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Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in healthcare 
that focuses on individualized patient care by mapping the patient’s health information 
holistically and multi-dimensionally. PCKGs integrate various types of health data 
to provide healthcare professionals with a comprehensive understanding of a 
patient’s health, enabling more personalized and effective care. This literature 
review explores the methodologies, challenges, and opportunities associated 
with PCKGs, focusing on their role in integrating disparate healthcare data and 
enhancing patient care through a unified health perspective. In addition, this review 
also discusses the complexities of PCKG development, including ontology design, 
data integration techniques, knowledge extraction, and structured representation 
of knowledge. It highlights advanced techniques such as reasoning, semantic 
search, and inference mechanisms essential in constructing and evaluating PCKGs 
for actionable healthcare insights. We further explore the practical applications 
of PCKGs in personalized medicine, emphasizing their significance in improving 
disease prediction and formulating effective treatment plans. Overall, this review 
provides a foundational perspective on the current state-of-the-art and best 
practices of PCKGs, guiding future research and applications in this dynamic field.
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1 Introduction

The healthcare industry has experienced a significant shift, transitioning from traditional, 
provider-centric models toward patient-centered care. This shift highlights the critical role of 
engaging patients as active participants in their healthcare journeys. At the center of this 
transformation are PCKGs, which significantly advance personalized, data-driven care. 
PCKGs facilitate the integration of diverse data types, including medical history, genetics, 
lifestyle choices, and real-time data from health technology devices, fostering a comprehensive 
view of patient health essential for customizing treatments to individual needs (Mesko, 2022; 
Blobel, 2007).

The evolution of Knowledge Graphs (KG) in healthcare into sophisticated networks reflects 
an increasing acknowledgment of the complexity of human health and the insufficiency of 
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siloed data systems in addressing multifaceted health issues. This 
evolution is propelled by the necessity for a holistic understanding of 
patient health, enabling personalized care and applying advanced data 
analytics to enhance healthcare outcomes (Blobel, 2011; Shirai et al., 
2021). PCKGs stand at the forefront of healthcare innovation, 
signifying a crucial step toward integrated, patient-focused knowledge 
networks. This shift from fragmented data systems to cohesive KGs 
enables healthcare providers to employ machine learning and 
analytical technologies to help improve precision medicine, diagnostic 
accuracy, and treatment efficacy. Such a transition represents a 
technological leap that aligns with the broader objectives of healthcare 
reform aimed at delivering more personalized, efficient, and patient-
centered care (Albannai et al., 2019; Almunawar and Anshari, 2012). 
However, incorporating KGs into healthcare presents technical, 
methodological, and ethical challenges, including data interoperability, 
privacy concerns, and the complexities of modeling diverse health 
outcomes. These hurdles pose significant barriers to the widespread 
adoption of PCKGs. Yet, the potential of these systems to revolutionize 
healthcare by offering a nuanced and comprehensive understanding 
of patient health is unquestionable (MacLean, 2021; Alagar et al., 2017).

PCKGs’ primary aim is to enhance the quality of patient care, 
improve treatment outcomes, and increase the efficiency of healthcare 
delivery. By integrating disparate data sources and utilizing advanced 
analytical models, PCKGs promise to deliver personalized, efficient, 
and effective healthcare services tailored to each patient’s unique 
needs. This goal emphasizes the shift toward a healthcare system that 
values and prioritizes individual patient experiences and needs, 
marking the beginning of a new era of patient-centric, data-driven 
care (Harper and Honour, 2015; Goniewicz et al., 2021). Despite the 
inherent challenges in integrating KGs into healthcare, the critical 
need for the advanced application of PCKGs to achieve personalized 
care and enhance healthcare delivery systems is undeniable. As the 
healthcare landscape continues to evolve, PCKGs exemplify the 
industry’s commitment to leveraging technology to meet patients’ 
complex and varied needs, thus marking a significant milestone in the 
journey toward more personalized and effective healthcare solutions.

The motivation for this paper stems from the growing need to 
consolidate disparate healthcare data into a unified, holistic view for 
improved patient care. The key contributions of this survey paper are:

 • A foundational explanation of knowledge graphs serves as the 
theoretical basis for the remainder of the paper.

 • Presentation of survey findings and introduction of a taxonomy 
developed for PCKGs.

 • An in-depth review of methodologies designed explicitly for 
PCKGs, shedding light on the most effective techniques 
currently employed.

 • Exploration of real-world applications and use cases that have 
successfully implemented PCKG methodologies, providing 
evidence of their utility.

The rest of the paper is organized as follows: Section 2 explains the 
principles of knowledge graphs, providing a foundation for the 
following discussions. Section 3 presents the findings from our survey 
and introduces the taxonomy we  have developed. Moving on to 
Section 4, we review methodologies explicitly designed for PCKGs. 
Section 5 explores real-world applications and examples that benefit 
from these methodologies. Section 6 highlights research challenges 

and provides targeted recommendations for future scholars in this 
field. Finally, in Section 7, we summarize the key findings of this paper 
and outline directions for work in PCKGs.

2 Background

The development of knowledge representation has a rich history 
in the realms of logic and AI. The notion of graphical knowledge 
representation can be  traced back to 1956 when Richens (1956) 
introduced the concept of semantic nets. Similarly, symbolic logic 
knowledge finds its roots in the General Problem Solver (Newell et al., 
1959) of 1959. Initially, knowledge bases were employed in knowledge-
based systems for reasoning and problem- solving. Notably, MYCIN 
(Shortliffe, 2012), an expert system renowned for medical diagnosis, 
utilized a knowledge base containing approximately 600 rules. 
However, it was in 2012 that the concept of Knowledge Graph (KG) 
gained immense popularity, thanks to Google’s search engine and its 
introduction of the Knowledge Vault framework (Dong et al., 2014). 
This framework aimed to construct large-scale KGs through 
knowledge fusion. There is currently no consensus on the definition 
of the term, with several authors proposing different definitions. 
Table  1 illustrates some of these definitions presently available in 
the literature.

A KG assumes the form of a directed graph (G), characterized by 
vertices and edges, where G = (V, E). Vertices (V) indicate an entity, 
and Edge (E) between the two vertices convey the semantic 
relationship between two entities (Bordes et al., 2011). Within the 
graph, vertices, also referred to as entities or nodes, are linked through 
relationships represented as edges, and facts are depicted using RDF 
(Cyganiak et al., 2014) triples such as (subject, predicate, object) or 
(head, relation, tail), denoted by < h, r, t > (Abu-Salih, 2021). Figure 1 
depicts a simple KG with vertex v9 and v8 linked by the relation r1, 
which goes from v9 to v8, making a triplet (v9, r1, v8). In this scenario, 
v9 represents the head, and v8 represents the tail. In the context of 
PCKGs, nodes typically represent entities like patients, drugs, diseases, 
or genes, whereas edges denote relationships or associations between 
these entities (see Figure 2).

Over the past few years, especially within the domains of health 
and biomedicine, various forms of KGs have been proposed, often 
stemming from literature or Electronic Health Records (EHR). 
However, they are typically not individual-centered. Recent work on 
disease-centric knowledge graphs is available in Chandak et al. (2023) 
and Lin et al. (2023). These KGs facilitate clinicians’ ability to study 
the relationships between diseases to answer practical clinical 
problems. Nevertheless, because relationships between disease 
concepts are frequently distributed across numerous datasets, 
integrating multimodal data sources is critical for developing 
comprehensive disease knowledge graphs (Chandak et al., 2023; Lin 
et al., 2023). On the other hand, their robustness of knowledge in 
terms of diseases and symptoms must be evaluated to assess their 
accuracy and quality (Chen et al., 2019).

In hospitals, patient information collected during visits and details 
of test results, clinical notes, symptoms, diagnoses, and drugs is 
frequently maintained as an EHR. These records include both 
unstructured data in the form of free notes, such as progress notes, 
admission notes, discharge summaries, medical histories, procedures 
notes, etc., and structured data, such as medical codes, medications, 
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administrative data, vital signs, and laboratory test report data (Sarwar 
et al., 2022). Numerous KGs have been introduced in the literature, 
utilizing EHRs as their foundation. As an illustration, Finlayson et al. 
(2014) constructed a graph including diseases, drugs, procedures, and 
devices. They leveraged 1 million clinical concepts from 20 million 
clinical notes to do so. Similarly, another study in Rotmensch et al. 
(2017) formulated a KG covering 156 diseases and 491 symptoms 
based on the insights drawn from a dataset of 273,174 patient visits to 
the emergency department. Although some efforts have been made to 
incorporate patient-specific information into these graphs, they are 
not yet patient-centric.

PCKGs can be linked to Personal Knowledge Graphs (PKG), an 
emerging concept in this field. Although PKGs are relatively new, 
some notable contributions have been made in this area. One of the 
pioneering papers that formally introduces the concept of PKG is 
authored by Balog and Kenter (2019). They define PKG “to be a source 
of structured knowledge about entities and the relation between them, 
where the entities and the relations between them are of personal, rather 
than general, importance. The graph has a particular “spiderweb” 
layout, where every node in the graph is connected to one central node: 
the user.” Within the scope of this definition, the PKG only 
incorporates knowledge pertinent to the specific user.

The emergence of KGs has brought about a substantial 
transformation in the healthcare domain, providing numerous 
advantages to this industry. Integrating disparate health data to 
provide a comprehensive and holistic view of patient health is a 
significant application of KGs. In the era of precision medicine, 
wherein therapeutic strategies are customized to suit individual 
patients’ distinctive genetic composition and lifestyle variables, KGs 
assume a crucial function. Integrating various data types, such as 
genetic profiles, medical history, lifestyle behaviors, and information 
from health technology devices, is facilitated to enhance efficiency. 
Implementing this all-encompassing methodology enables more 
accurate diagnoses, treatment strategies, and potentially enhanced 
health results (Johson et al., 2021).

Moreover, KGs are a formidable instrument for deciphering 
intricate biomedical data, resulting in amplified research findings 
(Bauer-Mehren et al., 2010). They provide a systematic depiction of 
connections among different entities, such as genes, diseases, drugs, 
and pathways, which can be utilized to formulate novel hypotheses 
and uncover concealed patterns. For example, KGs can elucidate the 
intricate relationship between a genetic mutation and its association 
with a specific disease or unveil the influence of environmental factors 
in the progression of said disease. As mentioned earlier, the discoveries 
possess the potential to significantly contribute to the development of 
groundbreaking therapeutic approaches and expand the horizons of 
biomedical investigation (Yuan et al., 2011).

