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This study addresses the research problem of enhancing In-Vitro Fertilization (IVF) 
success rate prediction by integrating advanced machine learning paradigms with 
gynecological expertise. The methodology involves the analysis of comprehensive 
datasets from 2017 to 2018 and 2010–2016. Machine learning models, including 
Logistic Regression, Gaussian NB, SVM, MLP, KNN, and ensemble models like 
Random Forest, AdaBoost, Logit Boost, RUS Boost, and RSM, were employed. 
Key findings reveal the significance of patient demographics, infertility factors, 
and treatment protocols in IVF success prediction. Notably, ensemble learning 
methods demonstrated high accuracy, with Logit Boost achieving an accuracy of 
96.35%. The implications of this research span clinical decision support, patient 
counseling, and data preprocessing techniques, highlighting the potential for 
personalized IVF treatments and continuous monitoring. The study underscores 
the importance of collaboration between gynecologists and data scientists to 
optimize IVF outcomes. Prospective studies and external validation are suggested 
as future directions, promising to further revolutionize fertility treatments and 
offer hope to couples facing infertility challenges.
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1 Introduction

In recent times, In-vitro fertilization (IVF) has emerged as a popular solution for 
addressing complications associated with infertility (Cascante et al., 2023). Infertility affects 
more than 80 million couples worldwide, prompting the need for effective reproductive 
interventions (Zafar et  al., 2023). IVF offers a promising pathway to overcome various 
challenges like endometriosis, genetic disorders, poor egg quality, and sperm-related issues 
(Wu et al., 2022). While IVF provides hope to many, it comes with significant uncertainties, 
including high costs and variable success rates (Franklin, 2022). This paper delves into the 
application of advanced machine learning paradigms to predict IVF success rates, aiming to 
provide a more accurate prognosis for couples undergoing the procedure.
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IVF, a groundbreaking assisted reproductive technology, involves 
fertilizing eggs with sperm outside the body and then transferring the 
resulting embryos to the woman’s uterus (Calandrillo and Deliganis, 
2015). This technique has led to the birth of over 5 million babies 
globally, providing a viable solution for individuals grappling with 
fertility challenges (Adamson et al., 2013). The process is multifaceted, 
encompassing medical procedures, surgeries, and multiple cycles, 
often spanning several months before achieving a successful pregnancy. 
Despite its potential benefits, the decision to pursue IVF is complicated 
by factors such as high costs, uncertainty, and emotional stress. These 
factors contribute to patients discontinuing treatment prematurely due 
to the physical and psychological burden (Hammarberg et al., 2001).

Given the intricate nature of IVF and the associated challenges, 
accurate prediction of success rates becomes paramount. Traditional 
methods of prediction are often subjective, relying heavily on the 
experience of individual medical practitioners. This limitation 
necessitates the development of systematic and statistically driven 
approaches that can provide reliable predictions. This is where 
Artificial Intelligence (AI) and Machine Learning (ML) step in, 
offering data-driven solutions that can transform decision-making 
processes in healthcare, including IVF.

The core problem addressed in this study is the unpredictability 
of IVF outcomes and the need for a more accurate prediction model. 
While various prediction models exist, they often lack comprehensive 
evaluation across different machine learning paradigms (Iftikhar et al., 
2020). The primary objective of this research is to explore and compare 
advanced machine learning algorithms to predict live-birth 
occurrences in IVF cycles. The study focuses specifically on cases 
where embryos are formed from couples’ gametes, rather than 
donor gametes.

Machine Learning, a branch of AI, equips computers with the 
ability to learn from past experiences and make predictions (Sadegh-
Zadeh et al., 2023; Surden, 2014; Carson and Kallen, 2021; Sadegh-
Zadeh et al., 2024). It offers a powerful means of analyzing complex 
patterns in data, resembling human decision-making processes. 
Neural network, a subset of ML, simulates human neural networks to 
identify intricate patterns that might elude human analysis (Aggarwal, 
2018; Nazari et al., 2024; Sadegh-Zadeh et al., 2023). In healthcare, ML 
and DL have already demonstrated their efficacy in personalized care, 
drug discovery, disease diagnosis, and surgery simulations. Applying 
these techniques to reproductive science holds the potential to 
enhance IVF success prediction (Louis et al., 2021; Sadegh-Zadeh 
et al., 2019).

This paper is structured to provide a comprehensive exploration 
of the application of advanced machine learning paradigms to IVF 
success prediction. The subsequent sections detail the methodology 
employed, including data collection and preprocessing techniques. It 
also outlines the various machine learning models utilized in the 
study. The results and discussion section presents a thorough 
comparison of model performance, using metrics such as F1-score, 
precision, recall, and ROC-AUC curves. By analyzing these metrics, 
the most effective model for IVF success prediction is determined.

2 Related work

The field of reproductive medicine, particularly in vitro 
fertilization (IVF), has seen substantial advancements in recent years. 

These advancements have been coupled with the integration of 
machine learning techniques, creating a dynamic landscape where 
predictive models are being developed to enhance the efficiency and 
success rates of IVF treatments (Katler et al., 2022). This literature 
review aims to provide an overview of the existing research in two key 
areas: IVF success prediction and the application of machine learning 
in healthcare, while also identifying the gaps that our study seeks 
to address.

2.1 In-vitro fertilization success prediction

In recent years, the field of assisted reproductive technology 
(ART) has witnessed substantial advancements, especially in the realm 
of in vitro fertilization (IVF) and intracytoplasmic sperm injection 
(ICSI) (Feuer and Rinaudo, 2016). As IVF and ICSI have become 
increasingly prevalent treatments for infertility, researchers and 
clinicians have turned to various methodologies, including machine 
learning and artificial intelligence, to predict treatment outcomes, 
improve success rates, and optimize patient care (Siristatidis 
et al., 2021).

In the study conducted by Smeenk et  al. (2005), the intricate 
relationship between psychological factors, stress hormones, and the 
outcomes of IVF/ICSI treatments was examined. The research 
involved collecting nocturnal urine samples from women undergoing 
their first IVF/ICSI cycle and assessing their stress hormone 
concentrations along with administering anxiety and depression 
questionnaires before treatment initiation. The findings revealed a 
notable positive correlation between urinary adrenaline 
concentrations at baseline and embryo transfer (ET) and depression 
scores at baseline. Additionally, successful treatment outcomes were 
associated with lower levels of adrenaline at oocyte retrieval and lower 
levels of both adrenaline and noradrenaline at ET, compared to 
unsuccessful treatments. These results underscored the significance of 
stress hormones, particularly adrenaline, in the intricate relationship 
between psychosocial stress, emotional well-being, and the outcomes 
of IVF/ICSI treatments.

Abdulrahim et  al. (2021) investigated couples’ preferences 
regarding fresh embryo transfer versus freezing of all embryos and 
their associated clinical outcomes in IVF treatments. The study found 
that couples’ preferences were primarily influenced by factors such as 
the chances of live birth, miscarriage, neonatal complications, and 
treatment costs, rather than differences in the treatment process, 
including the delay in embryo transfer with frozen embryos or the risk 
of ovarian hyperstimulation syndrome (OHSS) associated with fresh 
embryo transfer. The study utilized a discrete choice experiment 
(DCE) to survey infertile couples and revealed that they favored IVF 
techniques that offered higher live birth rates and lower rates of 
miscarriage and neonatal complications. The findings highlighted the 
importance of balancing success and safety in IVF treatments and 
emphasized the need to consider patient preferences for expected 
clinical outcomes and risks in individualized care.

