quantizing (Sun et al., 2019; Fu et al.,

2020, 2021; Wolfe and Kyrillidis, 2024) a model during training

itself. Training a reduced-capacity model, or with lower-precision

results in training speed-ups. In contrast to these techniques which

compress the DNNmodel, MixTrain achieves training speed-up by

dynamically reducing the size of the dataset during training.

2.4 Coreset selection strategies

Such techniques select a subset of the training samples that

are most informative, i.e., critical to accuracy. These techniques

differ in the identification of such critical training samples.

Commonly used methods to determine a sample’s importance

include analyzing sample loss (Jiang et al., 2019; Zhang et al., 2019),

gradient-matching techniques (Killamsetty et al., 2021), bi-level

optimization methods (Killamsetty et al., 2020), sub-modularity

based approaches (Iyer et al., 2020), and decision boundary based

methods (Margatina et al., 2021).

3 Input mixing: preliminaries

Input mixing takes multiple inputs and combines them into a

composite input, taking in information from each of the constituent

inputs. mixTrain uses two operators—MixUp (Zhang et al., 2017)

and CutMix (Yun et al., 2019), which are illustrated in Figure 1.

Consider two inputs, x1 and x2. For MixUp, as seen in

Equation 1, each pixel j of the composite input X is obtained

by linearly averaging the corresponding pixels of x1 and x2. The

mixing ratio r is in the range [0, 1]. The CutMix operator selects a

random patch of x1, and pastes it onto x2. The weightage r of each

input xi is decided by its area in the composite sample.

Xj = r · x1,j + (1− r) · x2,j (1)

Further, let us assume the target labels of the constituent inputs

are y1 and y2. In Zhang et al. (2017) and Yun et al. (2019), the

loss of the composite input X is defined as the weighted sum of the

loss of X with respect to y1 and y2, as shown in Equation 2 for the

cross-entropy loss. Here, f is the DNNmodel, and K the number of

classes.

Input mixing has previously been applied for data

augmentation, wherein randomly selected training input samples

are combined through operators such as (Zhang et al., 2017;

Yun et al., 2019) and added to the training set. Training on the

FIGURE 1

Mixing operators (A) MixUp (B) CutMix. Source: ImageNet.

randomly combined input samples has the effect of virtually

augmenting the dataset, as the model is exposed to new training

samples in each epoch. These efforts are focused on improving

generalization, often achieved at the cost of increased training

time. Specifically, the total number of input samples in each epoch

of training after mixing remains the same. Further, in order to

realize improvements in accuracy, these techniques often require

2–3× more training epochs than baseline SGD (Zhang et al., 2017;

Yun et al., 2019).

Loss(X) = −(α · log(
ef (X)y1

∑K
l=1 e

f (X)l
)+ (1−α) · log(

ef (X)y2
∑K

l=1 e
f (X)l

)) (2)

4 mixTrain: accelerating DNN training
via input mixing

The key idea in mixTrain is to improve the overall training

time by dynamically applying the mixing operators, MixUp and

CutMix, on the training dataset D to reduce the number of

samples in each epoch. However, naive mixing, e.g., where random

pairs of input samples are mixed in each training epoch to

reduce the number of training samples by half, negatively impacts

classification accuracy. As observed in Figure 2A, on the ImageNet-

ResNet50 benchmark, the drop in accuracy incurred after training

on the reduced (i.e., halved) dataset obtained after applying either

operator is nearly 4–6%.

The following subsections discuss the two key strategies that

are critical to the overall success of mixTrain, namely, reducing

the impact of interference between constituent inputs and selective

mixing.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 2

Classification performance with mixed inputs. (A) Validation accuracy during training. (B) Accuracy on constituent inputs for di�erent training

methods.

4.1 Reducing impact of interference

In this subsection, we discuss the primary cause affecting the

accuracy of training with naive mixing, i.e., interference between

constituent inputs, and propose techniques to address the same.

We begin by analyzing the ability of a network trained with

mixed inputs to correctly classify the constituent inputs of a

composite sample. At different stages of training (different training

epochs), we identify the set of training samples that the network

classifies correctly without mixing, say set S. Our goal is to

understand how the network fares in classifying the samples in set

S after they have been mixed. Specifically, we study the network’s

performance in detecting the presence of both constituent inputs

in the mixed sample. Consider inputs x1 and x2 in S mixed

with ratio α = 0.5 to form X, which is passed through the

network. The network detects constituent inputs x1 and x2 in

X, when the softmax scores of their corresponding class labels

occupy the highest and second highest positions (order can be

inter-changeable between x1 and x2). Only a single input is detected

when the class label of one of the constituent inputs has the highest

softmax score (say x1), while the second-highest score is achieved

by a class not corresponding to the second constituent input (i.e.,

other than x2).