KGs play a crucial role in developing effective decision-support 
systems in the clinical domain. By effectively amalgamating and 
analyzing individualized patient data, KGs can assist medical 
practitioners in formulating accurate diagnostic determinations, 
devising optimal treatment strategies, and forecasting patient 
prognoses. Consequently, the implementation of KGs can effectively 
mitigate the occurrence of medical errors (Raghupathi and 
Raghupathi, 2014).

KGs have found significant applications across various sectors 
beyond healthcare. For example, in e-commerce, KGs are extensively 
used to enhance user experience through personalized 
recommendations, search result ranking, and semantic search. 
Prominent e-commerce platforms, such as Walmart, Amazon and 
eBay, have been utilizing KGs to link items to their respective 
attributes, thereby providing more relevant product suggestions to 
customers (Xu et al., 2020). Moreover, KGs are increasingly used in 
Natural Language Processing (NLP), where they can improve the 
performance of machine translation, question-answering, and text 
summarization systems (Li et al., 2022). KGs also have substantial 
potential in cybersecurity, as they can aid in mapping relationships 
between cyber threats, vulnerabilities, and affected systems, 
facilitating better threat prediction and prevention (Liu et al., 2022). 

TABLE 1 Various definitions of KGs are in the available literature.

Source Definition

Paulheim (2017) A knowledge graph (i) mainly describes real world entities 

and their interrelations, organized in a graph, (ii) defines 

possible classes and relations of entities in a schema, (iii) 

allows for potentially interrelating arbitrary entities with 

each other and (iv) covers various topical domains

Ehrlinger and 

Wolfram (2016)

A knowledge graph acquires and integrates information into 

an ontology and applies a reasoner to derive new knowledge

Wang et al. (2017) A knowledge graph is a multi-relational graph composed of 

entities and relations which are regarded as nodes and 

different types of edges, respectively

Smirnova et al. 

(2018)

A Knowledge Graph, also known as a Knowledge Base, is a 

directed graph formed by triples that connect nodes 

(subjects) to other nodes (objects) through properties 

(predicates), where these connections represent semantic 

relationships and the graph’s structure illustrates the 

subjects, objects, and their interrelations

Duan et al. (2017) A knowledge graph organizes items, entities, and users as 

nodes interconnected by edges, providing rich semantics and 

comprehensive information in a structure akin to natural 

language

FIGURE 1

An example of a knowledge graph, where the triplet (v9, r1, v8) serves 
as an illustration of the link between entities v9 and v8 through the 
relationship r1 and (v8, r2, v1) through r2 for the relationship between v8 
and v1.
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Social networking platforms like Meta and LinkedIn also leverage 
KGs to understand user relationships and interests, enhancing 
content recommendation and advertising targeting strategies (He 
et  al., 2020). Hence, the applications of KGs are diverse and 
significantly impact various domains, reinforcing their relevance 
and potential.

3 Developed taxonomy of 
patient-centric knowledge graph

Having introduced the concept of KG in the previous section, 
we now explore the survey’s core. This section will examine the various 
approaches, categorizations, and details influencing PCKGs. PCKGs 
are characterized by a variety of methodologies and studies. To 
navigate this diverse landscape, we need a well-structured framework. 
In this context, a taxonomy is a guide that enables readers to 
comprehend and classify the complexities involved in PCKG 
construction, evaluation, processing, and applications.

As depicted in Figure 3 our developed taxonomy is derived from 
an exhaustive survey and analysis of existing literature and practices 
(Eggert and Alberts, 2020). Based on our findings, we classify PCKG 
taxonomy into four major categories, including construction, 
evaluation, process, and applications. Given the heterogeneity of 
studies in the domain, it provides a structured representation and 
insight into the why and how of each categorization. The taxonomy 
presented in this paper outlines essential relationships and highlights 
the critical aspects of each of these categories. Its uniqueness lies in its 
exhaustive nature, informed by the foundational literature and 
cutting-edge research. In the following paragraphs, we delve into each 
category and subcategory.

The first category pertains to the construction of a PCKG and is 
further divided into four sub-categories: ontology, knowledge sources, 
knowledge extraction, and knowledge representation.

The initial step, Ontology, revolves around designing structured 
frameworks custom-tailored to meet patient-centered needs, ensuring 
that the graph accurately captures the essence of patient data while 
adhering to industry standards and best practices. It is crucial to 
articulate distinctions among closely related terms in this context: a 
Knowledge Graph (KG), which represents interconnected real-world 
facts; a Knowledge Base (KB), which stores this structured 
information; and an ontology, which provides a structured framework 
that illustrates and organizes concepts, ensuring consistent 
understanding and interpretation of the data within the KG and 
KB. Second, considering the diverse nature of healthcare data, our 
Knowledge Sources segment highlights the differences and integration 
methods for three primary sources of data: structured, semi-
structured, and unstructured data. Third, the Knowledge Extraction 
phase employs techniques like Named Entity Recognition (NER) to 
pinpoint essential entities such as drugs or symptoms (Keretna et al., 
2015). The process is complemented by Relationship Extraction (RE), 
which accurately maps the relationships among these entities, giving 
the graph its characteristic interconnected structure (Wang et  al., 
2021). The last sub-category in construction is Knowledge 
Representation, which focuses on detailing the methodological 
approach of encapsulating explicit and implicit knowledge in the 
PCKG. This involves defining the schema for entities and relationships, 
establishing constraints, and encoding domain knowledge through 
axioms and rules, thus constructing a robust framework that 
effectively translates raw data into a comprehensible and 
interconnected knowledge graph that accurately mirrors the 
complexity and depth of patient-centric data.

FIGURE 2

Illustration of patient’s clinical visits knowledge graph.
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The second category involves the evaluation of the PCKG, 
emphasizing the need to assess the efficacy and accuracy of PCKGs 
post-construction. This assessment can be  facilitated by two 
principal methodologies: qualitative and quantitative. The former 
involves a thorough examination of the graph to ensure that it 
adheres to clinical best practices and contains relevant and correct 
medical relationships. The latter uses statistical and computational 
methodologies to evaluate the graph’s performance metrics, 
including accuracy, recall, and precision. It also offers a numerical 
assessment of its ability to represent and infer knowledge accurately 
and effectively. Once the PCKG has been constructed and evaluated, 
the next step is its utilization (processing PCKG) to derive actionable 
insights. To attain this objective, various approaches are crucial, 
including using methods such as reasoning, semantic search, and 
inference. Reasoning enables the PCKG to logically extract new 
information and knowledge from the existing knowledge within the 
graph, providing a basis for making intelligent decisions and 
predictions about healthcare outcomes and strategies (Rajabi and 
Kafaie, 2022). In contrast, Semantic Search allows structured 
searches to retrieve precise information from the graph (Lytras 
et al., 2009). Inference, on the other hand, uses the inherent structure 
of the graph to derive new insights and conclusions (Wang 
et al., 2018).

The final category of the our taxonomy relates to the application 
of PCKG in the healthcare domain. We  explore four primary 
healthcare use cases, encompassing recommending individualized 
interventions, clinical trials, predicting disease before onset, and others. 
The first personalizes patient care treatments based on insights from 
the graph. The second application aims to enhance the efficiency of 
Clinical Trials, aiding in developing trial designs or optimizing patient 
selection. On the other hand, a particularly innovative application is 
Predicting Disease Before Onset, where the complex patterns and 
relationships mapped in the graph can be harnessed to detect potential 
health issues proactively. Although these are highlighted applications, 
the potential of PCKGs extends even further, covering areas such as 
drug discovery, personalized medication regimens, and preventive health 
strategies, to name a few.

In the following sections, we will examine each component of our 
taxonomy in more detail to better understand its significance and 
provide an overview of the suggested implementation steps.

4 Construction, evaluation and 
processing of PCKGS

This section explores the complex processes and methodologies 
in developing, assessing, and utilizing PCKG. This comprehensive 
exploration is structured into four critical categories, as illustrated in 
Figure  3. The first category, construction of PCKG, explains the 
complex process of building PCKG, highlighting the significance of 
ontology, various data sources, knowledge extraction techniques, and 
knowledge representation. Next the evaluation covers qualitative and 
quantitative methods for assessing the efficacy and accuracy of these 
graphs. Similarly, we  discuss advanced techniques like reasoning, 
semantic search, and inference, which are essential to harnessing the 
full potential of PCKGs to derive actionable insights and inform 
healthcare decisions.

4.1 PCKG construction

The process of creating PCKGs involves four steps. To begin with, 
the ontology phase involves developing structured frameworks based 
on patient data, which ensure accuracy and adherence to standards. 
Knowledge sources are the second step, which addresses the collection 
and integration of diverse types of healthcare data, including 
structured, semi-structured, and unstructured data. During the third 
step, knowledge extraction, key data entities and their interconnections 
are mapped using named entity recognition and relationship 
extraction techniques. Lastly, knowledge representation involves 
defining a schema for entities and relationships, setting constraints, 
and encoding domain knowledge to transform raw data into a 
coherent, interconnected graph reflecting patient data complexity. In 
the following subsections, we will explore these steps in detail.

FIGURE 3

Proposed taxonomy of patient-centric knowledge graph.
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FIGURE 4

Illustration of a basic patient’s ontology.

4.1.1 Ontology
Ontologies provide a structured framework for representing 

knowledge, integrating diverse data sources, and facilitating 
sophisticated access to health information—critical components in 
patient-centered healthcare (Puustjarvi and Puustjarvi, 2010). 
Designing and formalizing ontologies involves creating a 
comprehensive schema that unifies information from various 
structured and unstructured data sources (Iannacone et  al., 2015). 
Unlike knowledge bases, which are collections of domain-specific 
knowledge often built upon ontologies or schemas, which primarily 
organize data as a blueprint for databases, ontologies formally 
represent concepts within a domain and the relationships between 
them, offering a deeper contextual understanding. In healthcare, the 
application of ontologies has been well-documented. For instance, Sun 
et al. (2014) introduced an ontology-enabled healthcare service model 
that supports joint referral decisions between patients and general 
practitioners, enhancing patient-centered care.