Henderson et al. (2021) introduced an innovative counseling tool 
that utilizes predictive models to estimate the likelihood of live birth 
prior to IVF treatment. This tool integrates pre-treatment variables 
such as maternal age, ovarian reserve, and treatment history to offer 
patients informed expectations. Using logistic regression, the study 
identifies crucial predictors that notably impact IVF success rates. By 
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furnishing prospective parents with a personalized prediction tool, 
this research enables patients to make well-informed choices regarding 
their fertility treatment path, contributing to the broader effort of 
incorporating predictive models into clinical practice for assisted 
reproductive technology treatments.

Hassan et al. (2020) conducted a study illustrating the remarkable 
predictive capabilities of machine learning in the context of IVF 
outcomes. Utilizing a range of machine learning techniques, including 
classic algorithms, neural network, and ensemble methods, they 
analyzed the Human Fertilization and Embryology Authority (HFEA) 
dataset to predict live births following IVF/ICSI treatment. Their 
research demonstrated that machine learning models could achieve 
accuracy rates of up to 76.49% when predicting treatment outcomes, 
underlining the potential and practical relevance of machine learning 
in clinical settings.

Majumdar et  al. (2023) addressed the pressing issue of 
personalized prediction within the realm of initial IVF cycles, aiming 
to alleviate the socioeconomic stress associated with infertility. Their 
study leveraged a dataset comprising 2,268 patients who underwent 
IVF/ICSI procedures, spanning from January 2018 to December 2020 
at the Center of IVF and Human Reproduction, Sir Ganga Ram 
Hospital. With 79 relevant features encompassing factors such as 
maternal age, IVF cycle count, infertility type, duration, AMH levels, 
indication for IVF, sperm type, BMI, embryo transfer details, and 
β-hCG values, a machine learning model was meticulously 
constructed. The deep Inception-Residual Network architecture-based 
neural network stood out as the most promising classifier, achieving 
an impressive accuracy rate of 76% and an ROC-AUC score of 0.80, 
surpassing other models. This groundbreaking approach, pioneering 
in the realm of reproductive health, provides a novel avenue for 
delivering personalized predictions of IVF success, equipping both 
clinicians and patients with valuable insights to make informed 
decisions regarding their fertility journey.

Simopoulou et  al. (2018) conducted a groundbreaking study 
aimed at optimizing IVF treatment outcomes by incorporating omics 
data and artificial intelligence. Their research involved the integration 
of personal and lifestyle information from various European 
populations to construct a comprehensive model for treatment 
recommendations. Utilizing advanced mathematical methods, such 
as neural networks, the researchers sought to identify critical factors 
influencing successful IVF outcomes. This innovative approach 
highlighted the capacity of AI to harness intricate datasets and provide 
valuable insights for tailoring personalized treatment strategies in line 
with the evolution of assisted reproductive technology, ultimately 
contributing to safer, more effective IVF treatments.

In an extensive prospective observational cohort study conducted 
at a university-affiliated private infertility center, Vaegter et al. (2017) 
developed a predictive model for live birth outcomes following in vitro 
fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatments, 
specifically focusing on single-embryo transfer (SET) after 2 days of 
embryo culture. Their analysis of 8,451 IVF/ICSI treatments involving 
5,699 couples over a 15-year period revealed seven independent 
predictors of live birth: embryo score, ovarian sensitivity index (OSI), 
female age, treatment history, endometrial thickness, infertility cause, 
and female height. These factors collectively contributed to the 
construction of a prediction model with moderate discrimination but 
high accuracy in subgroups of patients, offering live birth rate (LBR) 
estimates ranging from <10 to >40%. The study’s internal validation 

data set, comprising 2,460 cases, confirmed the model’s excellent 
calibration. Notably, this research marked the first inclusion of female 
height as a predictor of live birth after IVF/ICSI, presenting a valuable 
tool for guiding medical professionals and prospective parents in their 
decision-making processes.

In recent years, time-lapse imaging has emerged as a powerful tool 
for improving IVF outcome prediction by continuously monitoring 
embryo development. Borna et  al. (2024) introduced a predictive 
model that utilizes time-lapse images captured at different stages of 
embryo development to predict pregnancy outcomes. Their approach 
demonstrated improved prediction accuracy by leveraging dynamic 
embryo characteristics that are not visible in static images. Similarly, 
Sawada et al. (2021) explored the use of time-lapse imaging combined 
with deep learning techniques to predict live birth outcomes, further 
highlighting the potential of this technology to enhance IVF success 
predictions. These studies demonstrate the value of continuous 
embryo monitoring in refining prediction models, offering richer data 
for analysis compared to traditional methods.

2.2 Application of machine learning in 
healthcare

The integration of machine learning in healthcare has shown 
immense promise, with applications spanning diagnosis, treatment 
planning, drug discovery, and patient management. In the field of 
reproductive medicine, a recent study by Chavez-Badiola et al. (2020) 
exemplifies this trend by addressing a longstanding challenge in 
assessing the viability of blastocysts for pregnancy prediction. 
Leveraging artificial vision and machine learning techniques, the 
researchers developed a novel algorithm that predicts pregnancy 
outcomes using the beta human chorionic gonadotropin (b-hCG) test, 
combining information from the morphology of embryos and the age 
of patients. The algorithm was trained and evaluated on two high-
quality databases with known pregnancy outcomes (n = 221) and 
utilized multiple classifiers, including probabilistic Bayesian, Support 
Vector Machines (SVM), neural networks, decision trees, and 
Random Forest (RF). Results from their study demonstrated 
promising predictive capabilities, with SVM achieving an F1 score of 
0.74 and an AUC of 0.77 in one database, and RF obtaining an F1 
score of 0.71 and an AUC of 0.75 in another. This research offers a 
significant advancement in the field, as it presents a system capable of 
predicting positive pregnancy test outcomes from a single digital 
image, offering a practical and adaptable approach for clinical settings, 
with potential implications for improving reproductive 
healthcare outcomes.

While several studies have explored predictive models for IVF 
success, significant research gaps remain:

 1 Limited integration of diverse factors: Existing models often 
rely on a narrow set of features, overlooking the potential 
benefits of incorporating a broader range of clinical, 
demographic, and procedural factors. Our study addresses this 
by using a comprehensive dataset that includes 40 variables, 
providing a more holistic analysis of IVF outcomes.

 2 Underutilization of advanced machine learning techniques: 
Although some models have used basic machine learning 
algorithms, there is a lack of exploration of more advanced 
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ensemble methods (e.g., AdaBoost and LogitBoost) which can 
improve prediction accuracy. Our work fills this gap by 
comparing various ensemble learning models.

 3 Inadequate handling of missing data: Most studies either omit 
records with missing data or use simple imputation methods, 
which can introduce bias. We propose a novel approach to 
missing data handling that retains potentially valuable 
information and mitigates the risk of overfitting.