Samples in set S are thus mixed in pairs (r = 0.5), and the

accuracy on the mixed inputs is recorded. Five such runs are

conducted to allow for different random input combinations and

the results are averaged and presented in Figure 2. Surprisingly,

after mixing is applied, the network is able to classify only less than

half of the inputs in S (green and blue dotted curves in Figure 2B)

even in the final epochs of training- note that these were inputs that

were classified correctly without mixing (black line). On further

investigation, it is found that for many mixed inputs, the network

is able to correctly classify only one of the constituent inputs. The

class label of the other constituent input often does not appear even

amongst the Top-5 predictions made by the network. This leads

to increased loss for one of the constituent samples, consequently

impacting training performance and the final validation accuracy.

It is thus critical to develop techniques that effectively learn on all

constituent samples of a composite input. We next describe our

approach to addressing this challenge.

4.1.1 Split propagation
We identify two factors that contribute to the poor classification

accuracy of a mixed input’s constituent inputs in the case of the

CutMix operator. Due to the random nature of the patch selected

from a constituent input, it is possible to miss the corresponding

constituent inputs’ class object. Second, there may be interference

between the features of the constituent inputs when the network

processes the mixed sample. To design effective strategies that

improve overall classification performance, it is important to

understand the individual effect of each factor.We study the impact

of the first factor by passing random patches from the inputs

through the network; however, instead of mixing, random patches

amounting to half the input area are zeroed-out. As shown using the

solid orange curve (ZeroPatch) in Figure 2B, the drop in accuracy

is ∼16%, and is significantly lower compared to mixing. This

indicates that it is the interference between the constituent inputs

that is the primary factor causing degradation in classification

performance.

Examining the intermediate representations of the network

while processing mixed inputs sheds some light on this

interference. By virtue of the nature of convolutions, the

spatial separation between constituent inputs in the composite

input is maintained through many layers of the network, with

only mild interference occurring at the boundaries of the inputs.

For example, in Figure 3, the right half of the features in the final

convolution layer’s output pertain to the right half of the mixed

input. The spatial distinction between the features is maintained

until the last convolutional layer, but is lost after the averaging

action of the final pooling layer. As a result, the fully connected

layer correctly classifies only one of the constituent inputs1.

To aid the network in classifying both constituent inputs

correctly, we propose split propagation of constituent features after

the final convolution layer. As shown in Figure 3, we identify the

region in the final convolutional layer’s output maps pertaining to

1 Zhang et al. (2017) and Yun et al. (2019) resolve this issue by exposing the

constituent inputs twice in each epoch through two di�erent mixed inputs.

While this improves accuracy, it defeats our objective of improving training

runtime.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 3

Training mixed inputs. Source: ImageNet.

each constituent input, and pass the features separately through

the remaining layers of the network. Both constituent inputs of

mixed samples are now classified correctly, leading to a significant

improvement in classification performance (solid blue curve in

Figure 2B). During back-propagation, the output errors of each

constituent input are propagated separately until the average

pooling layer. The error tensors obtained at the input of the average

pooling layer are then concatenated and propagated backwards

across the rest of the network. The classification loss for the

constituent inputs improves, thereby improving overall validation

accuracy (Figure 2A). We note that the split propagation of the

constituent inputs can be performed in parallel. Thus, the runtime

overheads of this scheme are negligible, accounting for < 3% of

overall training time.

4.1.2 Adaptive mixing
Unlike CutMix, the MixUp operator averages each element

of the constituent inputs prior to feeding them to the network.

Therefore, the network’s internal representations do not exhibit

any spatial separation between the constituent inputs. We thus

devise alternative strategies to mitigate the impact of inter-input

interference.

It appears from Figure 2A that the validation accuracy with

MixUp is even lower compared to CutMix , due to a slower rate

at which training loss improves for the mixed inputs. Naturally, a

simple boost in performance can be achieved by at least improving

the loss for one of the constituent inputs of the mixed input. We

thus adapt the weight (r) of constituent inputs so as to favor the

more difficult input, as identified by the loss in the previous epoch.

However, if the constituent samples were mixed in the previous

epoch, it is not trivial to obtain their individual losses prior to

mixing. To that end, we utilize an approximation to evaluate the

losses of the constituent inputs in the previous epoch, described

as follows. Consider two constituent inputs x1 and x2 with target

labels y1 and y2 respectively, that have been mixed with ratio rE in

epoch E (Equation 3), to form the composite sample X. As seen in

Equation 4, we use the loss of the network on the mixed input X to

estimate its loss on the individual constituent inputs. Here,K stands

for the number of classes in the task. While estimating the loss of

x1 and x2 in such a manner is indeed an approximation, this allows

us to avoid an additional forward propagation step to estimate the

true loss of x1 and x2, thereby alleviating any runtime overhead.