One practical implementation of ontology principles is the Fast 
Healthcare Interoperability Resources (FHIR) standard. FHIR plays a 
crucial role in structuring patient-centric data, enabling the 
representation of complex healthcare information—such as patient 
records, clinical observations, and care plans—in a machine-readable 
and interoperable format (Rishi Kanth Saripalle, 2019). FHIR uses a 
resource-based model with RESTful APIs, which supports formats like 
JSON, XML, and RDF, and can be integrated into graph-based models, 
including PCKGs, to enhance data relationships. By integrating FHIR-
based models into PCKGs, we can achieve enhanced interoperability 
and comprehensive patient data mapping. This ensures that PCKGs 
accurately reflect the multifaceted nature of patient health information, 
supporting standardized healthcare data exchange and facilitating 
more effective integration across diverse healthcare systems 
(Maxhelaku, 2019).

4.1.1.1 Design
The growing digitization of healthcare data and the proliferation 

of medical information need effective and structured methods of 
representing and managing patient-centric knowledge. Ontologies, 
formal representations of knowledge, play a critical role in healthcare 
systems’ interoperability, data integration, and decision support (Taye, 

2010). In the context of PCKGs, ontology design is a fundamental 
process that involves defining and modeling the important entities, 
connections, and features related to patient health and treatment. 
Figure 4 provides an example of a patient’s ontology. Authors in Noy 
and McGuinness (2023) argue that the rationale behind ontology 
development is to aid in a shared understanding of information 
structure among people or software agents, facilitate the reuse of 
domain knowledge, make domain assumptions explicit, separate 
domain knowledge from operational knowledge, and analyze domain 
knowledge. However, there is no standard methodology (Kapoor and 
Sharma, 2010) or correct way of formulating ontology (Noy and 
McGuinness, 2023).

The initial stage in ontology design is to establish the scope and 
domain of the PCKG. The scope of the ontology specifies the breadth 
of medical knowledge included. In contrast, the domain defines the 
precise areas of concentration, such as general medical information, 
specific diseases, or healthcare procedures. Identifying the domain 
aids in the selection of acceptable current ontologies such as 
SNOMED-CT (El-Sappagh et al., 2018), RxNorm (Hanna et al., 2013), 
and LOINC (Uchegbu and Jing, 2017) are healthcare standards that 
can be utilized to maintain interoperability and consistency. While 
current ontologies and standards may provide a solid foundation, 
some patient-centric concepts may not be  fully covered. In such 
circumstances, additional classes and features must be added to cater 
to specific requirements. This requires collaboration between domain 
experts and ontology engineers to guarantee that the ontological 
representations are consistent with healthcare practices and guidelines.

The second step is to define the core entities. Entities such as 
Patient, Disease, Medication, Symptom, Medical Procedure, Healthcare 
Provider, etc. are typically included. These entities serve as the building 
blocks for constructing the KG and are crucial for capturing patient-
related information.

The next step is to extract or specify the relationships between 
entities. This step is essential for capturing the complex interactions 
within patient-centric healthcare. Relationships, such as Diagnosis, 
Treats, Has Symptom, and Undergoes, enable meaningful associations 
and support inferencing capabilities. During this stage, the ontology 
developer should also carefully consider the attributes and properties 
of the entities. For example, attributes of a patient could be age, gender, 

https://doi.org/10.3389/frai.2024.1388479
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Al Khatib et al. 10.3389/frai.2024.1388479

Frontiers in Artificial Intelligence 07 frontiersin.org

sex, demography, etc. These attributes can influence the diagnosis and 
treatment decisions (Bravo, 2019).

4.1.1.2 Formalization
Formalizing the ontology focuses on structuring and representing 

patient data and medical knowledge in a way that is understandable 
and accessible to healthcare systems. Puustjarvi and Puustjarvi (2010) 
leveraged the Resource Description Framework (RDF) and Web 
Ontology Language (OWL) to facilitate sophisticated access to health 
information, a cornerstone for effective patient care. This innovative 
approach underscores the evolving landscape of healthcare 
informatics, where the structuring and accessibility of patient data are 
critical. Similarly, Jiang et al. (2003) provided insight into the role of 
Formal Concept Analysis (FCA) in developing ontologies within 
clinical domains. FCA emerges as a key tool, offering linguistic and 
context- based knowledge. This knowledge is indispensable for clinical 
experts, aiding them in comprehending and applying ontology 
effectively in their practice. Integrating FCA into ontology 
development signifies a deeper understanding of clinical data and its 
nuances, enhancing the overall utility of these ontologies in real-world 
medical settings.

Further broadening this scope, Djedidi and Aufaure (2007) 
presented a methodology that underscores the integration of 
heterogeneous data sources with existing ontologies and standards. 
This approach is instrumental in constructing a medical domain 
ontology as a comprehensive, knowledge-centric decision support 
system. Such integration is crucial in ensuring the developed 
ontology is robust and aligns seamlessly with existing medical 
knowledge frameworks and data sources. Likewise, Mendes et al. 
(2013) contributed significantly to the Ontology for General 
Clinical Practice (OGCP) development. This ontology extends the 
Ontology for General Medical Science (OGMS) by incorporating 
the Clinical.

Patient Record (CPR) structure. This extension significantly 
enhances the representation and reasoning capabilities within clinical 
practice knowledge, especially in the context of natural language text. 
The OGCP stands as a testament to the evolving complexity and 
sophistication required in modern medical ontologies, catering to the 
nuanced needs of clinical practice.

The dynamic nature of medical knowledge and patient data 
necessitates methodologies for tracking and updating information. In 
this context, Ognyanov and Kiryakov (2002) proposed a formal model 
for tracking changes in RDF(s) repositories. This model is vital for 
maintaining the accuracy and relevance of the KG over time, 
addressing the ever-changing landscape of medical data and 
knowledge. Clarkson et  al. (2018) introduced a user-centric 
methodology for the ontology population to address the user 
perspective. This approach aligns user concepts with target ontologies, 
proving an efficient method for building and maintaining ontologies 
across various domains. The user-centric approach ensures that the 
developed ontologies are technically sound and resonate with the 
needs and understandings of the end-users, be  they patients or 
healthcare professionals.

Ferilli (2021) proposed an intermediate format that can be easily 
mapped onto formal ontology for complex reasoning and a graph 
database for efficient data handling to bridge the gap between formal 
ontology and practical application. This innovation represents a 
significant stride in harmonizing the theoretical aspects of ontology 

with the practical demands of data management, ensuring that the 
developed ontologies are both conceptually sound and 
practically applicable.

Together, these diverse yet interconnected research efforts paint a 
comprehensive picture of ontology formalization’s current state and 
future potential in patient-centric healthcare. They highlight a 
collaborative and multi-faceted approach to developing technically 
robust ontologies that are deeply integrated with the practical realities 
of healthcare delivery.

4.1.2 Knowledge sources
PCKGs are complex structures that integrate diverse data sources, 

as illustrated in Figure 5, to offer a comprehensive perspective on a 
patient’s medical past, present ailments, and prospective therapies. The 
extent of a PCKG’s depth is contingent upon the diversity and quality 
of the data sources that contribute to its composition. The sources can 
be classified into three main categories: structured, semi-structured, 
and unstructured data.

4.1.2.1 Structured data
Structured data is organized and easily searchable in relational 

databases. It follows a specific schema or model, making it 
straightforward to query and analyze. Structured healthcare data, 
integral to PCKGs, is exemplified by EHRs, lab results and diagnostics, 
and genomic and molecular data. EHRs, as digital records of a patient’s 
medical history, encompass diagnoses, medications, treatment plans, 
and vital statistics, providing a highly structured backbone for PCKGs. 
Transitioning to lab results and diagnostics, this category includes 
structured, numerical, or categorical data from blood tests, imaging 
studies (like X-rays and MRIs), and other diagnostic tests, facilitating 
their integration into PCKGs. Lastly, genomic and molecular data 
derived from genetic tests offer structured insights into a patient’s 
disease predisposition, proving essential for advancing personalized 
medicine. Collectively, these structured data forms are fundamental 
in healthcare analytics and personalized treatment planning.

4.1.2.2 Semi-structured data
Semi-structured data does not reside in a relational database but 

does have some organizational properties that make it easier to 
analyze. It often requires some level of transformation to be  fully 
utilized. Semi- structured healthcare data encompass clinical notes and 
patient-generated data, each possessing unique characteristics that 
bridge the gap between structured and unstructured data. While 
fundamentally unstructured in text, clinical notes and narratives often 
adhere to templates or contain tags, rendering them semi-structured 
and providing contextual depth absent in purely structured datasets. 
Similarly, patient- generated data, sourced from wearables like fitness 
trackers and mobile health apps, presents structured data points (e.g., 
heart rate, steps) but lacks a consistent schema overall, contributing to 
the semi-structured nature of the data set. This combination of 
structured elements within an otherwise unstructured framework is 
valuable for comprehensive healthcare data analysis.

4.1.2.3 Unstructured data
Unstructured data is information that does not have a pre-defined 

data model, making it challenging to analyze using conventional 
methods. Unstructured healthcare data, characterized by its 
non-standardized format, includes patient surveys, interviews, medical 
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literature, and research papers, each offering unique challenges and 
insights for PCKGs. Patient surveys and interviews, typically in text or 
audio formats, yield qualitative insights into patients’ conditions but 
are unstructured, necessitating advanced analytics for effective 
integration into PCKGs. Similarly, medical literature and research 
papers are a rich source of valuable insights but remain unstructured; 
thus, they require NLP techniques to distill and extract relevant 
information for PCKG incorporation. With its inherent complexity, 
this unstructured data is crucial in enhancing the depth and breadth 
of healthcare analytics and patient care understanding.

By integrating these diverse data sources, PCKGs can offer a 
multi-dimensional view of a patient’s health, enabling more 
personalized and effective healthcare interventions.

4.1.3 Knowledge extraction
Knowledge extraction plays a pivotal role in constructing PCKGs. 

This stage leverages techniques such as Named Entity Recognition 
(NER) and Relationship Extraction (RE) to distill valuable insights 
from unstructured data. While NER focuses on identifying and 
categorizing key entities in the data, RE takes a step further to 
determine the relationships between these entities. A structured and 
rich KG can be constructed through the harmonious interplay of NER 
and RE, paving the way for more personalized and efficient 
healthcare solutions.

