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Objectives: Endometrial carcinosarcoma is a rare, aggressive high-grade 
endometrial cancer, accounting for about 5% of all uterine cancers and 15% of 
deaths from uterine cancers. The treatment can be complex, and the prognosis 
is poor. Its increasing incidence underscores the urgent requirement for 
personalized approaches in managing such challenging diseases.

Method: In this work, we designed an explainable machine learning approach 
to predict recurrence-free survival in patients affected by endometrial 
carcinosarcoma. For this purpose, we exploited the predictive power of clinical 
and histopathological data, as well as chemotherapy and surgical information 
collected for a cohort of 80 patients monitored over time. Among these patients, 
32.5% have experienced the appearance of a recurrence.

Results: The designed model was able to well describe the observed sequence 
of events, providing a reliable ranking of the survival times based on the individual 
risk scores, and achieving a C-index equals to 70.00% (95% CI, 59.38–84.74).

Conclusion: Accordingly, machine learning methods could support clinicians 
in discriminating between endometrial carcinosarcoma patients at low-risk or 
high-risk of recurrence, in a non-invasive and inexpensive way. To the best of our 
knowledge, this is the first study proposing a preliminary approach addressing 
this task.
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Introduction

Endometrial carcinosarcoma is a biphasic tumor with both 
carcinomatous (epithelial) and sarcomatous (mesenchymal) elements 
(Raffone et al., 2022). It is a rare, aggressive high-grade endometrial 
cancer, accounting for about 5% of all uterine cancers and nearly 20% 
of non-endometrioid endometrial carcinomas (Siegel et al., 2022). 
Although non-endometrioid tumors make up 10–20% of endometrial 
malignancies, they are responsible for over 40% of endometrial cancer 
deaths (Lu and Broaddus, 2020).

The treatment can be complex, including the need to perform 
surgery, platinum-based chemotherapy, and radiotherapy. Despite 
this, the prognosis remains poor (Travaglino et al., 2022). Median 
overall survival is less than 2 years, and the 5-year overall survival 
is under 30% (approximately 50% for early stage and 20% for 
advanced stage disease). Even patients with early-stage disease 
have a 45% 5-year recurrence rate and 50% 5-year disease-specific 
mortality (Toboni et  al., 2021). The rising incidence and poor 
outcomes of endometrial carcinosarcoma highlight an unmet 
need of personalising the management of these challenging 
patients, in order to allow more informed and targeted decision-
making even in the presence of a complex prognosis (Grasso 
et al., 2017).

Over the past few years, due to the increased availability of data 
and the greatest computing power, Artificial Intelligence (AI) has 
emerged as a potential tool to deal with this big data, with the aim of 
optimizing cancer research, improving clinical practice, and 
promoting precision in healthcare (Farina et al., 2022). Specifically, 
Machine Learning (ML) is a subfield of AI which exploits 
mathematical and statistical approaches to develop learning models 
able to detect hidden patterns in the data and to improve model 
performance (Cuocolo et al., 2020). Anyway, ML models are often 
related to the concept of “black box” whereby even the operators who 
engineered the model cannot explain the reasoning behind their 
predictions. Hence, eXplainable Artificial Intelligence (XAI) 
algorithms have been designed to enable users to understand and 
appropriately trust ML model decisions (Gunning et al., 2019; Doshi-
Velez and Kim, 2017).

Recently, ML methods have been also employed in the 
identification of prognostic factors capable of predicting cancer 
survival and the risk of disease recurrence, with the purpose of 
supporting clinicians in optimizing the clinical follow-up plan (Wang 
et al., 2019). The ability of ML methods to handle survival data by 
modelling the relationship between the event of interest and the 
predictor variables, could allow the design of personalized therapeutic 
options, showing better accuracy than conventional statistical 
approaches (Mazzaki et al., 2021). As a matter of fact, ML algorithms 
are able to capture and shape non-linearities between variables 
without having to specify the form of the relationship between them 
a priori.