X = rE ∗ x1 + (1− rE) ∗ x2 (3)

Loss(x1,E) = −log(
ef (X)y1

∑K
l=1 e

f (X)l
) Loss(x2,E) = −log(

ef (X)y2
∑K

l=1 e
f (X)l

)

(4)

Once the losses of the constituent inputs have been obtained,

we mix them in the next epoch E + 1 with the ratio rE+1 as shown

below in Equation 5. As seen in Figure 2A, this provides a boost in

classification accuracy.

rE+1 =
Loss(x1,E)

Loss(x2,E)
(5)

Note that there is still some gap between the accuracy with and

without mixing even after the use of split propagation and adaptive

mixing, which we address next.

4.2 Selective mixing

We explore a second strategy, selective mixing, to further

improve accuracy when training with mixed inputs. Here, the

general principle is to dynamically identify a subset of the training

dataset in each epoch for which mixing does not have a negative

impact on overall classification performance. We achieve this

through the design of a loss-based metric that determines, for each

epoch, the subset of samples Smix that can be mixed in subsequent

epochs. Samples that are not amenable to mixing are added to

set SnoMix. The training dataset is thus formed using samples in

SnoMixas is, and mixing pairs of samples in Smix.

4.2.1 Overview
The proposed selective mixing strategy consists of three steps

as shown in Figure 4. At every epoch, the reduced dataset is divided

into mini-batches and fed to the network. The network performs

the forward and backward passes on each mini-batch. Once the

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 4

Overview of selective mixing.

FIGURE 5

Analyzing amenability to mixing. (A) Magnitude of di�erence in loss of a sample before and after mixing. (B) Classification performance on mixed

samples across epochs. (C) Loss distribution of samples in epoch 30.

forward pass for a particular mini-batch is complete, the loss of

each constituent input is computed. This is used to determine the

amenability of each constituent input to mixing in the next epoch

E+1, based on which it is added to Smix or SnoMix. Finally, the

batch-sampler forms mini-batches for the epoch E+1 by randomly

drawing samples from either Smix or SnoMix.

The first and the third steps are straight-forward. In the

following sub-section, we elaborate on the second step, i.e.,

determining the amenability of a sample tomixing, in greater detail.

4.2.2 Evaluating amenability to mixing
A suitable loss-based metric must estimate the subsets Smix and

SnoMix every epoch, such that no negative impact on accuracy is

suffered. We design such a metric by studying trends in the loss of a

sample prior to and after mixing, at different stages of the training

process.

Consider models trained with MixUp and CutMix at three

different training epochs as shown. At each selected epoch, we

compute the L1 difference of the loss of every sample x with and

without mixing, i.e., lossmix(x) and loss(x) respectively. We define

lossmix(x) as the loss of the mixed sample x
′

with respect to the

golden label of x, as shown in Equation 6. Here, K is the number

of classes, and y is the golden label of x. We average lossmix(x) after

5 different random pairings to create x
′

.

Lossmix(x) = −log(
ef (x

′
)y

∑K
l=1 e

f (x
′
)l
) (6)

We observe that lossmix(x) deviates and increases further away

as loss(x) increases, consistently across the benchmarks analyzed for

both operators (Figure 5A depicts the same for CutMix). In other

words, the graph indicates that as loss(x) increases, its amenability

to mixing decreases. Furthermore, we find that prior to mixing,

a majority of the correctly classified samples occupy the low loss

regime as shown in Figure 5A. After applying mixing to these

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 6

E�cacy of threshold Lmid.

samples, we find that their classification accuracy is largely retained,

especially as epochs progress, as depicted in Figure 5B for the

CutMix operator.

Hence, for samples that are not mixed in epoch E, we determine

their amenability to mixing in the next epoch based on the

particular region of the loss distribution it belongs to. As illustrated

in Figure 5C, the loss distribution is divided into three regions that

utilize different criteria for gauging amenability. We now discuss

the criteria for each region, and the conditions for continuing

mixing in subsequent epochs.

Region 1 corresponds to the area in the loss distribution where

a majority of the correctly classified samples are located. From

Figure 5B we know that the loss, and to a certain extent the

classification accuracy of such samples remains largely unaffected

by mixing and such samples are hence mixed aggressively. Next,

we consider the portion of the loss distribution occupied by the

incorrect samples and divide this space into two regions. Region

2 comprises of incorrect samples with moderate loss. To avoid

any negative impact on accuracy, we avoid mixing these samples.

Moving on to Region 3, these are samples the network finds very

difficult to classify as characterized by their high loss magnitudes.

We find that the training effort can be reduced on samples that

consistently occur in Region 3 by mixing them, as they are unlikely

to contribute to final classification accuracy.