4.1.3.1 Named entity recognition
NER identifies and classifies entities such as diseases, symptoms, 

and medications from unstructured text. This process is fundamental 
in transforming raw data into structured, actionable information. 
Recent advancements in NER methodologies have significantly 
enhanced the development of KGs, particularly in the medical 
domain. For instance, Li et al. (2019) introduced the BiLSTM-Att-CRF 
model, which integrates an attention mechanism and part-of-speech 

features to improve clinical NER in Chinese electronic medical 
records. Building on this, Keretna et al. (2015) proposed a graph-
based technique that enhances medical NER performance by up to 
26% in unstructured medical text, showcasing the versatility of 
NER applications.

Furthering these developments, Wang and Haihong (2021) 
developed a bi-directional joint embedding model that combines 
encyclopedic knowledge with original text, thereby showing 
improved results in Chinese medical NER. Complementing this 
approach, Wang et  al. (2018) demonstrated that incorporating 
dictionaries into deep neural networks effectively addresses the 
challenge of rare and unseen entities in clinical NER, thus 
broadening the scope of NER applications. In a similar vein, Guan 
and Tezuka (2022) highlighted the importance of entity linking 
and intent recognition in medical question-answering systems, 
significantly improving medical KG searches’ efficiency and 
accuracy. In a similar context, Zhou et  al. (2021) developed a 
multi-task adversarial active learning model that enhances medical 
NER and normalization by considering task-specific features, 
further illustrating the dynamic evolution of NER methodologies.

Applying Large Language Models (LLMs) for NER is increasingly 
considered pivotal in healthcare- related KGs. Recent advancements 
in LLMs have demonstrated their effectiveness in improving NER 
tasks by leveraging contextual embeddings to enhance the accuracy of 
entity recognition, particularly in complex biomedical texts (Liu and 
Fang, 2023; Iscoe et al., 2023). For instance, fine-tuning LLMs on 
specific medical datasets has shown promising results in identifying 
entities related to patient care, thus enriching the KG with valuable 
insights that support personalized medicine (Hafsah et  al., 2023). 
Furthermore, integrating ontological knowledge into LLM-driven 
NER processes can significantly enhance the interpretability and 
robustness of the extracted information, making it more applicable to 
clinical applications (Liu et al., 2022).

FIGURE 5

Diverse sources of medical and healthcare data with examples.
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These diverse methodologies reflect the evolving landscape of 
NER in developing PCKGs. Integrating advanced machine learning 
techniques, attention mechanisms, LLMs, and domain-specific 
knowledge has led to more accurate and efficient entity recognition, 
which is crucial for effectively utilizing KGs in healthcare.

4.1.3.2 Relation extraction
Like NER, RE is a fundamental process in transforming 

unstructured data into a structured form, enabling more effective 
healthcare and medical research utilization. Recent advancements in 
RE methodologies, particularly in the context of PCKGs, have been 
significant. Ruan et al. (2020) demonstrated that a multi-view graph 
learning method could notably enhance the precision, recall, and F1 
score in relation extraction from Chinese clinical records, 
outperforming state-of-the-art methods. Similarly, Li et al. (2019) 
highlighted the evolution of relationship extraction algorithms, 
emphasizing the role of deep learning, reinforcement learning, active 
learning, and transfer learning in this domain.

In the realm of therapy-disease KGs, Wang et  al. (2021) 
constructed a Therapy-Disease KG (TDKG) using entity relationship 
extraction, achieving an 88.98% accuracy in extracting valid 
relationships from treatment- disease literature. This underscores the 
potential of RE in enhancing the accuracy and comprehensiveness of 
medical KGs. Furthermore, the integration of KGs and lexical features 
in biomedical relation extraction, as shown by Zhao et al. (2020), 
indicates significant improvements in semantic understanding. This 
approach exemplifies the innovative strategies adopted in recent 
research to enhance the effectiveness of RE in medical contexts. The 
development of Conditional Random Field (CRF)-powered 
classification models with deep learning for clinical relation extraction, 
as demonstrated by Lv et al. (2016), further illustrates the ongoing 
advancements in this field. These models have shown effectiveness in 
extracting clinical relation information from medical texts, thereby 
improving the construction of medical KGs.

In addition to NER, LLMs exhibit capabilities in processing 
unstructured data, enabling them to identify and extract relevant 
relationships between entities in clinical narratives, which is crucial 
for building comprehensive knowledge graphs that reflect patient 
information and care pathways (Liu and Fang, 2023). For instance, 
LLMs can automate the extraction of relationships from EHRs, 
thereby facilitating the integration of diverse medical data into 
structured formats that enhance clinical decision-making (Ge et al., 
2023). Furthermore, studies have demonstrated that LLMs can achieve 
extraction rates as high as 87.7% in clinical contexts, outperforming 
some traditional NLP methods (Choi et al., 2023).

The field of NER and RE in PCKGs is rapidly evolving, 
incorporating cutting-edge methodologies such as multi-view graph 
learning, deep learning, LLMs, and knowledge-enhanced approaches. 
These advancements are pivotal for accurately extracting relationships 
from complex medical texts and enriching KGs essential for advancing 
patient-centered care and medical research. However, challenges like 
non- comprehensiveness and factfulness remain critical. 
Non-comprehensiveness refers to gaps where certain relevant details 
may be missed, especially when handling unstructured data (Nastase 
and Kotnis, 2019). To address this, iterative extraction techniques and 
the integration of multiple data sources must ensure that PCKGs 
provide a comprehensive view of patient information. Equally 
important is factfulness, as the accuracy of the extracted information 

directly influences patient safety and the utility of the PCKG 
(Radevski, 2023). Ensuring factfulness requires rigorous validation, 
including cross-referencing data with authoritative medical sources 
and employing machine learning models designed to prioritize 
accuracy, thereby mitigating the risks of errors in the extraction 
process (Lin et al., 2018).

4.1.4 Knowledge representation
Knowledge Representation (KR) serves as a methodological 

backbone, enabling the systematic transformation of explicit and 
implicit knowledge into a structured and interpretable format. This 
transformation is crucial for machines to effectively process, analyze, 
and infer from the data, bridging the gap between raw data and 
actionable insights.

The process of KR encompasses four key components: schema 
definition, constraint establishment, domain knowledge encoding, 
and axioms and rules utilization, as explained in Section 3. Firstly, 
schema definition outlines entities’ structure and relationships within 
the KG. This step is fundamental in organizing data in a meaningful 
and accessible manner. Secondly, constraint establishment is essential 
for maintaining data integrity and consistency, ensuring that the 
relationships and entities adhere to predefined rules and norms. 
Thirdly, incorporating domain knowledge is instrumental in 
embedding domain-specific intelligence into the system. This allows 
for a nuanced understanding of the specific area of interest. Fourthly, 
integrating axioms and rules facilitates advanced reasoning 
capabilities, enabling the system to infer new knowledge and insights 
based on the existing data.

These components collectively form a robust framework that 
simplifies complex data and enhances the system’s capability to mirror 
the intricacies inherent in patient-centric data. In the following 
subsections, we will delve deeper into these components, exploring 
their roles and significance in the broader context of KR.

4.1.4.1 Schema definition
The concept of schema definition in PCKGs revolves around 

structuring and organizing patient-related data to enhance 
understanding and interaction with this information. Schemas in KGs 
serve as blueprints for organizing data, enabling more effective data 
integration, querying, and analysis. This is particularly crucial in 
healthcare, where patient data is complex and multifaceted. It aims to 
create a unified and comprehensive view of patient information, 
facilitating better healthcare outcomes through informed decision-
making. Ghosh and Gilboa (2014) emphasize the role of memory 
schemas in coordinating knowledge structures, highlighting the 
importance of understanding cognitive processes in schema 
development. This perspective is crucial in PCKGs, where patient data 
must be  organized to align with healthcare professionals’ 
cognitive schemas.

Building on the concept of visual schemas by Kranjec et al. (2013), 
which enhance comprehension and aid in the diagnostic process, the 
work of Ohira et al. (2011) takes a step further by introducing the 
dynamic nature of graph-based data models. This flexibility is key in 
PCKGs, where patient data is not static but continuously evolving. The 
ability to dynamically add and remove relationships in these KGs 
ensures that they remain up- to-date and reflect the latest patient 
information, a critical aspect of the fast-paced healthcare environment. 
This dynamic nature raises an important question: should the 
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structure of a PCKG be acyclic or allow for cycles? Acyclic graphs, 
such as Directed Acyclic Graphs (DAGs) (Byeon and Lee, 2023), can 
be beneficial in scenarios where clear, hierarchical relationships are 
required, particularly in representing diagnostic pathways or decision 
trees (Ellison, 2023). However, in many healthcare applications, 
patient data often involves temporal or causal relationships that 
inherently form cycles. For instance, a patient’s treatment may 
influence subsequent conditions or interventions, creating feedback 
loops that must be accurately represented within the graph. Therefore, 
allowing cycles within the PCKG may be  necessary to capture 
healthcare data’s complex, interdependent nature, enabling a more 
realistic and comprehensive representation of patient health journeys 
(Pressat Laffouilhère et al., 2022).

Transitioning from the dynamic structuring of patient data, the 
focus shifts to the cognitive aspects of PCKGs, as discussed by Gilboa 
and Marlatte (2017). Their research underscores the significance of 
aligning PCKGs with the mental models of healthcare professionals. 
This alignment is not just about efficiently structuring data; it’s about 
ensuring that the KG resonates with the users’ cognitive processes, 
enhancing memory recall and decision-making capabilities.

Further advancing this discussion, Ji et al. (2018) delve into the 
intricacies of schema induction in KGs. Their exploration into the 
challenges and developments in this field is particularly relevant for 
PCKGs. As these KGs become more complex and integral to 
healthcare, understanding and overcoming the challenges in schema 
induction is paramount for ensuring that PCKGs are robust, 
comprehensive, and seamlessly integrated into the healthcare workflow.

4.1.4.2 Constraints establishment
Establishing constraints in PCKGs focuses on enhancing the 

accuracy, privacy, and efficiency of medical data management and 
analysis. Various methodologies and strategies have been adopted to 
create and apply constraints in PCKGs, as evidenced by recent 
academic research. For example, Aguilar-Escobar et  al. (2016) 
demonstrate the application of the Theory of Constraints (TOC) in 
improving the logistics of medical records in hospitals, highlighting 
the potential of TOC in enhancing service quality and reducing costs 
in healthcare settings. This approach underscores the importance of 
efficient data management in PCKGs.