So far, in the state-of-the-art, several ML models able to predict 
early diagnosis, as well as response to therapy and disease 
recurrence in the gynaecological cancers field have been proposed 
(Fiste et al., 2022; Sheehy et al., 2023; Akazawa and Hashimoto, 
2021). However, there is a lack of ML models to predict recurrence-
free survival in patients affected by endometrial carcinosarcoma. 
To the best of our knowledge, in this study, we proposed the first 
explainable ML approach which addresses this task exploiting the 

predictive power of clinical and histopathological data, as well as 
chemotherapy and surgical information of 80 endometrial 
carcinosarcoma patients.

Materials and methods

Experimental dataset

From 1988 to 2021, a total of 80 female patients affected by 
endometrial carcinosarcoma were enrolled and monitored over time, 
with the purpose of supervising their clinical pathway and the 
prospective occurrence of a recurrence event. While monitoring, 26 
patients (32.5%) have experienced the appearance of a recurrence, and 
54 patients (67.5%) have not recurred.

For each patient, clinical and histopathological data, as well as 
chemotherapy and surgical information, were collected from the 
patients’ medical records. A total of 11 features were compiled, 
comprising the occurrence of a recurrent event (abbr. Recurrence, 
values: yes, no), age at diagnosis, tumor stage (abbr. Stage, values: I-II, 
III-IV), tumor hystotype (abbr. Type, values: homologous MMMT, 
heterologous MMMT), tumor size (abbr. size, values: ≤4cm, >4 cm), 
type of surgery (abbr. surgery, values: laparoscopic-LPS, 
laparotomic-LPT), having performed the omentectomy (abbr. 
omentectomy, values: yes, no), having performed the 
lymphadenectomy (abbr. lymphadenectomy, values: yes, no), 
chemotherapy scheme received (abbr. CT scheme, values: CBDCA, no 
CBDCA). The observation time, intended as the time in months 
between the date of diagnosis and either the appearance of a 
recurrence for recurrent patients or the last follow-up for 
non-recurrent patients, was also recorded for each patient.

An overview about the sample clinical properties is provided by 
Table 1.

Study design

We performed a ML recurrence-free survival analysis to estimate 
the time it takes for recurrence events to occur depending on the 
combination of values assumed by features.

The two most important notions on which survival analysis is 
based are the survival and hazard functions (Kartsonaki, 2016). The 
Survival function is defined as the probability of an event of interest  
T  occurring after a specified time t :

 ( ) ( )PrS t T t= >

On the other hand, the Hazard function represents the likelihood 
for an individual to experience the event in a short interval of time 
t t+ ∆ , given that the event has not occurred before time t :

 
( ) ( )Pr |t T t t T t
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A starting point for the analysis needs to be also defined, and the 
beginning of each subject’s observation time coincides with this 
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starting point, time at which all subjects have the same risk equals to 
zero of the event occurring.

In this study, we implemented a stratified 5-fold cross-validation 
scheme over 5 rounds starting from clinical data of all patients 
enrolled, by dividing the population into strata, so that the right 
number of cases are sampled from each stratum to guarantee that the 
test set is representative of the entire population.

The first step consisted in adopting a feature selection approach 
based on a recursive feature elimination technique to identify a subset 
of relevant features for the outcome prediction. Starting from the 
original set of features, this technique allows to identify the optimal 
subset by recursively eliminating less important features by means of 
a linear regression. Features are consequently ranked according to 

their estimated significance, and only the most important ones are 
employed for further steps (Ambusaidi et al., 2016).

Then, we  trained a Gradient Boosting (GB) algorithm to 
determine how the hazard function varied according to the associated 
features previously selected. The GB algorithm is a non-parametric 
supervised learning belonging to the category of ensemble methods: 
it sequentially combines the predictions of multiple simple models 
named base learners, allowing each new learner to correct the previous 
one and, consequently, to reinforce the overall model. This process 
enables the minimization of a specific loss function using a well-
defined base learner (Nguyen, 2019). In this work, we optimized the 
partial likelihood loss of the Cox’s proportional hazards model by 
means of a regression tree base learner (Kleinbaum and Klein, 2012; 
Breiman et  al., 2017). Specifically, a total of 100 estimators were 
employed. The model was trained setting the other hyperparameters 
as default (Pölsterl, 2020).