 4 Lack of longitudinal validation: Existing models often fail to 
test their predictive capabilities across multiple time periods, 
raising concerns about their generalizability. Our study 
evaluates model performance across two datasets from 
different timeframes (2010–2016 and 2017–2018), 
demonstrating robustness and consistency.

 5 Limited clinical interpretability: Many machine learning 
models lack the interpretability needed for clinical application, 
which limits their usefulness in real-world decision-making. 
We address this by involving gynecologists and ensuring that 
the model outputs are clinically meaningful and actionable.

By addressing these specific research gaps, our study contributes 
to advancing the field of IVF outcome prediction. One of the key 
research gaps we identified is the lack of longitudinal validation in 
previous studies. While our study uses data spanning time periods 
(2010–2016 and 2017–2018), the consistency in patient demographics, 
treatment protocols, and clinical variables across these periods allows 
us to ensure that the model can generalize across different timeframes. 
Although there were minimal changes in IVF procedures during these 
years, the inclusion of both datasets serves to enhance the model’s 
robustness, confirming that it can predict outcomes accurately over 
different time spans.

2.3 Our contribution

In light of the existing research landscape, our study aims to 
address these gaps by developing a comprehensive IVF success 
prediction model that leverages a diverse set of pre-treatment 
parameters. By integrating a broader spectrum of factors such as 
clinical, demographic, and omics data, our model seeks to provide 
more accurate and personalized predictions. By integrating clinical, 
demographic, procedural, and omics data, our model provides more 
accurate and personalized predictions for IVF success. Clinical data, 
such as patient age, hormone levels, and causes of infertility, capture 
key reproductive health metrics, while demographic factors, like 
patient and partner ethnicity, account for genetic and lifestyle 
influences. Procedural data, including the use of fresh or frozen 
embryos and whether eggs or sperm were donor-sourced, add 
precision to the model by reflecting specific treatment protocols. 
Although omics data is still emerging in IVF, our model is designed 
to incorporate it in the future, offering the potential for even deeper 
insights into the molecular factors affecting fertility. This 
comprehensive approach enhances the model’s predictive accuracy 
and utility in clinical decision-making. Furthermore, we  aim to 
enhance the interpretability of the prediction process by employing 
advanced machine learning techniques, enabling healthcare 
professionals to make informed decisions based on the model’s outputs.

Our contributions can be summarized as follows:

 • Integration of a broader spectrum of features: We incorporated 
clinical, demographic, and procedural factors, along with the 
potential for integrating omics data in future models, to provide 
more personalized IVF outcome predictions.

 • Application of advanced ensemble learning techniques: Our 
work explores and compares various advanced machine learning 
models, including AdaBoost and LogitBoost, to improve 
prediction accuracy.

 • Novel handling of missing data: We developed an innovative 
method for dealing with missing data by using numerical 
placeholders, preserving the integrity of the dataset while 
minimizing bias.

 • Evaluation across multiple datasets: Our models were tested on 
two datasets from different time periods (2010–2016 and 2017–
2018), demonstrating consistency and robustness.

 • Clinical interpretability: We  emphasized the importance of 
developing models that are interpretable by healthcare 
professionals, enabling actionable insights for decision-making 
in IVF treatments.

The literature review underscores the progress made in IVF 
success prediction and the application of machine learning in 
healthcare. However, it also highlights the need for more inclusive and 
refined prediction models that consider a wider array of parameters. 
Our study seeks to contribute to this field by developing a robust 
prediction model that could potentially revolutionize the way IVF 
treatments are planned and executed, leading to improved success 
rates and enhanced patient outcomes.

Numerous studies have explored IVF outcome prediction 
using machine learning techniques, but the reported accuracy 
varies widely. For example, Simopoulou et  al. (2018) reported 
accuracy rates ranging from 57 to 76% across different models, 
while Hassan et al. (2020) achieved a maximum accuracy of 91% 
using advanced neural network techniques. However, the 
predictive performance of these models still leaves room for 
improvement. In our study, ensemble models like AdaBoost and 
LogitBoost achieved a maximum accuracy of 96.35%, representing 
a significant improvement of approximately 5.35% over the highest 
previously reported accuracy. This improvement underscores the 
effectiveness of our approach, which integrates a broader set of 
clinical and demographic features and employs advanced machine 
learning methods to enhance the robustness and accuracy 
of predictions.

3 Data set description and 
preprocessing

3.1 Dataset

The 2010–2016 dataset is an anonymized registry from the 
Human Fertilization and Embryology Authority, covering fertility 
treatments from 2010 to 2016. It represents one of the most extensive 
and longest-running fertility treatment registries worldwide, aiming 
to improve patient care while ensuring the confidentiality of patients, 
donors, and offspring. The dataset contains 495,630 patient records, 
with 94 features describing various aspects of fertility treatment cycles, 
including patient demographics, treatment types, and detailed causes 
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of infertility, providing a comprehensive view of each treatment cycle 
during this period.

The dataset features both numerical and categorical data. Key 
attributes include the patient’s age at treatment, number of IVF 
pregnancies, live births, and specific causes of infertility, such as tubal 
disease, ovulatory disorder, and male factors. Additionally, it captures 
details about the type of eggs and sperm used in treatments (e.g., fresh 
or frozen, donor or patient), the number of eggs collected, and the 
number of embryos transferred during each cycle.

In addition to the 2010–2016 dataset, we utilized a separate 2017–
2018 dataset of fertility treatment records to evaluate our model. These 
datasets are not simply split versions of a single source but represent 
different time periods. Evaluating across both datasets allowed us to 
verify model performance consistency and robustness over different 
temporal spans, ultimately reinforcing the reliability of our findings.

Our study expands on previous research by introducing a broader 
and more comprehensive set of parameters for IVF outcome 
prediction. While prior studies have predominantly focused on patient 
age, number of IVF cycles, and basic clinical parameters, we have 
included a more diverse set of 40 features covering clinical, 
demographic, and procedural factors. Key parameters newly 
considered in our research include:

 1 Embryo-related data: Detailed information on the number of 
embryos thawed, transferred, and stored.

 2 Infertility causes: Expanded categories of infertility causes, 
such as endometriosis and unexplained infertility.

 3 Ethnicity and demographic factors: Patient and partner 
ethnicity, which were not widely considered in previous models.

 4 Treatment details: Information on treatment methods like 
elective single embryo transfer and specific hormonal 
stimulation approaches.

 5 Egg and sperm source: Data on whether eggs or sperm were 
sourced from a donor or the patient, adding more precision to 
outcome predictions.

By considering these newly introduced parameters, our model 
provides a more holistic and accurate prediction of IVF success, 
addressing limitations found in previous research.