The separations in the loss distribution are realized using

simple linear clustering techniques that correlate the loss of a

training sample in some epoch E to classification accuracy, based

on trends in previous epochs. Let Lcorr and Lincorr represent

the running average of the correct and incorrect samples in

SnoMix respectively (calculated from epoch 0 to E-1), and let Lmid

denote the average of the two quantities as shown in Equation 7,

i.e.,

Lmid = 0.5 ∗ (Lcorr + Lincorr) (7)

Lmid acts as a boundary between the correct and incorrect

samples, effectively creating two clusters whose centroids are given

by Lcorr and Lincorr . Thus, samples with loss less than Lmid in epoch

E can be identified as Region 1 samples, as they are likely to be

correct. Figure 6 plots the efficacy of Lmid across different epochs

(fraction of correct inputs under Lmid). As desired, a majority of

the correct samples (> 95%) fall in Region 1, while only including

FIGURE 7

Amenability of Region 1.

a negligible fraction of incorrect samples (< 10%). Furthermore,

samples with loss greater than Lincorr in a particular epoch are in the

upper percentile of the loss distribution of the incorrect samples.

Lincorr can hence used to create Region 2 and Region 3 as shown.

We note that loss thresholds of better quality can potentially be

identified by introducing hyper-parameters. However, tuning these

hyper-parameters for each network separately is a costly process,

diminishing the runtime benefits achieved by reducing training

complexity.

We will now discuss the amenability criteria designed for

samples belonging to Regions 1 and 3.

4.2.3 Amenability criteria for Region 1
Consider a sample A belonging to Region 1 in epoch E, i.e.,

LossA < Lmid. From Figure 5B it is known that samples in Region

1 are likely to be correctly classified prior to mixing. We mix

such samples as long as their loss does not exceed Lmid at some

later epoch E
′

, i.e., likely to be classified incorrectly. After epoch

E
′

, they are shifted to SnoMix. Figure 7 illustrates the temporal

variation in the number of samples that are in Smix, and from

Region 1 of the loss distribution. As can be seen, the number of such

samples increases across epochs. This is because as epochs progress

classification accuracy improves, thereby resulting in more samples

having loss below Lmid, i.e., belonging to Region 1. We note that

using a loss-based threshold to determine amenability to mixing

is more robust instead of directly using classification performance

[Section 1 (Appendix)], as we find that mixing outlier samples,

i.e., samples with high loss yet correct classification affects overall

accuracy.

The graph also depicts the fraction of samples that move to

SnoMix every epoch, which is a very small fraction of the samples

that are mixed. This justifies the design of the amenability rule for

Region 1.

4.2.4 Amenability criteria for Region 3
Samples in Region 3 have high loss (loss > Lincorr), and

are generally very difficult to classify by the network even if

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 8

Analyzing (A) loss distribution of samples in set I (B) loss distribution of samples in set C.

they are trained without mixing. In fact, we observe that a

considerable fraction of samples that consistently occur in Region

3 across epochs remain incorrect at the end of the training

process. Let I denote the set of such samples that are incorrect

when training concludes. We plot a histogram of the number

of epochs samples in I occupy Region 3 across training in

Figure 8A. Clearly, it is observed that over half the samples in

I consistently occur in Region 3 for over 70% of the training

process. It can thus be argued from a practical runtime efficiency

perspective that training effort on such samples can be reduced

using mixing. Some challenges however persist. As classification

statistics evolve during training, it is difficult to determine which

samples to mix at earlier epochs, without negatively affecting final

classification accuracy. Consider set C, which comprises of samples

that are correctly classified at the end of training. In Figure 8B,

it is seen that around 4% of the samples in C occur in Region

3 for over 60% of the training process, with their classification

accuracy improving only in the later stages of training. We must

thus stipulate criteria to identify the desired subset of Region 3

samples that can be mixed.

To that end, we target samples that the network finds difficult

to classify in the current epoch. In addition to belonging to Region

3, if a sample’s loss increases over consecutive epochs (i.e., become

increasingly difficult) it is mixed for the next epoch, following

which it is brought back to SnoMix. In Figure 9B, we find that

increasing the period of time k for which the difficult samples must

exhibit increasing loss and subsequently be mixed, only marginally

improves the accuracy and runtime benefits. We hence use k = 1

for all our experiments thereby eliminating our dependence on any

hyper-parameters. The temporal variation in the fraction of Region

3 samples mixed every epoch is depicted in Figure 9A. This fraction

decreases across epochs, since several samples in Region 3 shift

to Region 1 as accuracy improves. Interestingly, mixing difficult

samples provides ∼ 0.2% boost in classification performance over

the overall validation set across all our benchmarks, as opposed

to training them without mixing. We believe this has the effect of

allowing the network to focus on samples with moderate loss, that

are more likely to contribute to final accuracy. Finally, we highlight

the advantage of mixing such difficult samples instead of skipping

them in Section 5.