Building on this notion of efficiency, the focus shifts to the critical 
aspect of privacy and security in healthcare, where Mathew and 
Obradovic (2011) illustrate how constraint graphs can secure privacy 
in medical transactions, preventing unauthorized attribute-based 
transformations in clinical data. This is crucial in PCKGs, where 
patient data sensitivity is paramount. The evolution of PCKGs further 
extends into dynamic data handling and adaptability. Matsuto and 
Shiina (1990) propose a model for medical knowledge representation 
based on constraints, which dynamically generates laboratory 
schedules using constraint propagation. This approach emphasizes the 
adaptability of PCKGs in accommodating patient-specific information.

Advancements in KG reasoning further enhance the adaptability 
of PCKGs. Wu et al. (2017) discuss a constraint-based embedding 
model for KG reasoning, focusing on semantic-type constraints in 
constructing corrupted triplets. This methodology significantly 
improves the reasoning accuracy of KGs, a key aspect in developing 
effective PCKGs. Alongside reasoning accuracy, the representation of 
knowledge and uncertainties also plays an important role. Pugh and 
Gillan (2020) introduce Propositional Constraint Graphs (PCG) to 

represent knowledge and uncertainties in various tasks, including 
healthcare. This approach aids in clearly visualizing and managing 
complex information in PCKGs.

Applying these concepts is not limited to static scenarios but 
extends to dynamic and evolving medical challenges. Tu (2021) 
proposes a constraint propagation approach for identifying biological 
pathways in COVID-19 KGs. This method uses semantically extracted 
information to indicate the potential for PCKGs in pandemic response 
and other rapidly evolving medical scenarios. Finally, integrating 
context-aware constraints brings a new dimension to the integrity and 
validation of knowledge in PCKGs. Wilcke et al. (2020) discuss using 
context-aware constraints to improve knowledge integrity in 
heterogeneous KGs. This balance of complexity and utility is crucial 
for knowledge validation tasks in PCKGs (Wilcke et  al., 2020), 
highlighting constraints’ continuous evolution and application in 
developing robust and efficient PCKGs.

Establishing constraints in PCKGs is a multifaceted process 
involving the integration of various methodologies to enhance data 
accuracy, privacy, and efficiency. The strategies adopted in recent 
research reflect a growing emphasis on adaptability, security, and 
precision in managing patient-centric data in healthcare systems.

4.1.4.3 Domain knowledge encoding
Domain Knowledge encoding focuses on integrating and 

representing complex medical knowledge in a structured and 
interconnected format. This encoding process is crucial for developing 
PCKGs, which enhance patient care through personalized and 
informed decision-making. The methodologies for creating domain 
knowledge encoding in PCKGs are diverse and innovative. Wang et al. 
(2016) proposed a framework utilizing medical chart and note data, 
employing a bag-of-words encoding method and a model considering 
both global information and local correlations between diseases. This 
approach underscores the importance of capturing the nuances of 
medical data for effective KG construction.

Further expanding on these methodologies, Ji et  al. (2020) 
highlighted the significance of representation space, scoring 
function, encoding models, and auxiliary information in KG 
creation. This comprehensive approach indicates the multi-faceted 
nature of KG development, where various components contribute to 
the robustness and accuracy of the resulting graph. Similarly, Yuan 
et  al. (2019) presented a biomedical domain KG construction 
approach that includes entity recognition, unsupervised entity and 
relation embedding, latent relation generation, clustering, relation 
refinement, and relation assignment. This method demonstrates the 
complexity of accurately representing medical knowledge in graph 
form. On the other hand, Rotmensch et  al. (2017) utilized 
rudimentary concept extraction and three probabilistic models to 
construct high-quality health KGs, with the Noisy OR model 
yielding the best results. This study exemplifies using probabilistic 
models to enhance the quality of KGs. Furthermore, Yu et al. (2020) 
proposed a relationship extraction method for domain KG 
construction, obtaining upper and lower relationships from 
structured, semi-structured, and unstructured text. This method 
highlights the importance of extracting relationships from diverse 
data sources to enrich the KG.

These methodologies contribute to the construction of 
comprehensive and accurate KGs. In addition, they also pave the way 
for innovative applications in patient-centric healthcare.
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4.1.4.4 Axioms and rules utilization
PCKGs utilize axioms and rules to enhance the representation and 

analysis of patient data, leading to more informed healthcare 
decisions. Axioms in PCKGs are fundamental principles or statements 
accepted as accurate without proof and used to define relationships 
and properties within the graph. Conversely, rules are logical 
statements that infer new knowledge from existing data within the 
graph. Combining axioms and rules is essential in structuring and 
interpreting complex medical data, enabling more personalized and 
effective patient care.

The methodologies for creating axioms and rules in PCKGs vary 
across research works. Chu et al. (2021) demonstrated the adaptation 
of multi-center clinical datasets by incorporating an external KG, 
which enhanced patient features and improved predictions for acute 
kidney injury in heart failure patients. This approach signifies the 
importance of integrating diverse data sources and knowledge bases 
into PCKGs. In another study, Tomczak and Gonczarek (2012) 
developed a Graph-based Rules Inducer for extracting decision rules 
from data streams in diabetes treatment. This method supported 
medical interviews by tracking hidden context changes and avoiding 
overfitting, highlighting the importance of dynamic rule adaptation 
in response to evolving data. Shang et  al. (2021) utilized an 
EHR-oriented KG system to effectively harness non-used information 
buried in EHRs, thereby improving healthcare quality and providing 
interpretable recommendations for specialist physicians.

The use of graph-based association rules for mining medical 
databases, as demonstrated by Alzoubi (2013), revealed the potential 
of discovering hidden medical knowledge, which could contribute 
significantly to understanding complex medical conditions like 
preterm birth. Similarly, RuleHub, as introduced by Ahmadi et al. 
(2020), is an extensible corpus of rules for public KGs, enabling users 
to archive and retrieve rules from popular KGs. This tool improves 
data understanding and reduces redundant work, illustrating the 
importance of rule-sharing and standardization in the field. Wright 
et al. (2011) developed a set of rules for inferring patient problems 
from clinical and billing data, which performed better than using a 
problem list or billing data alone. This method improved clinical 
decision support and care improvement, showcasing the practical 
application of rule-based systems in clinical settings.

Based on our review, using axioms and rules in PCKGs is a 
dynamic and evolving field, with methodologies ranging from 
integrating diverse data sources to developing specialized, disease-
centric graphs. These approaches enhance the understanding of 
complex medical data and significantly advance personalized 
patient care.

4.2 PCKG evaluation

Evaluation of PCKGs is critical for ensuring their efficacy and 
accuracy in representing and inferring medical knowledge. These 
evaluations are typically conducted using two principal methodologies: 
qualitative and quantitative assessments. Qualitative assessment 
involves a detailed examination of the KG to ensure it aligns with 
clinical best practices and accurately reflects medical relationships. 
This method may utilize usability studies, content analysis, and expert 
panel reviews to gage the graph’s relevance and correctness 
(Rotmensch et al., 2017; Brundage et al., 2015). On the other hand, 

quantitative assessment employs statistical and computational 
techniques to measure performance metrics such as accuracy, recall, 
and precision, providing a numerical evaluation of the graph’s 
effectiveness (Rotmensch et al., 2017).

4.2.1 Quantitative assessment
Quantitative methodologies for PCKG evaluation focus on 

numerical metrics to assess the graph’s performance. These methods 
include completeness, consistency, accuracy, and embedding techniques.

Completeness in a KG refers to the extent to which all necessary 
information is represented. In healthcare, this means ensuring that a 
PCKG includes comprehensive data on diseases, symptoms, 
treatments, and patient histories. A systematic literature review by Issa 
et al. (2021) emphasizes the importance of assessing the completeness 
of KGs and identifying various methodologies and metrics used for 
this purpose. On the other hand, consistency involves checking for 
logical coherence within the graph, particularly in terms of medical 
terminologies and relationships. This ensures that the KG does not 
contain contradictory information, which is crucial for clinical 
decision-making. The work of Sharma and Bhatt (2022) on privacy- 
preserving KGs in healthcare highlights the importance of maintaining 
consistency in data representation.

Other methods, such as accuracy assessment and embedding 
techniques, are integral to developing reliable PCKGs. The accuracy 
of a KG, as highlighted by Li et al. (2020), is crucial for patient safety 
and effective treatment planning, ensuring that the information aligns 
with authoritative medical databases and literature. Complementing 
this, embedding techniques, such as node2vec or GraphSAGE, as 
demonstrated by Talukder et al. (2022), play a vital role in transforming 
complex graph data into a more accessible format by capturing and 
representing semantic relationships. Moreover, the results of these 
embedding techniques can be quantitatively evaluated through tasks 
like link prediction, triple classification, and clustering, which provide 
metrics to assess the quality and effectiveness of the embeddings in 
representing the underlying knowledge within the PCKG.

4.2.2 Qualitative assessment
Qualitative assessment methodologies are instrumental in 

evaluating the effectiveness of PCKGs in meeting the needs of their 
intended users, including clinicians, researchers, and patients.

In the qualitative assessment of PCKGs, usability studies and 
feedback loops play an essential role in the KG evaluation. Usability 
studies, as highlighted by Brundage et  al. (2015), are crucial for 
evaluating the ease of use and accessibility of PCKGs, particularly in 
the context of interpreting patient-reported outcomes (PROs) in 
graphic format. These studies typically employ a blend of qualitative 
and quantitative methods, including surveys, interviews, and user 
testing to gather comprehensive feedback on the user experience. 
Complementing this, feedback loops, as discussed by Rospocher et al. 
(2016), enable users to provide direct input on their experiences with 
the KG. This feedback is instrumental in continuously refining and 
adapting the KG to ensure it aligns closely with user needs 
and preferences.

Furthermore, the quality of PCKGs is also gaged through 
comparison with established databases and expert validation. 
Benchmarking PCKGs against renowned medical databases like 
PubMed and ClinicalTrials.gov is essential for assessing their content 
coverage and accuracy (Huang et al., 2017). This comparison helps 
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identifying any gaps or discrepancies in the PCKG. Additionally, 
expert validation, underscored by the work of Rotmensch et al. (2017), 
involves domain experts who ensure the medical relevance and 
accuracy of the PCKG’s content. Their insights into the clinical 
applicability of the information within the KG are vital for maintaining 
its reliability and trustworthiness.