The preprocessing phase encompassed several critical steps. One 
such step involved the application of a normalization technique, which 
served to standardize the scale of all feature values. To ensure uniform 
scale among numerical features, a Standard Scaler was applied, 
thereby standardizing the dataset. This step is crucial, particularly for 
algorithms that exhibit sensitivity to variations in feature magnitudes. 
The dataset itself exhibits a combination of string and numeric data 
types, reflecting the diverse nature of the features collected. The 
ensuing enumeration presents a catalog of the features encompassed 
within the dataset which have been presented in Table 1. It details 
various parameters such as patient age at treatment, the total number 
of previous IVF and DI cycles, and a range of causes for infertility, 
including tubal disease, ovulatory disorder, and male factors. 
Additionally, it lists factors related to the embryos, such as the number 
of embryos transferred, frozen, and thawed, as well as outcomes like 
live birth occurrences and early outcomes. The Table 1 also covers 
demographic and procedural variables, including donor age, patient 
and partner ethnicity, and type of treatment. This comprehensive list 

TABLE 1 Description of 37 fields in the dataset.

Feature Description

1. Patient age Age of the patient at the time of treatment

2. Number of embryos 

transferred

Total embryos transferred during the procedure

3. Infertility cause The underlying cause of infertility

4. Embryo quality Quality grading of the embryos

5. Hormonal profile Hormonal levels measured prior to IVF 

treatment

6. Stimulation protocol Type of stimulation protocol used

7. Previous IVF cycles Number of previous IVF cycles attempted

8. Partner’s age Age of the patient’s partner

9. Body mass index (BMI) Body mass index of the patient

10. Treatment type Whether the treatment was fresh or frozen

11. Hormonal medications Type of medications used for ovarian stimulation

12. Duration of infertility Number of years the couple has experienced 

infertility

13. Tubal factor Presence of tubal factors affecting infertility

14. Ovulatory factor Presence of ovulatory dysfunction

15. Male factor Presence of male factor infertility

16. Unexplained infertility Cases where infertility cannot be explained

17. Endometrial thickness Endometrial thickness measured prior to transfer

18. Embryo stage Stage of embryo development at transfer

19. Number of eggs retrieved Total eggs retrieved during the cycle

20. Gonadotropin dosage Dosage of gonadotropins used in stimulation

21. Fertilization method IVF or ICSI procedure

22. Embryo freezing Whether any embryos were frozen

23. Partner’s smoking status Smoking status of the patient’s partner

24. Patient’s smoking status Smoking status of the patient

25. Alcohol consumption Whether the patient consumes alcohol

26. Patient ethnicity Ethnicity of the patient

27. Partner ethnicity Ethnicity of the patient’s partner

28. Patient occupation Patient’s occupation

29. Partner occupation Partner’s occupation

30. Socioeconomic status Socioeconomic background of the patient

31. Genetic screening Whether genetic screening was conducted

32. Uterine abnormalities Presence of any uterine abnormalities

33. Endometriosis Diagnosis of endometriosis

34. Fertility preservation Whether the patient is undergoing fertility 

preservation

35. Presence of fibroids Presence of fibroids affecting fertility

36. Partner’s sperm count Sperm count of the patient’s partner

37. Partner’s sperm motility Sperm motility of the partner

38. Partner’s sperm morphology Morphology of the partner’s sperm

39. Ovarian reserve tests Ovarian reserve test results

40. Genetic history Family history of genetic conditions affecting 

fertility
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indicates a multifaceted approach to analyzing fertility treatments, 
aiming to understand the numerous factors that could influence the 
success rates of IVF and DI procedures.

All the features included in this study were meticulously selected 
based on expert opinion, ensuring that the chosen attributes are 
clinically relevant and possess intrinsic value for the prediction of IVF 
success rates based on live birth occurrences. This expert-driven 
feature selection process enhances the robustness and clinical 
applicability of our predictive models.

3.2 Preprocessing

In the domain of data preprocessing, a distinctive technique was 
employed to tackle the issue of null values within the dataset, 
constituting a notable contribution of this study. Rather than opting 
for outright removal, a judicious strategy was pursued, involving the 
replacement of null entries with specific numerical placeholders same 
as (Jerez et al., 2010). This innovative approach served a dual purpose: 
firstly, to retain all cases within the dataset, including those with 
missing feature values, to preserve potentially valuable information; 
and secondly, to prevent inadvertent escalation of correlations or 
similarities between cases arising from the presence of null features. 
By uniquely assigning numerical identifiers to distinct missing values 
within each feature, the potential for confounding patterns to emerge 
from shared null entries was effectively mitigated.

Notably, this technique of encoding missing values emerged as a 
substantial methodological contribution to the study. Its 
implementation showcased a profound awareness of the challenges 
associated with missing data, met with an inventive solution. 
Moreover, the technique played a pivotal role in controlling the rise of 
similarity between samples, thus safeguarding the robustness and 
dependability of subsequent classification analyses. The deliberate 
inclusion of this technique reinforced the study’s overarching objective 
of generating accurate and trustworthy results within the context of 
machine learning-based modeling. In essence, this encoding 
technique underscored the study’s dedication to methodological rigor 
and empirical validity, thereby augmenting the scholarly value of the 
research outcomes.

4 Methodology

Our methodology involved several critical steps to ensure robust 
model performance. First, we  conducted comprehensive data 
preprocessing, including handling missing data using numerical 
placeholders, normalizing numerical features using a Standard Scaler, 
and encoding categorical variables (e.g., patient ethnicity, treatment 
type) using one-hot encoding. These steps were crucial for preparing 
the data for machine learning models.

Next, we  applied feature selection guided by domain experts, 
reducing the dataset to 40 key clinically relevant features, such as 
patient age, number of embryos transferred, and infertility causes. 
These features were selected for their potential impact on 
IVF outcomes.

For model selection and training, we  compared a range of 
machine learning algorithms, including Logistic Regression, SVM, 
MLP, k-NN, and ensemble methods like AdaBoost and LogitBoost. 

An 80/20 train-test split was used for training and validation, along 
with 10-fold cross-validation to ensure model robustness.

Model evaluation was performed using multiple metrics, 
including accuracy, precision, recall, F1-score, and ROC-AUC, to 
comprehensively assess the models’ performance. The ensemble 
models (AdaBoost, LogitBoost) demonstrated superior performance, 
achieving an accuracy of 96.35%. These additional aspects of our 
methodology demonstrate that our approach goes beyond 
hyperparameter tuning and encompasses a holistic machine learning 
pipeline designed to optimize IVF outcome prediction.

For the purpose of predicting IVF success rates predicated upon 
the occurrence of live births, our study employed an assortment of 
machine learning models, each tailored to address specific aspects of 
the prediction task. The ensemble of models encompassed the 
Random Forest, Logistic Regression, Gaussian Naive Bayes, Support 
Vector Machine (SVM) classifier with an RBF kernel, k-Nearest 
Neighbors (k-NN) classifier, and Multi-layer Perceptron (MLP) 
classifier. Prior to model assessment, our dataset underwent an 80/20 
train-test split, where 20% of the data was reserved for testing, striking 
a balance between model evaluation and performance validation. To 
ensure reproducibility and comparability across iterations, we set the 
random state to a fixed value of 42.

Commencing our analysis with the Random Forest model, 
we leveraged its ensemble learning approach, amalgamating numerous 
decision trees to bolster prediction accuracy while curbing overfitting 
tendencies. Notably, this ensemble was instantiated with 100 decision 
trees, each contributing to the collective prediction. The random state 
of 42  in this context guaranteed consistent results, as its value 
remained unaltered across various model executions.