Determining sample amenability in each epoch adds not more

than 2% overhead in runtime on average, and 4% additional

storage costs. The proposed amenability criteria thus help us

successfully realize selective mixing, i.e., achieve a competitive

runtime efficiency vs. accuracy trade-off.

5 Experimental results

We showcase the runtime benefits achieved bymixTrain across

different classes of image recognition DNNs, namely convolutional

neural networks (i.e., CNNs) and vision transformers (Dosovitskiy

et al., 2020). We consider two datasets, namely ImageNet (Deng

et al., 2009) and Cifar10 (Krizhevsky et al., 2010). The benchmarks

for the ImageNet dataset consist of four image-recognition

CNNs, viz. ResNet18, ResNet34, ResNet50 (He et al., 2015) and

MobileNetV2 (Sandler et al., 2018), trained using the same training

hyper-parameters such as learning rate, epochs etc., as in He et al.

(2015) and Sandler et al. (2018). With regards to the Cifar10

dataset, we consider the ResNet18 and Resnet34 image-recognition

CNNs (He et al., 2015) (see Appendix for results). We also consider

three vision transformer architectures, ViT-small, ViT-SWIN and

ViT-pretrained. Details on the vision transformer architectures,

and training hyper-parameters for all benchmarks can be found in

Section 1.1 (Appendix).

Across all benchmarks, we report the speed-up achieved by

mixTrain over the same number of epochs as the baseline, by

comparing wall-clock times.

5.1 Execution time benefits

5.1.1 ImageNet
Table 1 presents the training performance of baseline SGD

and mixTrain on different ImageNet benchmarks in terms of

the Top-1 classification error and speed-up. On average, across

all benchmarks, mixTrain mixes nearly 48% and 68% of the

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 9

Analyzing (A) distribution of mixed samples from R3 across epochs (B) validation accuracy and runtime savings as hyper-parameter k is varied.

TABLE 1 Training CNNs on ImageNet.

Network Training strategy Top-1
error

Speed-up

Baseline SGD 30.2% 1×

ResNet18 mixTrain-CutMix 30.44% 1.51×

mixTrain-MixUp 30.6% 1.32×

Baseline SGD 26% 1×

ResNet34 mixTrain-CutMix 26.25% 1.54×

mixTrain-MixUp 26.4% 1.37×

Baseline SGD 24.3% 1×

ResNet50 mixTrain-CutMix 24.45% 1.56×

mixTrain-MixUp 24.6% 1.41×

Baseline SGD 28.5% 1×

MobileNetV2 mixTrain-CutMix 28.76% 1.52×

mixTrain-MixUp 29% 1.3×

Bold values represent results using proposed approach.

training dataset per epoch with MixUp and CutMix respectively.

As can be seen, CutMix achieves a slightly superior trade-off

than MixUp across all benchmarks, achieving upto around 1.6×

reduction in runtime compared to to the baseline, while sacrificing

only ∼0.2% loss in Top-1 accuracy. This is primarily because

interference between constituent samples is better mitigated

through split propagation, thereby resulting in more inputs being

mixed.

5.1.2 Cifar10
We present our runtime and accuracy trade-off achieved on

the Cifar10 vision transformer benchmarks in Table 2. As can be

seen, mixTrain achieves 1.3×-1.6× training speed-up for nearly

no loss in accuracy. This clearly underscores that mixTrain is

directly applicable to any image classification DNN, regardless

of the architecture or backbone deployed. Further, our results

in Table 2 also indicate that mixTrain is not only applicable to

TABLE 2 Training vision transformers on Cifar10.

Network Training
strategy

Top-1
error

Speed-up

Baseline SGD 19% 1×

ViT-small mixTrain-MixUp 19.11% 1.37×

(Training from

scratch)

mixTrain-

CutMix
19.35% 1.32×

Baseline SGD 9% 1×

ViT-SWIN mixTrain-MixUp 8.9% 1.44×

(Training from

scratch)

mixTrain-

CutMix
9.2% 1.4×

Baseline SGD 2.5% 1×

ViT-pretrained mixTrain-MixUp 2.46% 1.6×

(Fine-tuning) mixTrain-

CutMix
2.55% 1.58×

Bold values represent results using proposed approach.

training vision transformers from scratch, but to the fine-tuning

stage as well. In Section 1.2 (Appendix) we discuss the speed-ups

achieved bymixTrain on the CNN benchmarks trained on Cifar10.

5.1.3 Runtime overhead analysis
Across all our benchmarks, we observe that mixTrain adds

no more than 2% overhead in runtime. These marginal overheads

arise due to (i) calculating amenability of inputs to mixing and (ii)

split propagation (for Cut-Mix). In (i) we compare the sample’s

loss against some thresholds, and update thresholds every epoch.