The discrimination power of the above-mentioned model was 
then evaluated in terms of the Concordance-index (C-index), that 
represents the model’s ability to correctly provide a reliable ranking of 
the survival times based on the individual risk scores (Longato 
et al., 2020).

According to GB model predictions, for each patient in the test set 
both a predicted survival and a predicted cumulative hazard function 
were estimated and depicted. These are two stepwise functions in 
which the occurrence of one or more events is represented by a 
vertical drop or slope, respectively.

Finally, we  adopted a XAI algorithm named Surv Local 
Interpretable Model-agnostic Explanations (SurvLIME), to explain 
the contribution of each of the most significant features to the decision 
of the ML survival model, both at patient and at all dataset levels. In 
both cases, this method allows to compute local interpretability by 
providing a ranking among the set of features, even considering the 
time space to give explanations with the goal of detecting possible 
dependencies between the features and the time (Kovalev et al., 2020). 
Particularly, to make these final predictions and explanations, 
we identified the most performing model among all models trained 
within the 5-fold cross-validation scheme, and we considered the 
same test set preliminarily identified according to the cross-validation 
framework. Therefore, only a subset was considered in this process to 
avoid overly optimistic estimates.

The idea behind the SurvLIME algorithm is to approximate the 
output produced by the ML survival model which has to be explained, 
by the output produced by a model belonging to a set of explanation 
models. Specifically, this approximation model is trained on new 
perturbed samples generated with the corresponding predictions of 
the ML survival model, by solving an optimization problem which 
minimizes the distance between the explanation and the prediction of 
the ML survival model. The approximation model adopted by the 
SurvLIME algorithm is the Cox proportional Hazards model, that is 
a semi-parametric survival algorithm whose output is the result of a 
multiple regression (Kleinbaum and Klein, 2012).

All the analysis steps have been performed by using Python.

Results

At the end of each cross-validation round, features were ranked in 
descending order according to their estimated significance, and only 

TABLE 1 Clinical features distribution over the study population.

Feature Distribution

Overall 80; 100%

Recurrence

Yes (abs; %) 26; 32.5%

No (abs; %) 54; 67.5%

Age at diagnosis

Median; [q1, q3] 67; [60, 74]

Stage

I-II (abs; %) 45; 56.8%

III-IV (abs; %) 35; 43.8%

Type

Homologous MMMT (abs; %) 33; 41.2%

Heterologous MMMT (abs; %) 47; 58.8%

Size

≤ 4 cm (abs; %) 29; 36.2%

> 4 cm (abs; %) 51; 63.8%

Surgery

LPS (abs; %) 4; 5%

LPT (abs; %) 76; 95%

Omentectomy

Yes (abs; %) 23; 28.8%

No (abs; %) 57; 71.2%

Myometrial invasion

Yes (abs; %) 72; 90%

No (abs; %) 8; 10%

Lymphadenectomy

Yes (abs; %) 42; 52.5%

No (abs; %) 38; 47.5%

CT scheme

CBDCA (abs; %) 60; 75%

No CBDCA (abs; %) 20; 25%

Observation time (mm)

Median; [q1, q3] 24; [7.5, 72.5]
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features with a rank ≤3 were selected. The frequency of selection of 
each feature within all rounds of the cross-validation procedure is 
shown in Figure  1. Four variables, namely, myometrial invasion, 
omentectomy, surgery and histotype were always selected, presenting 
a frequency equals to 100%. Conversely, the age at diagnosis has never 
been selected as an important feature over the training process.

The designed ML survival model, trained on features resulted 
important by turns, was able to well describe the observed sequence 
of events, and its discrimination power was evaluated in terms of 
C-index along with its 95% confidence interval: 70.00% [59.38–84.74].

The model predictions also allowed to describe both a survival 
and a cumulative hazard function for each patient. The respective 
functions estimated by means of the best performing model are 
depicted in Figure 2. Due to the specularity of these functions, in 
both cases the curves resulted well separated into two groups. The 
first group of patients was characterized by a lower survival 
probability and, consequently, a higher risk of recurrence since the 
first months after diagnosis. Conversely, patients belonging to the 
second group were identified by a survival probability always 
greater than 80%, and which trend remained constant even after 
several months after diagnosis. A comparison highlighted that 

patients with a higher risk of recurrence all share the following 
feature values: a heterologous MMMT type, a CBDCA CT scheme 
and a laparotomic-LPT surgery performed.