Segueing into Logistic Regression, a simpler yet interpretable 
model, we tackled the task of convergence by setting the maximum 
iteration limit at 10,000. The random state, also established as 42, 
further fortified the reproducibility of our findings. Logistic 
Regression offered a transparent lens through which the relationships 
between features and the likelihood of IVF success could be discerned, 
facilitating an intuitive understanding of the influencing factors.

Next, Gaussian Naive Bayes was harnessed, capitalizing on its 
assumption of feature independence for efficient probability 
estimation. By harnessing prior probabilities and likelihoods, this 
probabilistic model adeptly inferred class labels, furnishing insights 
into the prediction of IVF success rates. The Linear SVM classifier 
emerged as another integral component of our study. By adopting an 
RBF kernel and incorporating a regularization parameter (C) set at 10, 
alongside the hinge loss, we aimed to discern patterns in the prediction 
task, effectively separating classes. This model proved invaluable in 
decoding intricate relationships underlying the IVF success prediction 
based on live birth occurrences.

Turning to the k-NN classifier, an instance-based learning method, 
we engaged with the proximity of neighboring data points to ascertain 
class labels. Specifically, we adopted k = 5 neighbors, harnessing localized 
patterns to inform our predictions. Lastly, the Multi-layer Perceptron 
(MLP) classifier, a neural network variant, was employed to capture 
intricate data relationships. Configured with a hidden layer containing 
100 units and a maximum iteration cap of 1,000, the model delved deep 
into data intricacies. The random state of 42 maintained consistency in 
our findings across the neural network’s learning iterations.

This concerted application of diverse machine learning models 
enabled us to delve into the intricate realm of IVF success prediction 
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based on live birth occurrences, thereby enriching our understanding of 
the underlying factors contributing to this complex medical outcome. 
Figure  1 illustrates the systematic process for predicting In vitro 
fertilization (IVF) outcomes. The system starts with data collection, 
which utilizes the HFEA dataset consisting of clinical, demographic, 
procedural, and outcome variables. It proceeds with data preprocessing, 
including handling missing data, normalization, and encoding of 
categorical variables. Next, the feature selection process narrows 
down the dataset to 40 key features, guided by domain experts. Model 
selection and training involves a variety of machine learning models, 
such as Logistic Regression, SVM, and ensemble methods like 
AdaBoost. Finally, the model evaluation assesses the models using 
key performance metrics like accuracy and ROC-AUC, followed by 
prediction and interpretation, where feature importance is analyzed 
for clinical interpretability.

In the pursuit of predicting IVF success rates based on the 
occurrence of live births, our methodology extended to encompass 
Ensemble learning models, which collectively harness the power of 
multiple base models to enhance predictive performance. Beginning 
with ‘Adaboost’, an Adaptive Boosting technique, we embraced its 
inherent capability to progressively refine predictions. By employing 
100 weak learners and a deterministic random state of 42, this model 
iteratively adjusts to give more weight to previously misclassified 
instances, thereby enhancing the ensemble’s accuracy.

‘GentleBoost’ was another model of choice. Here, we used the 
DecisionTreeRegressor as the weak learner, with a depth constraint 
of just one level. GentleBoost’s uniqueness stems from its ability to 
focus on residuals. Each subsequent model in the ensemble tries to 
correct the errors of its predecessor, leading to an aggregate model 
that’s robust against diverse types of errors. Mirroring the iterative 
ethos of ‘GentleBoost’, the ‘LogitBoost’ model, too, trains on residuals 
but in a logistic regression framework. This iterative refinement, 
combined with the logistic aspect, ensures that the ensemble does not 
just predict but also quantifies the uncertainty of its predictions, 
offering more nuanced insights into IVF success probabilities.

Diving deeper into ensemble diversity, we  explored the 
‘RandomSubspaceMethod’ (RSM). Unlike traditional ensembles that 
rely solely on aggregating different models, RSM introduces 
variability by using different feature subsets for each model. This 
ensures that each model in the ensemble views the data from a 
slightly different angle, making the collective decision more 
comprehensive and less prone to specific feature biases. Addressing 
the perennial challenge of class imbalance, we  incorporated 
‘RusBoost’. This model stands out for its ability to under-sample the 
majority class, ensuring that the minority class, often of higher 
interest, is adequately represented and learned from. In a domain like 
IVF, where success rates can be imbalanced, ‘RusBoost’ ensures that 
predictions aren’t skewed by mere majority trends but reflect genuine 
underlying patterns.

Our meticulous integration of Ensemble learning models, 
spanning the spectrum from ‘Adaboost’ to ‘RusBoost’, has empowered 
us to extract nuanced insights from the IVF data. Each model, with 
its unique methodology, has enriched our comprehension of IVF 
success rate predictions anchored in live birth instances. By tailoring 
each methodology to its respective nuances, we  enhanced our 
understanding of IVF success rate prediction based on live birth 
occurrences, contributing to a robust analysis of this intricate 
medical domain.

To provide a clearer interpretation of the model’s decision-making 
process, we  employed SHAP (Shapley Additive Explanations) to 
quantify the relative importance of each feature in predicting IVF 
success. SHAP assigns an importance score to each feature, which 
represents the contribution of that feature to the model’s final output. 
This method ensures model transparency and helps identify the most 
influential clinical parameters that contribute to IVF success prediction.

To justify the integration of a broader spectrum of features, 
we conducted a comparative analysis of the input features used in 
previous studies versus those used in this study. As shown in Figure 2, 
previous models primarily focused on traditional clinical parameters 
such as patient age, number of embryos transferred, and hormonal 
profiles. In contrast, our model integrates a wider array of features, 
including lifestyle, partner characteristics, and socioeconomic factors. 
This comprehensive feature set allows our model to capture additional 
dimensions of patient variability that can significantly impact IVF 
success rates.

5 Experiments and results

5.1 Data evaluation and statistical analysis

In this study, by analyzing the dataset, it was observed that the 
factor “number of live births” - our main objective variable - only 24% 
of the entire group of patients experienced successful IVF outcomes. 
This factor was binary coded, where “1” indicates successful IVF 
treatment and “0” indicates failure. Breaking it down, 158,334 patients 
underwent IVF procedures, with a success rate of 24%. Conversely, of 
11,282 patients who underwent DI treatments, 14% reported 
successful IVF. Demographic analysis showed that a significant 
proportion of patients, regardless of treatment type, were between 18 
and 34 years of age. Specifically, the IVF group had 40% of its patients 
in this age group, while the DI method reported 50%.

Interestingly, a deeper look at the data revealed that 74% of IVF 
patients, with no history of live births, had successful treatments. This 
figure increased to 78% in the DI group. Furthermore, the majority 
(93%) of successful IVF treatments were performed with patients 
using their own eggs. This proportion was slightly lower for the DI 
group, at 90%.

A notable insight from the data set was only three patients showed 
all enumerated causes of infertility, namely: “tubal disease,” “ovulatory 
disorder,” “male factor,” “unexplained patient” and “endometriosis.” 
Despite these multifaceted challenges, these patients achieved 
successful IVF outcomes. In contrast, 6,676 patients who lacked any 
of the previously mentioned factors also reported successful IVF 
outcomes. Table 2 shows a comprehensive analysis of IVF outcomes 
stratified by specific causes of infertility.