However, these simple scalar operations have negligible runtime

(<1.5% overhead) compared to the multiple GEMM operations

performed during training. For (ii), during split propagation, the

FC layers process the constituent inputs separately. However, the

FC layers now operate on inputs of smaller size (i.e., corresponding

to the size occupied by the features of the constituent input,

which is nearly half the size of the original input). Thus, split

propagation also adds less than <1% runtime overhead compared

to the baseline.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 10

Ablation analysis. (A) Training speed-up vs. validation accuracy. (B) Variation in runtime savings across training epochs.

5.2 Ablation

In this subsection we conduct an ablation analysis ofmixTrain.

5.2.1 Contribution of interference reduction and
selective mixing

mixTrain uses two strategies to achieve an optimal accuracy vs.

runtime trade-off, i.e., reducing impact of interference and selective

mixing. Figure 10A depicts the contribution of each strategy toward

runtime savings, for the CutMix operator.

The light blue markings indicate naive mixing. Selective mixing

automatically identifies a subset of training samples that can be

mixed every epoch such that classification accuracy is not impacted.

However, if interference between the constituent inputs is not

mitigated, training performance on mixed samples is poor (green

markings). Consequently, the selective mixing strategy is forced

to become conservative, identifying fewer samples that can be

mixed every epoch without affecting accuracy severely. Reducing

interference between the constituent inputs improves accuracy by

more than 1%, and speed-up by 10% (red markings).

5.2.2 Breakdown of selective mixing
We breakdown selective mixing by examining the region

of the loss distribution that provides the most benefits. From

Figure 10B (generated using CutMix) it is evident that Region 1

samples provide the bulk of our benefits on the ResNet18-ImageNet

benchmark, accounting for nearly 25% of the savings. This is

because as training progresses, a majority of training samples fall

in Region 1 (i.e., become easier to classify). Interpolating Region 3

samples, accounts for additional 8% runtime savings.

5.3 Quantitative comparison study

We compare the performance of mixTrain against competing

methods that accelerate DNN training.

5.3.1 Sample skipping
As a representative of sample skipping, we specifically consider

the performance of Zhang et al. (2019) (Figure 11A) and Jiang

et al. (2019) (Figure 11B) on the ResNet50 benchmark. In these

techniques, samples that the network finds easy to classify, as

identified by low classification loss, are skipped thereby resulting

in fewer mini-batches as training proceeds. Two issues are typically

encountered by such techniques. First, as no training is conducted

on the samples that are skipped, this subset is often a small,

conservative fraction of the training dataset. Second, additional

overhead is incurred in each epoch to determine this subset, as it is

non-trivial to estimate themost recent loss of samples that had been

discarded in previous epochs. In Figure 11B, we implement (Jiang

et al., 2019) and overlook the overheads associated in determining

the subset of samples that must be skipped, and report the resulting

runtime across epochs.

Clearly, mixTrain achieves better model accuracy and runtime

benefits against both efforts, even when overheads are overlooked.

As the network is ultimately trained on every input in each

epoch, we reduce the number of minibatches more aggressively,

while incurring negligible overheads incurred to form Smix and

SnoMix. Finally, we analyze (Figure 11C) the accuracy if Region3

samples were to be skipped instead of mixed, using the same

policy discussed in Section 4.2 for different values of k. Clearly,

mixTrain achieves better convergence, allowing it to leverage

runtime benefits from this region.

5.3.2 Coreset selection techniques
In the table below, we compare the performance of MixTrain-

CutMix against three popular coreset selection techniques:

Glister (Killamsetty et al., 2020), Grand (Paul et al., 2021) and

Facility-location based methods (Iyer et al., 2020). Similar to

mixTrain, coreset selection techniques aim to reduce training

runtime by reducing the number of mini-batches to train every

epoch, by identifying a subset of training data-points that are

critical to accuracy. Such techniques perform better than random

sampling (i.e., better accuracy), when the fraction of the training

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

FIGURE 11

Results on (A) quantitative comparison of mixTrain against existing training acceleration techniques. (B) Comparison against instance skipping. (C)

Ablation analysis for studying impact of hyper-parameter k on accuracy.

TABLE 3 Comparison against coreset selection techniques.

Training
method

Average fraction
of the dataset

used for training
across epochs

Top-1
error

Speed-up

Baseline 1 4.4% 1×

mixTrain-

MixUp
0.69 4.33% 1.4×

mixTrain-

CutMix
0.66 4.2% 1.45×

Glister 0.8 4.65 1.18×

0.7 4.76% 1.32×

Grand 0.8 4.6% 1.15×

0.7 4.7% 1.2×

Facility

location

0.8 4.55% 1.19×

0.7 4.79% 1.25×

Bold values represent results using proposed approach.

dataset retained is low (Guo et al., 2022). However, as can be

seen in Table 3, these techniques require a large fraction of the

training dataset in order to remain iso-accurate with the baseline.

mixTrain clearly achieves a better accuracy vs. speed-up trade-off.