Despite the good performances of our ML survival model in 
predicting recurrence-free survival, the reasoning behind its 
predictions is unknown. To this aim, we provided local explanations 
of the contribution of important features to the model prediction, 
both at patient and all dataset level. Figures 3, 4 shows some examples 
of explanations at patient level. Each explanation consists of a feature 
importance diagram in which the feature contributions to the outcome 
are displayed in descending order, using a red colour palette for the 
features that increase the Cumulative Hazard Function and a blue 
palette for those that decrease it.

Considering Figure 3, for both patients the ML survival model 
correctly returned a high predicted hazard. This can be related to 
having performed the lymphadenectomy, a CBDCA CT scheme and 
a laparotomic-LPT surgery. On the other hand, patients illustrated in 
Figure 4 are related to a correctly low predicted hazard. In these cases, 
explanation diagrams highlighted how differences among their feature 
values are related to different feature contributions in terms of weight 
to the outcome prediction.

Lastly, Figure 5 depicts the local explanation at all dataset level. In 
this feature importance diagram, feature contributions are displayed 
in descending order by means of box plots representing the feature 
contribution distributions computed over the entire dataset. The 
feature positive or negative contribution in increasing the Cumulative 
Hazard Function is pictured by a red colour or blue colour palette, 
respectively.

Discussion

Uterine carcinosarcoma is a high-grade tumor including both 
epithelial and mesenchymal malignant cell components. Typically, 
the former shows low differentiation and a mix of characteristics, 
possibly displaying traits like endometrioid, clear-cell, or serous 
features. Tumor cells may organize in gland-like structures. The 
latter can resemble either endometrial stromal sarcoma or 

FIGURE 2

Predicted survival and cumulative hazard functions estimated by the best performing model.

FIGURE 1

Frequency of selection of each feature over all rounds.
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leiomyosarcoma, known as “homologous,” or it may exhibit 
features akin to specialized connective tissues outside the uterus, 
such as muscle, cartilage, and bone, termed “heterologous.” In 
both scenarios, angiolymphatic invasion is frequently observed 
(Bogani et al., 2023).

Despite surgical treatment and timely adjuvant multimodal 
therapy, more than half of the cases of endometrial carcinosarcoma 
will recur within the first 2 years (Concin et  al., 2021). The 
management of the recurrent disease is highly personalized and 
should consider several factors, such as the performance status of the 

FIGURE 3

Examples of explanation at patient level for recurrent patients associated with a high predicted hazard. Red colour and blue colour palette indicate 
positive and negative contributions for increasing the Cumulative Hazard Function, respectively.
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FIGURE 4

Examples of explanation at patient level for non-recurrent patients associated with a low predicted hazard. Red colour and blue colour palette indicate 
positive and negative contributions in increasing the Cumulative Hazard Function, respectively.

patient, the size and sites of recurrences, and prior therapies (Pezzicoli 
et  al., 2021). Importantly, it depends on whether the relapse is 
locoregional, oligometastatic, or disseminated and, second, on 
whether the patient has already received radiotherapy, as radiotherapy 
rechallenge is generally avoided for safety reasons. Again, the best 
treatment approach is multimodal. Patients with recurrent disease 
(including peritoneal and lymph node relapse) should be considered 
for surgery only if it is anticipated that complete removal of 
macroscopic disease can be achieved with acceptable morbidity and 
be treated in specialized centres (Beckmann et al., 2021). External 
beam radiotherapy can be  used in radiotherapy-naïve patients or 
those who had received only prior vaginal brachytherapy. 

Immunotherapy (with or without tyrosine kinase inhibitor) is the 
emerging preferred second-line systemic treatment. After the failure 
of immunotherapy, chemotherapy alone (generally mono-
chemotherapy) is the preferred treatment in cases of disseminated 
metastases (Abu-Rustum et al., 2021).