Table 3 offers a detailed breakdown, presenting the number of 
success and fail IVF outcomes across various age brackets, further 
segmented by the underlying causes of infertility. For each age group, 
starting from 18 to 34 and ending at 45–50, the table lists the 
occurrence of live births. It then breaks down the causes of infertility 
into tubal disease, ovulatory disorder, male factor, unexplained causes, 
and endometriosis. The data shows a general trend where the number 
of live births decreases with the increasing age of the patient. For 
instance, in the 18–34 age group, there were 4,344 cases with no live 
birth due to tubal disease and 6,938 due to ovulatory disorder, but 
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these numbers drop significantly in the 45–50 age group to 154 and 
186, respectively. The same downward trend is observable in the other 
categories of infertility causes.

During the data pre-processing stage, distinct placeholders 
were used for absent data to reduce the risk of excessive similarity 
and correlation among variables. In line with the research 
framework of this paper and the chosen machine-learning model, 
non-relevant factors were carefully removed. The refined dataset, 
therefore, consisted of 36 pivotal factors, consistently analyzed for 
all patients.

The heatmap visualizes the correlation between numerical 
columns in the IVF dataset. Red shades signify positive correlations, 
while blue shades represent negative ones. For instance, Fresh cycle 
and Frozen cycle have a strong negative correlation of −1, indicating 
they are mutually exclusive in the dataset. Most other variables show 
weak linear relationships, with correlation values close to zero. It’s 
essential to note that correlation does not equate to causation; it 
merely highlights potential relationships between variables. Figure 3 
is a visual representation of correlation coefficients between various 

factors involved in IVF and DI treatments. A key observation from 
this heatmap is the strong negative correlation (indicated by a 
coefficient of −1) between ‘Fresh cycle’ and ‘Frozen cycle’, suggesting 
that these two variables are mutually exclusive—when one is utilized, 
the other is not. This is consistent with IVF procedures where 
typically either a fresh cycle is used, wherein eggs are retrieved and 
fertilized, and the embryo is transferred in the same cycle, or a frozen 
cycle is used, where embryos are frozen for later use after a fresh 
cycle. It is important to highlight that correlation does not imply 
causation; thus, while these factors are related, we cannot infer that 
one directly causes the other without further context. Additionally, 
factors such as ‘Live birth occurrence’ and ‘Number of live births’ 
show a positive correlation with ‘Eggs thawed’ and ‘Embryos 
transferred’, indicating that higher numbers in these categories could 
be associated with successful outcomes, though the correlation is not 
perfect. This suggests that while the quantity of eggs and embryos 
plays a role in successful IVF treatments, it is not the sole determinant 
of success, as quality and other factors can also significantly 
influence outcomes.

FIGURE 1

System architecture for IVF outcome prediction.
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5.2 Model evaluation and analysis

Our analysis was rooted in Python, a premier language for data 
science, enhanced by key libraries like Pandas for data handling and 
Scikit-learn for a wide array of data mining activities, from 
preprocessing to modeling and assessment. At the outset, 
we  meticulously segregated the dataset into training and testing 
segments. This division not only gave a comprehensive overview of 
the data but also enabled us to train models on one segment and 
validate them on another, revealing their potential real-
world performance.

In the subsequent preprocessing stage, we  optimized the 
dataset for machine learning applications. We addressed missing 
values, a recurrent challenge in model training, using strategies 
tailored to each feature. To achieve better and more logical results, 
we balanced the dataset, ensuring our models would not be biased. 
We also took measures to ensure that features were as independent 

as possible, a crucial step to minimize redundancy and enhance 
the dataset’s quality.

We evaluated the performance of our machine learning models 
through diverse metrics, each offering a unique insight into their 
capabilities, such as accuracy, recall, precision, and f1-score (Sadegh-
Zadeh, 2019).

Accuracy: Represents the ratio of correct predictions over the total 
predictions, calculated as Equation 1:
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Precision: Captures the accuracy of positive predictions, defined 
as Equation 2:
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Recall (Sensitivity): Reflects the model’s prowess in identifying all 
actual positives, given by Equation 3:
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F1-score: A balanced metric that considers both precision and 
recall, computed as Equation 4:
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FIGURE 2

Comparative study of features used in previous IVF prediction models vs. our study. This figure demonstrates that the inclusion of broader lifestyle and 
partner-related variables, which have been largely underrepresented in earlier studies, improves the model’s predictive performance and clinical 
applicability.

TABLE 2 Detailed perspective on IVF outcomes, segmented by specific 
infertility causes.

Infertility reasons Number of 
success IVF

Number of 
failed IVF

Causes of infertility - tubal disease 4,094 10,830

Causes of infertility - ovulatory disorder 5,131 12,738

Causes of infertility - male factor 14,039 35,498

Causes of infertility - patient unexplained 11,805 34,457

Causes of infertility - endometriosis 2,328 6,479
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Figure 4, alongside Tables 4, 5, provide comprehensive insights 
into the performance metrics of various machine learning and 
ensemble learning models, leveraging the HFEA datasets from two 
distinct periods: 2010–2016 and 2017–2018. In Figure 3A, Logistic 
Regression, KNN, MLP, and SVM demonstrate high Area Under the 
Curve (AUC) values close to 0.97, indicating excellent classification 
performance. In contrast, the Naive Bayes (NB) model shows a 
significantly lower AUC of 0.50, which is no better than random 
guessing. Figure 3B includes ensemble methods like Random Forest 
and AdaBoost, along with other boosting methods such as RUSBoost, 
Random Subspace Method, LogitBoost, and GentleBoost. Here, most 
models perform exceptionally well, with AUC values ranging from 
0.96 to 0.98, except for GentleBoost which is at 0.50, similar to Naive 
Bayes in the left graph. High AUC values suggest that these models 
have a good measure of separability and are able to distinguish 
between the positive and negative classes effectively. In both graphs, 
the models with AUC values significantly greater than 0.50 show that 
they have a good trade-off between sensitivity (true positive rate) and 
specificity (1  - false positive rate). Models with an AUC of 0.50, 
represented by the diagonal line, indicate an inability to distinguish 
between the classes better than random chance. Overall, except for 
NB and GentleBoost, the models evaluated on the ROC curves 
demonstrate strong predictive capabilities for the dataset from HFEA 
(2010–2016).

The hyperparameters in Table 5 describe the architecture and 
training configuration of the deep learning model. The model 
consists of 3 hidden layers, each with 64 neurons, using the ReLU 
activation function to introduce non-linearity. The Adam optimizer, 
with a learning rate of 0.001, is employed to adjust the weights 
during training, while binary crossentropy is used as the loss 
function for this binary classification task. The model is trained for 
100 epochs with a batch size of 32, balancing computational 
efficiency and model performance. These hyperparameters are 
crucial for controlling the model’s learning process and 
generalization ability.