5.3.3 Other approximations
We consider three approximation strategies, i.e., early

termination, mini-batch skipping and input size scaling

(Figure 11A). For early-termination, we stop baseline SGD

training at an earlier epoch when it achieves the same accuracy

as mixTrain, and report the resulting runtime benefits. Next, for

mini-batch skipping we stochastically skip s% of the mini-batches

every epoch, and for input size scaling, we train on inputs scaled

down by some factor s. For the Imagenet benchmark highlighted

in Figure 11A, 30% of the mini-batches were skipped randomly

every epoch. Likewise, a scaling factor of s = 1.4× was used for

input size scaling. In both cases, the parameter s is selected such

that it is iso-runtime with mixTrain. Clearly, in all three cases,

mixTrain achieves a superior accuracy vs. runtime trade-off as

seen for the ResNet50 benchmark.

6 Conclusion

We introduce a new approach to improve the training efficiency

of state-of-the-art DNNs by utilizing input mixing. We propose

mixTrain that comprises of two strategies to achieve an acceptable

accuracy vs. speed-up trade-off. First, we propose split propagation

and adaptive mixing to reduce the impact of interference between

the constituent inputs in a composite sample. Second, we apply

mixing selectively, i.e., only on a subset of the training dataset every

epoch. Across DNNs on the ImageNet dataset, we achieve upto a

1.6× improvement in runtime for∼0.2% loss in accuracy.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

SK: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review & editing.

SS: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing. SV:

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing. AR:

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported in part by Semiconductor Research Corporation

(SRC).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2024.

1387936/full#supplementary-material

References

Akiba, T., Suzuki, S., and Fukuda, K. (2017). “Extremely large minibatch
SGD: training resnet-50 on imagenet in 15 minutes,” in CoRR, abs/1711.
04325.

Amodei, D., Hernandez, D., Sastry, G., Clark, J., Brockman, G., and Sutskever, I.
(2018). Deep Neural Network Training Costs.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet: a
large-scale hierarchical image database,” in CVPR09.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). “An image is worth 16x16 words: transformers for image recognition
at scale,” in CoRR, abs/2010.11929.

Fu, Y., Guo, H., Li, M., Yang, X., Ding, Y., Chandra, V., et al. (2021). “CPT:
efficient deep neural network training via cyclic precision,” in CoRR, abs/2101.09868
(Vancouver, BC: Curran Associates Inc.).

Fu, Y., You, H., Zhao, Y., Wang, Y., Li, C., Gopalakrishnan, K., et al. (2020).
“Fractrain: Fractionally squeezing bit savings both temporally and spatially for efficient
dnn training,” in Advances in Neural Information Processing Systems, 33.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola, A., et
al. (2017). “Accurate, large minibatch SGD: training imagenet in 1 hour,” in CoRR,
abs/1706.02677.

Guo, C., Zhao, B., and Bai, Y. (2022). “Deepcore: a comprehensive library forcoreset
selection indeep learning,” inDatabase and Expert Systems Applications, eds. C. Strauss,
A. Cuzzocrea, G. Kotsis, A. M. Tjoa, and I. Khalil (Cham. Springer International
Publishing), 181–195.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Deep residual learning for image
recognition,” in CoRR, abs/1512.03385.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. (2021). Sparsity
in deep learning: pruning and growth for efficient inference and training in neural
networks. J. Mach. Learn. Res. 22, 1–124. doi: 10.5555/3546258.3546499

Iyer, R. K., Khargoankar, N., Bilmes, J. A., and Asanani, H. (2020). “Submodular
combinatorial information measures with applications in machine learning,” in CoRR,
abs/2006.15412.

Jiang, A. H., Wong, D. L., Zhou, G., Andersen, D. G., Dean, J., Ganger, G. R., et
al. (2019). “Accelerating deep learning by focusing on the biggest losers,” in CoRR,
abs/1910.00762.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., De, A., and Iyer, R. K.
(2021). “GRAD-MATCH: gradient matching based data subset selection for efficient
deep model training,” in Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, eds. M.Meila, and T. Zhang (New
York: PMLR), 5464–5474.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., and Iyer, R. K. (2020).
“GLISTER: generalization based data subset selection for efficient and robust learning,”
in CoRR, abs/2012.10630.

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,” in
3rd International Conference on Learning Representations, ICLR 2015, Y. Bengio, and
Y. LeCun (San Diego, CA: Conference Track Proceedings).