The evaluation of PCKGs through qualitative and quantitative 
assessments is a multifaceted process that involves reviewing medical 
content and analyzing performance metrics. Progress in this field has 
benefitted medical professionals and patients by ensuring that PCKGs 
serve as reliable and effective tools.

4.3 PCKG processing

By processing PCKGs, healthcare providers can extract actionable 
insights that inform clinical decisions. The utilization of PCKGs 
involves different methods, including reasoning, semantic search, 
and inference.

4.3.1 Reasoning
KG Reasoning in healthcare extends beyond mere data 

aggregation, playing an essential role in deriving new insights and 
facilitating informed decision-making. This reasoning process 
involves structuring information, extracting features and relations, 
and performing logical deductions to uncover new knowledge from 
existing data within the graph (Rajabi and Kafaie, 2022). For instance, 
in mental healthcare, KGs have been utilized for emotion recognition 
from facial expressions and heart rate, demonstrating the potential of 
knowledge reasoning in predicting emotional states (Wenying et al., 
2020). Moreover, KGs in healthcare support clinical decision- making 
and enhance hospital efficiency by integrating heterogeneous medical 
knowledge and services, thereby enabling cognitive computing and 
semantic reasoning (Ding et al., 2021).

Furthermore, integrating LLMs with KGs can significantly improve 
patient engagement by empowering patients to navigate the healthcare 
system more effectively. With their NLP capabilities, LLMs facilitate 
patient-provider communication by allowing patients to ask questions 
and receive personalized responses tailored to their health concerns 
(Kassner et al., 2023). This patient-centric approach enhances the patient 
experience and fosters a collaborative environment where patients are 
more actively involved in their care decisions (Hou et al., 2023).

4.3.2 Semantic search
It enables the retrieval of specific information by structuring 

searches to navigate the complex relationships within the graph. 
Various strategies have been adopted to enhance the precision and 
efficiency of information retrieval in PCKGs. For instance, using 
Semantic Web and Knowledge Management approaches has been 
pivotal in implementing patient-centric strategies with well-defined 
semantics (Lytras et al., 2009). Graph-based methods incorporating 
semantic-rich knowledge bases and lazy learning algorithms have 
shown promise in linking multimodal clinical data for improved 
diagnosis performance (Wang et al., 2018). Moreover, the retrieval of 
similar clinical cases has been refined by mapping text to Unified 
Medical Language System (UMLS) concepts and representing patient 
records as semantic graphs, demonstrating superiority over traditional 
models (Plaza and Díaz, 2010).

Traditional semantic search methods often rely on structured 
queries and entity-centric KGs, focusing primarily on discrete entities 
and their relationships. However, these approaches can be limited in 
capturing the complexities of patient data, which often includes 
temporal and contextual information. Recent advancements in 
knowledge graph technology, particularly in integrating event-centric 
data, have begun to address these limitations. For instance, highlight 
the importance of event-centric knowledge graphs, which can provide 
richer contextual information often missing in traditional entity-
centric models (Gottschalk and Demidova, 2018). Similarly, it 
emphasizes that existing knowledge graphs frequently overlook 
temporal relationships, which is crucial for understanding patient 
histories and treatment timelines (Costa et al., 2020).

Integrating LLMs, such as GPT-3, into the semantic search 
framework of PCKGs presents a transformative opportunity to 
advance search capabilities beyond conventional methods. LLMs excel 
in understanding and generating human-like text, making them 
powerful tools for interpreting complex queries and retrieving relevant 
information from knowledge graphs. The combination of LLMs with 
PCKGs not only enhances the interpretability and contextual 
relevance of search results but also personalizes the information 
retrieved to align with patient-specific contexts, significantly 
improving the quality of healthcare decisions (Wilhelm et al., 2023). 
This advancement is particularly critical in healthcare, where the 
subtleties of patient data can greatly influence treatment outcomes. 
Furthermore, LLMs hold promise in supporting mental healthcare by 
providing contextually relevant information while ensuring clinicians 
remain central to the decision-making process (Torous and 
Blease, 2023).

4.3.3 Inference
Inference uses the graph’s inherent structure to deduce new 

insights, facilitating the discovery of patterns and trends that may not 
be immediately apparent (Wang et al., 2018; Lytras et al., 2009). One 
prominent method for inference in KGs is using ontology-based 
reasoning. For instance, they demonstrated the effectiveness of 
ontology-based inference by utilizing the Elk reasoner to derive new 
triples from an existing knowledge graph, significantly expanding its 
informational scope (Alshahrani et  al., 2017). This approach is 
particularly relevant in healthcare, where medical ontologies can 
encapsulate complex relationships among diseases, symptoms, and 
treatments. The ability to infer new knowledge from existing data 
allows healthcare providers to uncover insights that may not 
be  immediately apparent from raw data alone. Moreover, the 
integration of statistical relational learning (SRL) techniques into 
knowledge graphs has been shown to enhance inference capabilities 
and reviewed various SRL techniques that can be applied to large-scale 
knowledge graphs, highlighting their potential to improve the accuracy 
and completeness of inferences made from these graphs (Nickel et al., 
2016). This is particularly important in PCKGs, where the relationships 
between patient data points can be  intricate and multifaceted. By 
leveraging SRL, PCKGs can provide more robust predictions and 
recommendations based on the underlying data. In addition to 
traditional reasoning methods, machine learning approaches, 
particularly those involving neural networks, have gained traction in 
KG inference. For example, recent advancements in link prediction 
algorithms based on neural embeddings have shown promise in 
completing sparse KGs (Agibetov and Samwald, 2020). These 
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algorithms can identify missing relationships between entities in a 
PCKG, enhancing the graph’s utility for clinical applications. 
Furthermore, the work emphasizes the importance of effectively 
learning over multiple graphs to construct a unified representation, 
which is crucial for comprehensive patient-centric applications (Trivedi 
et al., 2018). Fuzzy inference systems (FIS) have also emerged as a 
valuable technique in PCKGs, particularly for diagnosing diseases. As 
highlighted, FIS can facilitate accurate and early diagnosis by utilizing 
fuzzy logic to interpret patient data (Chuan et al., 2022). This method 
is particularly beneficial in healthcare settings where uncertainty and 
variability in patient data are prevalent. By incorporating fuzzy 
inference into PCKGs, healthcare providers can better understand 
patient conditions and tailor interventions accordingly.

These methods underscore the advances in accuracy and 
efficiency in the processing and utilization of PCKGs, leading to 
enhanced healthcare outcomes.

After examining the methodologies for building, evaluating, and 
processing PCKGs, we move on to practical applications and use cases 
to demonstrate how PCKGs can be applied in real-world scenarios, 
showing their impact and significance in healthcare.

5 Applications and use cases

As the healthcare industry increasingly embraces data-driven 
decision-making, PCKGs have emerged as a powerful tool for 
personalized medicine. These KGs, which place the patient at the 
center of a complex network of interconnected health data, offer a 
holistic view of a patient’s health journey. They encompass various 
data, from medical history and genetic information to lifestyle factors 
and environmental influences. The applications of these KGs are broad 
and innovative, offering the potential for improved disease prediction, 
enhanced treatment planning, and more effective preventive strategies. 
In the following subsections, we will explore these applications in 
detail, shedding light on how PCKGs revolutionize healthcare and 
pave the way for a more personalized, predictive, and proactive 
approach to patient care.

5.1 Predicting disease before onset

The healthcare sector has seen significant advancements in 
patient-centric solutions by integrating KGs. Using a KG to proactively 
forecast the likelihood of a disease developing in an individual before 
any symptoms appear involves synthesizing various data points related 
to patient history, genetic information, lifestyle factors, and broader 
medical knowledge to identify patterns and risk factors associated 
with diseases. This predictive model allows for early intervention 
strategies, significantly altering the disease trajectory and improving 
the patient’s long-term health outcomes.

The methodologies for creating PCKGs for disease prediction are 
diverse and innovative. Chen et al. (2019) discuss the robust extraction 
of medical knowledge from EHRs to build graphs that evaluate 
accuracy across different diseases and patient demographics using 
non-linear functions for causal relationships. Similarly, Talukder et al. 
(2022) describe an AI-based approach integrating disease-related 
knowledge bodies with Node2VEC for link prediction in disease-
symptom networks. Furthermore, Liang et al. (2022) highlight using 

multi-hop reasoning over KGs, which provides interpretability and is 
superior to single-hop methods. Similarly, refining of medical KGs 
using latent representations aids in prediction and maintains the 
explainability of diagnoses (Heilig et al., 2022). Expanding on these 
advancements, Li et al. (2020) introduce a Graph Neural Network-
Based Diagnosis Prediction (GNDP) model that uses spatial–temporal 
graph convolutional networks for diagnosis predictions. In a 
complementary manner, Zheng et al. (2021) proposed a Multi-modal 
Graph Learning framework (MMGL) that exploits multi-modality 
information for disease prediction.

Different strategies across research works include the use of 
random walk along KG (Sun et al., 2020), Graph Neural Networks 
(GNN) for embedding medical concepts (Sun et al., 2020), and hybrid 
systems combining KGs with clinical experience for pediatric disease 
prediction (Liu et al., 2017). Zhang (2021) built an automatic question-
answering system based on medical KGs, while Saha et al. (2020) 
predicted missing and noisy links in clinical KGs using neighborhood-
based embeddings. Key findings from our literature review indicate 
significant advances in disease prediction accuracy, efficiency, and 
outcomes. For instance, the integration of GNNs with EMR data has 
led to highly representative node embeddings that improve prediction 
accuracy (Sun et al., 2020).

The use of tensor factorization on biological KGs for predicting 
co-morbid disease pairs (Biswas et al., 2019) and the construction of 
KGs based on evidence-based medicine for diabetes complications 
(Wang et al., 2020) is a notable advance.

PCKGs represent a significant step forward in the field of disease 
prediction. They offer the potential to transform patient outcomes by 
enabling early detection and personalized treatment plans. Future 
implications include the continued refinement of these models to 
enhance their predictive power and the integration of even more 
diverse data sources to capture the full spectrum of patient health and 
disease progression. In Table 2 we summarize a list of selected disease 
prediction applications in terms of their impact and limitations in the 
field of PCKGs.