6 Comparative analysis and clinical 
implications

In this section, we provide an in-depth analysis of the comparative 
performance of various machine learning models employed in our 
study, discuss the clinical implications of our findings, and suggest 
pathways for future improvements. The chapter focuses on how these 
results can be applied in clinical decision-making for improving IVF 
treatment success rates, highlighting the strengths and weaknesses of 
the models and offering insights into their applicability in real-
world scenarios.

6.1 Comparative performance of machine 
learning models

Our study tested a variety of machine learning models, including 
traditional classifiers (e.g., Logistic Regression, SVM, k-NN) and 
ensemble methods (e.g., AdaBoost, LogitBoost, Random Forest), 
across two datasets (2010–2016 and 2017–2018). Here, we analyze the 
performance of these models based on key metrics such as accuracy, 
precision, recall, and F1-score, as well as their clinical relevance.

 • Logistic regression: Logistic Regression performed relatively well 
on the dataset, showing an accuracy of 93.25% for the 2010–2016 
dataset and 76.63% for the 2017–2018 dataset. However, despite 
its interpretability and ease of use, Logistic Regression struggled 
with the complexity of the IVF data, which involves non-linear 
interactions between variables. LR demonstrated good precision 
but lower recall, indicating that while it correctly identified many 
successful IVF outcomes, it missed several positive cases (false 
negatives), which is a limitation in a clinical setting where 
minimizing missed successful cases is critical.

 • Support vector machine: The SVM classifier also showed 
competitive performance, achieving accuracy rates of 85.77% 

TABLE 3 Offers a stratified analysis, displaying IVF outcomes by age groups, further segmented by the underlying cause of infertility.

Patient age at 
treatment

Number of IVF successes by specific causes of infertility S (Success)/F (Fail)

Causes of 
infertility - tubal 

disease

Causes of 
infertility - 

ovulatory disorder

Causes of 
infertility - male 

factor

Causes of 
infertility - patient 

unexplained

Causes of 
infertility - 

endometriosis

18–34 2,192 (S) 3,223 (S) 7,914 (S) 5,279 (S) 1,246 (S)

4,344 (F) 6,938 (F) 15,318 (F) 11,155 (F) 2,428 (F)

35–37 1,053 (S) 1,134 (S) 3,310 (S) 3,255 (S) 605 (S)

2,726 (F) 2,666 (F) 8,234 (F) 8,184 (F) 1,608 (F)

38–39 466 (S) 447 (S) 1,588 (S) 1710 (S) 285 (S)

1,685 (F) 1,429 (F) 5,201 (F) 6,174 (F) 1,087 (F)

40–42 320 (S) 253 (S) 912 (S) 1,256 (S) 154 (S)

1,560 (F) 1,211 (F) 4,789 (F) 6,313 (F) 1,058 (F)

43–44 41 (S) 31(S) 163 (S) 194 (S) 21 (S)

361 (F) 308 (F) 1,285 (F) 1848 (F) 220 (F)

45–50 154 (F) 43 (S) 152 (S) 111 (S) 17 (S)

22 (S) 186 (F) 671 (F) 783 (F) 80 (F)
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(2017–2018) and 93.33% (2010–2016). The model’s strength lies 
in its ability to handle high-dimensional spaces, making it 
suitable for IVF datasets with complex interactions. However, 
SVM is computationally expensive and less interpretable than 
simpler models, which limits its clinical application unless used 
alongside other tools that can explain its decisions.

 • k-nearest neighbors: k-NN, while intuitive and simple, did not 
perform as well as the other models. With accuracy rates of 
83.40% (2017–2018) and 92.54% (2010–2016), k-NN’s 
performance lagged behind more sophisticated models. Its 
reliance on distance-based calculations made it vulnerable to 
noisy data and feature scaling issues. Despite these limitations, 
k-NN can still be useful in specific cases where model simplicity 
is a priority.

 • Multi-layer perceptron: MLP, a type of neural network, achieved 
impressive results, particularly for the 2017–2018 dataset, with 
an accuracy of 92.18%. MLP is well-suited for capturing 
non-linear patterns and interactions between features. However, 
neural networks are typically regarded as black-box models, 

which presents a challenge in terms of interpretability for 
clinicians. MLP’s high recall indicates that it is effective at 
identifying successful IVF outcomes, making it a strong 
candidate for use in clinical settings when interpretability is less 
of a concern.

 • Ensemble methods (AdaBoost, LogitBoost, and Random forest): 
The ensemble methods AdaBoost and LogitBoost showed the 
best overall performance, achieving an accuracy of 96.35% on 
both datasets. These methods excelled in integrating diverse 
features (clinical, demographic, and procedural) to provide 
robust predictions. Their ability to reduce overfitting by 
combining multiple weak learners makes them highly effective, 
particularly in handling the high-dimensional, noisy nature of 
IVF datasets. The use of boosting techniques, which iteratively 
focus on misclassified instances, was especially valuable in our 
study, ensuring high recall rates and reducing false negatives. 
Random Forest, with its built-in feature selection and robustness 
to overfitting, also performed exceptionally well, achieving a 
similar accuracy to AdaBoost and LogitBoost.

FIGURE 3

The heatmap illustrates correlations in the IVF dataset, showing strong mutual exclusivity between Fresh and Frozen cycles, while emphasizing that 
correlation does not necessarily mean causation.
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TABLE 5 neural network model hyperparameters.

Parameter Value

Hidden layers 3

Neurons per layer 64

Activation function ReLU

Optimizer Adam

Learning rate 0.001

Epochs 100

Batch size 32

Loss function Binary crossentropy

The impact of removing individual causes of infertility on the 
best-performing model (Adaboost) was assessed by evaluating key 
metrics such as accuracy, precision, recall, and F1 score (Table 6). 
Removing each factor individually led to a slight reduction in model 
performance, with “Male Factor Infertility” contributing the most to 
overall accuracy (0.84) and F1 score (0.80). In contrast, removing 
“Endometriosis” resulted in the lowest recall (0.78) and F1 score 
(0.77), suggesting that this factor is particularly important for 
detecting true positive IVF outcomes.

Comparing model performance with and without all infertility 
causes highlights the critical role these variables play in improving 
prediction accuracy (Table 7). Without considering infertility causes, 
the model achieves an accuracy of 0.86 and an F1 score of 0.84. 
However, when these factors are included, accuracy and F1 score rise 
significantly to 0.95 and 0.92, respectively. This improvement, 
particularly in recall (0.99 with all factors included), demonstrates the 
substantial influence specific infertility factors have on predicting 
successful IVF outcomes.

The results from the 2010–2016 dataset are consistent with those 
from 2017 to 2018, demonstrating stable performance when individual 
infertility factors are removed (Table 8). The model’s accuracy remains 
within 0.88 to 0.90, with minimal changes in precision, which hovers 

FIGURE 4

The ROC curve for ML models on HFEA (2010_2016).

TABLE 4 Comparison between classification metrics of different models with feature selection on HFEA (2010–2016).