Krizhevsky, A., Nair, V., and Hinton, G. (2010). Cifar-10 (Canadian Institute for
Advanced Research).

Lym, S., Choukse, E., Zangeneh, S., Wen, W., Erez, M., and Shanghavi, S. (2019).
“Prunetrain: Gradual structured pruning from scratch for faster neural network
training,” in CoRR, abs/1901.09290 (New York, NY: Association for Computing
Machinery).

Margatina, K., Vernikos, G., Barrault, L., and Aletras, N. (2021). “Active learning by
acquiring contrastive examples,” in CoRR, abs/2109.03764.

Mirzasoleiman, B., Bilmes, J., and Leskovec, J. (2020). “Coresets for data-efficient
training of machine learning models,” in Proceedings of the 37th International
Conference on Machine Learning, ed. Singh (New York: PMLR), 6950–6960.

Paul, M., Ganguli, S., and Dziugaite, G. K. (2021). “Deep learning on a data diet:
finding important examples early in training,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan (New York: Curran Associates, Inc), 20596–20607.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. (2018). “Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection and
segmentation,” in CoRR, abs/1801.04381.

Savarese, P., McAllester, D., Babu, S., and Maire, M. (2019). “Domain-independent
dominance of adaptive methods,” in CoRR, abs/1912.01823 (Los Alamitos, CA: IEEE
Computer Society).

Stojnic, R., Taylor, R., and Kardas, M. (2023). Imagenet Leaderboard.

Strubell, E., Ganesh, A., andMcCallum, A. (2019). Energy and Policy Considerations
for Deep Learning in NLP.

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., et al.
(2019). “Hybrid 8-bit floating point (hfp8) training and inference for deep neural
networks,” in NeurIPS (Red Hook, NY: Curran Associates Inc.).

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). “On the importance of
initialization andmomentum in deep learning,” in Proceedings of the 30th International
Conference onMachine Learning, eds. S. Dasgupta, and D.McAllester (Atlanta: PMLR).

Tan, M., and Le, Q. V. (2021). “Efficientnetv2: Smaller models and faster training,”
in CoRR, abs/2104.00298.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://www.frontiersin.org/articles/10.3389/frai.2024.1387936/full#supplementary-material
https://doi.org/10.5555/3546258.3546499
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krithivasan et al. 10.3389/frai.2024.1387936

Touvron, H., Vedaldi, A., Douze, M., and Jégou, H. (2019). “Fixing the train-test
resolution discrepancy,” in CoRR, abs/1906.06423 (Curran Associates, Inc.).

Wolfe, C. R., and Kyrillidis, A. (2024). Better schedules for low precision training of
deep neural networks.Mach Learn. 113, 3569–3587. doi: 10.1007/s10994-023-06480-0

You, Y., Gitman, I., and Ginsburg, B. (2017). “Scaling SGD batch size to 32k for
imagenet training,” in CoRR, abs/1708.03888.

Yuan, X., Savarese, P., and Maire, M. (2020). “Growing efficient deep networks by
structured continuous sparsification,” in CoRR, abs/2007.15353.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019). “Cutmix:
Regularization strategy to train strong classifiers with localizable features,” in CoRR,
abs/1905.04899.

Zhang, H., Cissé, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). “mixup: Beyond
empirical risk minimization,” in CoRR, abs/1710.09412.

Zhang, J., Yu, H., and Dhillon, I. S. (2019). “Autoassist: A framework to
accelerate training of deep neural networks,” in CoRR, abs/1905.03381 (Curran
Associates, Inc.).

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1387936
https://doi.org/10.1007/s10994-023-06480-0
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	MixTrain: accelerating DNN training via input mixing
	1 Introduction
	1.1 Prior efforts on accelerating DNN training
	1.2 Accelerating DNN training by mixing inputs

	2 Related work
	2.1 Hyper-parameter tuning
	2.2 Optimizers with fast convergence
	2.3 Model size reduction during training
	2.4 Coreset selection strategies

	3 Input mixing: preliminaries
	4 mixTrain: accelerating DNN training via input mixing
	4.1 Reducing impact of interference
	4.1.1 Split propagation
	4.1.2 Adaptive mixing

	4.2 Selective mixing
	4.2.1 Overview
	4.2.2 Evaluating amenability to mixing
	4.2.3 Amenability criteria for Region 1
	4.2.4 Amenability criteria for Region 3


	5 Experimental results
	5.1 Execution time benefits
	5.1.1 ImageNet
	5.1.2 Cifar10
	5.1.3 Runtime overhead analysis

	5.2 Ablation 
	5.2.1 Contribution of interference reduction and selective mixing
	5.2.2 Breakdown of selective mixing

	5.3 Quantitative comparison study
	5.3.1 Sample skipping
	5.3.2 Coreset selection techniques
	5.3.3 Other approximations


	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