5.2 Recommending individualized 
interventions

Intervention recommendation aims to use KGs to suggest tailored 
medications and treatments. By mapping patients’ unique health 
profiles, these graphs enable physicians to pinpoint optimal therapies 
that enhance the precision of medical decisions, leading to improved 
patient outcomes. The application of KGs in personalized treatments 
is predicated on integrating diverse data sources, including EHRs, 
clinical notes, and patient-generated data, to construct a 
comprehensive, interconnected data structure that reflects individual 
patient profiles. This patient-centric approach is crucial as it allows for 
treatments to be  tailored based on each patient’s unique medical 
history, genetic information, lifestyle, and preferences, which is a 
departure from the one-size-fits-all healthcare model.

The approaches to developing and implementing PCKGs differ 
among research studies, but they all aim to achieve robustness, 
accuracy, and personalization. For instance, Gyrard et al. (2018) 
aggregate knowledge from IoT devices, clinical notes, and EMRs 
to manage chronic diseases, showcasing the integration of AI and 
machine learning in constructing Personalized Healthcare 
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Knowledge Graphs (PHKGs). Transitioning from a general 
approach to a more specialized application, Individualized 
Knowledge Graphs (IKGs) in cardiovascular medicine are one 
strategy for developing these KGs, which combine biological 
knowledge with medical histories and health outcomes to create 
personalized treatment strategies (Ping et  al., 2017). Further 
refining the methodological framework, Rotmensch et al. (2017) 
utilized concept extraction and probabilistic models, finding the 
Noisy OR model particularly effective for constructing high-
quality health KGs. Building on these methodologies, Shirai et al. 
(2021) applied Personal Knowledge Graphs (PKGs) to integrate 
patient-specific information into decision-making tools for 
personalized healthcare. In a similar vein of enhancing disease 
treatment strategies through personalized data, Zhu et al. (2022) 
introduced a KG that enhances rare disease (RD) treatment 
recommendations by systematically compiling and semantically 
annotating RD-related scientific articles, aggregating essential 
research findings and therapeutic insights with a sophisticated 
data model.

Literature has demonstrated significant advances in treatment 
accuracy, efficiency, and outcomes. For instance, the Four-Tuple 

Path Matrix in Traditional Chinese Medicine has been proposed 
to create personalized KGs, enhancing diagnostic modalities (Xie 
et al., 2018). Li et al. (2014) demonstrated how personal KGs could 
be  automatically constructed from user utterances in 
conversational dialogs, indicating the potential for real-time, 
dynamic treatment adjustments. PCKGs provide multiple 
advantages. By analyzing patient profiles using KGs, treatments are 
more accurate and efficient than traditional methods. For example, 
Zhang et al. (2022) developed an intuitive graph representation of 
knowledge for nonpharmacological treatment of psychotic 
symptoms in dementia, potentially transforming care strategies for 
such complex conditions.

There are many potential implications for future personalized 
treatment and patient outcomes. A more informed and dynamic 
approach to treatment has the potential to enhance medical precision, 
improve patient engagement and optimize health outcomes by 
integrating PCKGs. These methods are expected to become more 
sophisticated as the field evolves, allowing for even greater 
personalization and efficacy in treatment. In Table 3, we summarize a 
list of selected treatment decision applications in terms of their impact 
and limitations in the field of PCKGs.

TABLE 2 A summary of selected literature on PCKGs for “Predicting Disease Before Onset.”

Paper title Focus/objective Contribution(s) Limitation(s)

Predicting disease before onset

A novel link prediction approach 

on clinical knowledge graphs 

utilizing graph structures 

(Dörpinghaus et al., 2022)

The goal is to create a proof of 

concept showcasing the efficacy 

of graph structures in AI 

methodologies

 • Development of a graph-based method 

merging Conditional Random Fields (CRFs) 

and graph embedding for knowledge discovery

 • This method successfully predicts labels for 

graph nodes with high precision and recall

 • The method is time-intensive when 

querying features from the graph, 

particularly with large datasets

 • Increased runtime and memory demands 

for multi-node paths in the graph

Deep knowledge reasoning guided 

disease prediction (Chuan et al., 

2022)

The paper aims to enhance model 

interpretability by integrating 

knowledge entities with single-

hop and multi-hop relationships

 • Introduction of HitaNet, a hierarchical time-

aware attention network

 • HitaNet uses a self-attention based transformer 

model for enhanced disease prediction

 • The paper presents a unique token wrapping 

method to merge knowledge graph insights 

with EHR data

 • Lower time efficiency compared to 

baseline methods as a limitation

 • The proposed method’s effectiveness 

diminishes with the availability of 

sufficient data

Predicting missing and noisy links 

via neighborhood preserving 

graph embeddings in a clinical 

knowledgebase (Saha et al., 2020)

The paper proposes a model that 

combines support vector 

classification (SVC) and neural 

network-based probabilistic 

embedding (NPE) to predict the 

links between clinical entities in 

the KG

 • The development of a novel approach that 

integrates SVC and NPE for link 

prediction in KGs

 • The model achieved promising results in terms 

of predicting missing associations

 • The reliance on existing clinical databases, 

which may contain noisy or 

incomplete data

 • The potential mismatch between model 

predictions and clinical recommendations

Relation prediction of co-morbid 

diseases using knowledge graph 

completion (Biswas et al., 2019)

The objective is to predict 

relationships between co-morbid 

diseases using knowledge graph 

completion techniques

 • Proposing a method that combines distributed 

representation learning and graph embedding 

to predict disease-disease relationships

 • Development of a novel approach that 

leverages the structure and semantics of a KG 

to predict disease relationships

 • The proposed method relies on the 

availability of a comprehensive and 

accurate knowledge graph

 • The evaluation of the method is limited to 

a specific dataset

Disease prediction via graph 

neural networks (Sun et al., 2020)

The paper addresses the 

challenges in predicting both 

common and rare diseases by 

integrating expert knowledge 

with machine learning techniques

 • Proposing a systematic solution that combines 

expert knowledge with machine learning

 • Introducing a novel graph embedding-based 

model for disease prediction, which learns 

embeddings from medical concept graphs and 

patient record graphs

 • Struggling to adapt to rare diseases due to 

data scarcity and complex symptom-

diagnosis relationships

 • Reliance on historical patient records for 

model training limits the ability to serve 

new patients
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5.3 Enhancing clinical trials

KGs represent a paradigm shift in clinical trial patient selection by 
offering a structured, interconnected data framework that can encapsulate 
complex patient information, medical histories, and potential trial 
criteria. In clinical trials, patient-centric approaches are crucial because 
personalized medicine tailors treatments to each patient’s characteristics, 
necessitating a comprehensive understanding of patient data.

PCKGs are created and applied using diverse methodologies. 
Gortzis and Nikiforidis (2008) described an N-tier system that 
combines KGs with human collaboration and scalable knowledge 
engineering tactics. Expert input must be combined with scalable data 
structures to select patients effectively. Xiang et al. (2019) highlighted 
the standardization and structural integration provided by KGs, 
essential for auxiliary diagnosis systems in clinical trials. Strategies for 
developing KGs for patient selection in clinical trials include linking of 
multimodal data types for automatic diagnosis (Wang et al., 2018). 
Nicholson and Greene (2020) discussed machine learning methods for 
constructing low-dimensional representations of KGs, which support 
applications in genomics, pharmaceutical, and clinical domains.

Various studies have indicated significant improvements in the 
accuracy, efficiency, and outcomes of clinical trial patient selection. 
For instance, the Safe Medicine Recommendation (SMR) framework 
by Wang et  al. (2017) bridges electronic medical records with 
medical KGs to learn patient-disease-drug embeddings, enhancing 
the precision of clinical trial patient selection. Compared with 
traditional ways of selecting patients for clinical trials, PCKGs offer 
a more thorough and subtle approach. Several studies have 
demonstrated the effectiveness of KGs in improving clinical trial 
design and outcomes by providing a holistic view of patient data, 
facilitating personalized trial matching, and providing a more 
holistic view of patient data (Sharma, 2015; Weng et al., 2017; Huang 
et al., 2017). Ultimately, integrating patient-centric KGs in selecting 
clinical trial participants can transform the field by improving the 
precision and personalization of patient care. As a result of a better 
understanding of patient data, future trials will likely be  more 
adaptive, patients will be  more engaged, and outcomes may 
be improved. In Table 4, we summarize a list of selected treatment 
decision applications in terms of their impact and limitations in the 
field of PCKGs.

TABLE 3 A summary of selected literature on PCKGs for “Recommending Individualized Interventions.”

Paper title Focus/objective Contribution(s) Limitation(s)

Recommending individualized interventions

Individualized knowledge graph 

(Ping et al., 2017)

 • Envisioning individualized 

Knowledge Graphs (iKGs) in 

cardiovascular medicine

 • Proposing a modern informatics 

platform for transforming clinical 

and scientific discovery

 • Introducing the concept of iKGs for 

aggregating and presenting individualized 

cardiovascular health data

 • Highlighting the role of iKGs in linking 

biological and clinical knowledge of 

individual patients

 • Acknowledging challenges in data 

fragmentation, noncommensurability, and 

semantic inference within 

cardiovascular data

Personalized health knowledge 

graph (Gyrard et al., 2018)

Aims to manage chronic diseases 

more effectively using IoT data 

analytics and explicit knowledge

 • Proposes a methodology to build PHKG, 

integrating heterogeneous data sources

 • Offers a solution for contextualizing and 

personalizing healthcare information

 • The paper acknowledges the complexity in 

semantic integration of diverse data

 • It highlights the challenges in tailoring 

generic knowledge to individual patients

Developing an intuitive graph 

representation of knowledge for 

nonpharmacological treatment of 

psychotic symptoms in dementia 

(Zhang et al., 2022)

 • Develop a knowledge graph for 

nonpharmacological treatment of 

psychotic symptoms in dementia

 • Enhance understanding and 

management of dementia-related 

psychotic symptoms through 

nonpharmacological methods

 • Creation of the Dementia-Related 

Psychotic Symptom Nonpharmacological 

Treatment Ontology (DRPSNPTO)

 • Improvement in visualization and 

computerization of gerontological 

knowledge

Learning a health knowledge 

graph from electronic medical 

records (Finlayson et al., 2014)

Automatically learn a health KG from 

EMRs to link diseases and symptoms 

and improve clinical decision-

support systems

 • A methodology for deriving health KG 

from EMR using probabilistic models

 • Demonstration that the noisy OR model 

significantly outperforms other 

tested models

 • Inherent difficulties in interpreting EMR 

data, especially the presence of complex 

patient conditions

 • The reliance on rudimentary concept 

extraction pipelines

 • Limitations related to the automatic 

inference of causal relationships from 

observational data

Applying personal knowledge 

graphs to health (Shirai et al., 

2021)

The paper focuses on leveraging 

PHKGs to enhance healthcare 

decision-making by integrating 

personal health information with 

broader knowledge graphs

 • Proposing a conceptual framework for 

PHKGs, highlighting how they can 

support personalized, knowledge-driven 

healthcare applications by leveraging data 

from EHRs, IoT devices, and other health-

related data sources

 • Collecting and storing personal health 

knowledge from heterogeneous sources

 • Linking personal health knowledge to 

external KGs enhances the PHKG with 

broader contextual information

 • Maintaining the PHKG to ensure it remains 

up-to-date and accurate
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TABLE 4 A summary of selected literature on PCKGs for “Enhancing Clinical Trials.”