Owing to the rare and aggressive nature of endometrial 
carcinosarcoma, the complexity of its management both at 
diagnosis and recurrence, as well as its high recurrence rate 
(Amant et al., 2005), identifying an ensemble of prognostic factors 
able to accurately predict recurrence-free survival in patients 
affected by this malignancy could allow more informed and 
targeted decision-making, enabling proactive clinical management 

https://doi.org/10.3389/frai.2024.1388188
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Bove et al. 10.3389/frai.2024.1388188

Frontiers in Artificial Intelligence 07 frontiersin.org

even in the presence of a complex prognosis. Actually, the ability 
to identify patients at a major risk of recurrence at an early stage 
could allow clinicians to tailor treatment plans, both adopting 
more aggressive strategies such as intensive or combination 
chemotherapy protocols, adjuvant radiotherapy or experimental 
approaches in patients with a high probability of recurrence and 
sparing low-risk patients from unnecessary interventions. 
Moreover, an accurate predictive model can guide the frequency 
and intensity of clinical follow-up, allowing an early detection of 
recurrence and improving the likelihood of disease control. Finally, 
thanks to predictive modelling, it is possible to more selectively 
enrol patients which may be candidates for clinical trials of new 
drugs or experimental therapies, especially when standard options 
have obvious limitations.

Over the past years, several efforts have been made to develop a 
greater awareness and deeper understanding of endometrial 
carcinosarcoma pathogenesis, with the purpose of identifying new 
targeted therapies and providing specific guidelines for the 
management of this tumor (Bogani et al., 2023). Besides, endometrial 
cancer treatment has provided new changes by incorporating 
biological, clinical, genomic, and clinico-pathologic characteristics of 
the women affected by this tumor, and recent studies showed that 
molecular targets such as L1CAM (L1 cell adhesion molecule) plays 
an important role as prognostic factor and could provide a potential 
useful tool for tailoring the need of adjuvant therapy (Giannini et al., 
2024; Vizza et al., 2021). As well, a prognostic nomogram to predict 
the overall survival rate in endometrial carcinosarcoma patients by 
exploiting lymph-node metastasis information has been proposed 
(Gao et al., 2021).

However, there is a lack of research studies focused on the 
prediction of disease recurrence risk.

In this study, we  proposed the first explainable ML method 
designed to predict recurrence-free survival in patients affected by 
endometrial carcinosarcoma. The nested feature importance approach 
allowed us to identify the most relevant variables for this outcome 
prediction. Accordingly, promising results were achieved in providing 
a reliable ranking of the survival times based on the individual risk 
scores (C-index: 70%). Finally, with the aim to enable clinicians to 
understand the reasoning behind the ML model predictions, the 
implemented XAI algorithm computed the contribution of each of the 
most significant features to the model decision, both at patient and at 
all dataset levels.

To conclude, the proposed explainable ML model represents the 
first effort in devising an artificial intelligence-based tool to 
be enclosed in clinical practice to support clinicians in discriminating 
between endometrial carcinosarcoma patients at low-risk or high-risk 
of recurrence in a non-invasive and inexpensive way, also providing 
an intelligible explanation on how the clinical characteristics 
considered for those patients contributed to the estimated risk. 
Accordingly, the ability of this model in detecting the risk for a patient 
of experiencing recurrence could aid clinicians to personalise 
therapeutic options, by candidating high-risk patients to adjuvant 
chemotherapy and saving low-risk patients from unnecessary 
aggressive treatments.

Besides, a limitation of our study deals with its retrospective 
design and the limited dimension of the dataset. As far as the 
limited dataset size, this could affect the robustness and 
generalizability of the ML model which generally require larger 
dataset, in contrast to what classic survival approaches, such as Cox 
regression, need. However, the advantages in exploiting ML 
techniques rather than classical methods are the increased flexibility, 
the ability to adapt to non-linear relationships, together with 
improved predictive performances. Actually, relationships between 
variables are often non-linear or complex, and some effects may 
depend on interactions between them. ML algorithms are able to 
capture and shape these non-linearities and interactions without 
having to specify the form of the relationship between variables a 
priori. Definitely, employing ML models with larger datasets, it 
could be possible to achieve higher performances and improve the 
model. For this purpose, in our future work we  will collect an 
external dataset for prospective validation, in order to establish 
documented evidence that the model is able to consistently produce 
the desired results within predetermined specifications and 
quality attributes.
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