Paper title Focus/objective Contribution(s) Limitation(s)

Recommending Individualized Interventions

Knowledge graph-based clinical 

decision support system 

reasoning (Xiang et al., 2019)

The focus of the paper is to 

highlight the benefits of using 

knowledge graphs over traditional 

hand-crafted rule databases in 

CDSSs

The introduction of the Path-Ranking 

Algorithm (PRA) as a method for automatically 

discovering symptoms without human 

intervention

 • The probability of certain paths in the KG 

may not be accurate

 • The lack of details on the classification 

model used

Constructing knowledge graphs 

and their biomedical applications 

(Nicholson and Greene, 2020)

 • Examining the construction and 

application of biomedical 

knowledge graphs

 • Emphasizing how machine 

learning is transforming these 

processes

 • Discussion of knowledge graph construction, 

including manual curation and text mining

 • Review of representational learning 

techniques and their applications in 

biomedical fields

 • Need for advanced techniques to handle 

complex sentence structures

 • Limitations in current methods to 

represent diverse relationships in KGs

 • Scalability and memory limitations in 

matrix factorization techniques

SMR: Medical knowledge graph 

embedding for safe medicine 

recommendation (Sharma, 2015)

Developing a framework to 

recommend safe medicines by 

leveraging a heterogeneous graph 

that integrates patient data, diseases, 

and medicines

 • Development of graph-based embedding 

models enabling the recommendation of 

newly emerged medicines effectively

 • A novel method to recommend safe 

medicines for new patients and minimizing 

potential adverse drug reactions

 • Introduction of the SMR framework as a new 

approach to the link prediction problem

 • Dealing with the challenge of 

recommending safe medicines, especially 

new ones, to patients

 • Minimizing potential adverse drug 

reactions in medicine recommendations is 

critical to patient safety

Patient centric approach for 

clinical trials: Current trend and 

new opportunities (Weng et al., 

2017)

Exploring the shifting paradigm in 

clinical trials toward a more patient-

centric model

Identifying new opportunities for the clinical 

research industry to adopt patient-centric 

approaches to accelerate drug development and 

improve trial outcomes

 • The complexity and rising costs of 

clinical research

 • Ensuring data transparency and building 

trust with patients participating in 

clinical trials

Automatic diagnosis with 

efficient medical case searching 

based on evolving graphs (Lytras 

et al., 2009)

Developing a method for automatic 

diagnosis by improving medical 

case searching using evolving 

graphs, which dynamically 

incorporate new medical cases and 

knowledge

 • Introduction of an evolving graph framework 

that integrates new medical cases 

and knowledge

 • A novel method for medical case searching 

that leverages the evolving graph structure

 • An optimization strategy for embedding 

learning in the heterogeneous graph

 • Handling the dynamic nature of medical 

knowledge and cases

 • Balancing the computational complexity of 

embedding learning in a continuously 

evolving graph structure

 • Scalability and maintaining high accuracy 

and efficiency as the graph expands

Although PCKGs have proven valuable in recommending 
individual interventions, predicting disease before onset, and 
improving clinical trials, their utility goes far beyond these. Using KGs 
in other innovative healthcare applications is increasingly becoming 
common, such as optimizing hospital workflows, tailoring patient 
engagement strategies, and even developing telemedicine platforms. 
With these innovative tools, healthcare can be  revolutionized by 
providing a more holistic, integrated view of patient data and new 
opportunities for research and treatment methods. Having explored 
the diverse applications and use cases of PCKGs in various domains, 
we now focus on this field’s challenges and future directions. This 
transition allows us to critically examine the current limitations and 
envision potential advancements that could further enhance the utility 
and effectiveness of PCKGs.

6 Research challenges and discussion

PCKGs in healthcare are designed to provide a comprehensive, 
unified view of patient data by integrating information from various 
sources, including EHRs, medical literature, and patient-generated 

data. These graphs aim to support better clinical decision-making and 
personalized patient care by representing complex medical data in an 
interconnected format that is more accessible and actionable for 
healthcare providers.

The current state of research in PCKGs is focused on overcoming 
several key challenges to maximize their potential in healthcare. Ji 
et  al. (2020) discuss the difficulties in knowledge acquisition, 
completion, and temporal KG development, which are crucial for 
maintaining up-to-date and comprehensive patient profiles. Building 
on this foundation, Chen et al. (2019) highlight the need for robustness 
in PCKGs, particularly in addressing sample size limitations and 
unmeasured confounders, to extend models to larger patient visits. 
Moreover, Rastogi and Zaki (2020) emphasize the importance of 
designing, building, and operationalizing PCKGs tailored to 
individual patients. However, a significant hurdle remains in the actual 
construction of PCKGs. As noted by Gyrard et al. (2018) and Cong 
et al. (2018), the complexities in constructing PCKGs are often time-
consuming and heavily reliant on source data quality. A significant 
challenge in applying traditional KG embedding methods to patient-
centric healthcare applications is their struggle with structural sparsity. 
Hu et al. (2021) argue that conventional techniques, such as TransE 
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and ConvE, while adept at mapping entities and relationships into a 
vector space, falter because they rely solely on KG triplets, neglecting 
the rich auxiliary texts that describe entities. This limitation 
significantly limits the comprehensiveness and utility of KGs in 
capturing detailed patient information and medical knowledge, 
indicating a key challenge in leveraging KGs for complex 
healthcare applications.

Data quality and standardization remain significant challenges, 
as heterogeneous data structures, poor data quality, and varying 
medical standards complicate data integration into a coherent KG 
(Zhang et al., 2020). Integrating PCKGs into clinical workflows also 
presents challenges, as it requires the development of systems that 
complement healthcare providers’ routines without causing 
disruptions (Gortzis and Nikiforidis, 2008). Additionally, scalability 
is another concern, as PKGs must be able to incorporate an ever-
increasing amount of data from diverse sources, including genomic 
information and patient lifestyle data (Wang et al., 2018). Patient 
data privacy is a critical concern, particularly in utilizing PCKGs, 
which involve handling sensitive personal health information and 
require strict privacy controls to safeguard patient confidentiality. 
Using patients’ data for various purposes, such as consultations, 
research, and emergencies, poses a significant challenge for 
authorization systems, emphasizing the need for robust privacy 
protection (Al-Zubaidie et  al., 2019; Sharma and Bhatt, 2022). 
Furthermore, real-time data analysis within PCKGs is technologically 
demanding, requiring advanced computational methods to process 
and analyze data promptly for it to be clinically relevant (Hooshafza 
et al., 2021).

Given these challenges, it becomes clear that continued 
technological and methodological innovations are necessary to 
enhance PCKGs’ predictive capabilities. Advanced analytics, machine 
learning, and semantic web technologies could be key. Additionally, 
as PCKGs become more integrated into healthcare delivery, addressing 
regulatory and ethical considerations becomes increasingly essential. 
This requires collaboration among computer scientists, healthcare 
professionals, and policymakers to align the development of PCKGs 
with broader healthcare objectives.

7 Conclusion and future directions

This literature review of PCKGs explores their development, 
evaluation, processing techniques, applications, challenges, and 
prospects. PCKGs represent a field in healthcare informatics that aims 
to revolutionize personalized patient care by integrating and 
synthesizing diverse healthcare data sources. The review highlights the 
current state-of-the-art methodologies for constructing and evaluating 
PCKGs, emphasizing the importance of qualitative and quantitative 
approaches to assess their effectiveness in healthcare settings. In 
addition to construction and evaluation, the review delves into 
innovative processing techniques such as reasoning, semantic search, 
and inference. These techniques significantly enhance the accuracy 
and efficiency of PCKGs, ultimately improving patient-centered care. 
Furthermore, exploring different applications of PCKGs in 
healthcare—including disease prediction, personalized treatment 
recommendations, and advancements in clinical trials—reveals their 
potential to transform healthcare through personalized and 
predictive medicine.

Future directions in PCKG research include leveraging advanced 
analytics and machine learning to improve predictive capabilities, 
which could lead to more accurate and timely interventions (Wu, 
2021). In addition, semantic web technologies are also predicted to play 
a significant role in enhancing the accessibility and utility of PCKGs 
(Huang et  al., 2017). Building on this momentum, personalized 
medicine emerges as a promising area where PCKGs can substantially 
impact. By linking genomic data with clinical outcomes, treatments can 
be  tailored to individual patients, offering a more personalized 
approach to healthcare (Chandak et  al., 2023). To further this 
advancement, methodological innovations, such as new algorithms for 
data harmonization and user interface design, are crucial. These 
innovations are needed to address current challenges and facilitate the 
broader adoption of PCKGs in clinical practice (Peng et al., 2023). 
Simultaneously, as PCKGs become more integrated into healthcare 
delivery, regulatory and ethical considerations gain prominence. These 
aspects are critical to ensuring that the deployment of PCKGs adheres 
to the highest standards of patient care and data management. 
Therefore, cross-disciplinary collaboration becomes essential for 
advancing PCKG technology. This involves computer scientists, 
healthcare professionals, and policy-makers working together to ensure 
that the development of PCKGs aligns with broader healthcare 
objectives and respects ethical guidelines (Solanki et  al., 2022; 
Maxhelaku et al., 2022).

PCKGs represent a significant advancement in healthcare 
informatics. They can transform patient outcomes by enabling early 
detection and personalized treatment plans. Despite the challenges 
involved, the future outlook for PCKGs is promising, as they have the 
potential to improve patient care and healthcare delivery significantly. 
Ongoing research efforts and interdisciplinary collaboration will 
be crucial in fully realizing their novel impact on healthcare.
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