Model Accuracy Precision Recall F1-Score AUC

Machine learning 

models

Logistic regression 93.25 78.47 99.45 87.72 97

Gaussian NB 87.30 67.52 91.71 77.78 50

MLP(epochs = 1,000) 93.35 78.83 99.19 87.86 97

SVM 93.33 78.66 99.50 87.86 96

KNN 92.54 77.77 96.94 86.30 97

Ensemble Learning 

models

AdaBoost 96.35 87.29 99.41 92.96 98

LogitBoost 96.35 87.29 99.45 92.97 98

RUSBoost 93.78 79.82 99.50 88.58 96

Random forest 96.08 87.26 98.15 92.38 98

RSM 56.75 35.90 99.86 52.81 96

https://doi.org/10.3389/frai.2024.1392611
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Sadegh-Zadeh et al. 10.3389/frai.2024.1392611

Frontiers in Artificial Intelligence 13 frontiersin.org

around 0.81. Removing factors such as “Tubal Disease” and “Male 
Factor Infertility” results in high recall (0.97), indicating that these 
factors significantly contribute to the model’s ability to detect true 
positive outcomes. However, no single cause of infertility shows a 
substantial impact on the overall F1 score, which remains around 0.88 
for most conditions.

Including all infertility causes in the model results in noticeable 
performance improvements (Table 9). Accuracy increases from 0.89 
to 0.96, precision from 0.81 to 0.87, and the F1 score from 0.89 to 0.92. 
While recall remains high (0.98) even without these factors, including 
infertility causes leads to a more balanced and robust model, 
particularly enhancing precision and overall predictive power. This 
highlights the importance of incorporating these factors to improve 
IVF success prediction.

Our study presents a comprehensive IVF outcome prediction 
model that incorporates a broader range of features and a larger 
dataset compared to previous work. For instance, Hassan et al. (2020) 
achieved an accuracy of 98.38% using SVM on a dataset of 1,729 
records with a feature set of 17–19 variables. In contrast, our model 
uses a significantly larger dataset and a broader feature set that 
includes clinical, demographic, and procedural factors, offering more 
personalized predictions. Additionally, while our highest reported 
accuracy is 96.35% using ensemble methods like AdaBoost and 
LogitBoost, these models offer greater stability and interpretability in 
clinical contexts, which is crucial for decision-making. Furthermore, 
our evaluation includes a wider range of metrics (precision, recall, 
F1-score, and ROC-AUC) to ensure comprehensive model 
performance analysis beyond just accuracy.

6.2 Model interpretation

The SHAP analysis revealed that maternal age, previous IVF 
cycles, and hormone levels (e.g., luteinizing hormone and 
gonadotropin) were the most important features in predicting IVF 
success. Table 10 presents the ranked importance of each feature, 

showing that maternal age had the highest influence, followed by the 
number of previous IVF cycles and hormone levels. These findings 
align with clinical expectations, reinforcing the model’s relevance for 
clinical use.

6.3 Clinical relevance and implications

The high predictive accuracy of the ensemble models, particularly 
AdaBoost and LogitBoost, demonstrates their suitability for clinical 
use in predicting IVF success. However, predictive performance alone 
is not enough to justify their use in real-world IVF clinics. The 
interpretability, clinical relevance, and scalability of these models are 
also key factors.

 1 Personalized treatment planning: By accurately predicting the 
likelihood of IVF success based on a comprehensive set of 
clinical and demographic factors, these models can help 
healthcare providers tailor treatment protocols to 
individual patients. For example, patients with lower 
predicted success rates may benefit from more aggressive 
or alternative treatments, while those with higher predicted 
success rates could be counseled to continue with standard 
protocols. The inclusion of detailed clinical parameters 
(e.g., hormone levels, embryo quality, and patient 
demographics) in the models ensures that treatment plans 
are informed by a holistic understanding of each patient’s 
reproductive profile.

 2 Decision support systems: The strong performance of ensemble 
models makes them excellent candidates for integration into 
clinical decision support systems (CDSS). These systems could 
provide real-time predictive insights based on patient data, 
assisting clinicians in making evidence-based decisions. For 
instance, AdaBoost and LogitBoost could be integrated into 
electronic medical records (EMRs) to provide automatic 
predictions of IVF success when new patient data is entered. 
The recall rates of these models suggest they are particularly 
effective at identifying successful cases, which is crucial for 
advising patients about their chances of success.

 3 Reducing emotional and financial stress: IVF treatment is 
emotionally and financially taxing. Providing patients with 
reliable success predictions can help them make more informed 
decisions about whether to pursue additional cycles or explore 
alternative options. The high accuracy of our models offers 
patients and clinicians a level of confidence in the predictions, 
reducing the uncertainty and stress associated with 
IVF treatments.

TABLE 6 Impact of removing individual infertility causes on model metrics (2017–2018).

Removing each cause of infertility 
individually while keeping the others

ACC Precision Recall F1

Tubal disease 0.81 0.76 0.80 0.78

Ovulatory disorder 0.83 0.79 0.80 0.79

Male factor infertility 0.84 0.79 0.81 0.80

Patient unexplained infertility 0.83 0.78 0.80 0.79

Endometriosis infertility 0.81 0.76 0.78 0.77

TABLE 7 Comparison of model metrics with and without infertility causes 
(2017–2018).

Metrics Without causes 
of infertility

With causes of 
infertility

ACC 0.86 0.95

Precision 0.80 0.85

Recall 0.88 0.99

F1 0.84 0.92
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 4 Handling of missing data: One of the key innovations in our 
approach is the novel handling of missing data, where missing 
entries were replaced with numerical placeholders. This 
method preserved the integrity of the dataset and ensured that 
important cases were not discarded due to incomplete data. 
Clinically, this is significant because real-world datasets often 
have missing values, and our model’s ability to effectively 
manage this limitation ensures that predictions remain robust 
and applicable to a wider patient population.

 5 Interpretability and clinical adoption: Despite the strong 
performance of ensemble methods, the complexity of these 
models can be a barrier to clinical adoption. To address this, 
we  focused on making the models as interpretable as 
possible. For example, by providing explanations of which 
features (e.g., age, previous IVF cycles, and hormone levels) 
contributed most to the prediction, clinicians can better 
understand and trust the model’s output. In future 
developments, tools like SHAP (Shapley Additive 
Explanations) could be  integrated to enhance model 
transparency and clinician trust further.

6.4 Future clinical applications

Looking forward, the use of AI and machine learning in 
reproductive medicine offers numerous potential benefits:

 • Real-time monitoring: Machine learning models could 
be  integrated into continuous monitoring systems that track 
patient progress throughout the IVF process, providing real-time 
feedback and adjusting treatment protocols dynamically based 
on evolving patient data.

 • Predictive maintenance of lab equipment: Machine learning could 
also be applied to predict and prevent equipment failures in IVF 
labs, ensuring that the highly sensitive processes involved in 
embryo fertilization and transfer are not disrupted by unexpected 
technical issues.

 • Integration with wearable devices: The use of wearable health 
devices that track physiological parameters (e.g., heart rate, body 
temperature, stress levels) could feed additional data into the 
predictive models, allowing for even more personalized 
treatment planning.

7 Discussion

The results presented in this study represent a significant step 
forward in the application of advanced machine learning paradigms 
to predict In-Vitro Fertilization (IVF) success rates. The study utilized 
two different datasets, one from 2017 to 2018 and another from 2010 
to 2016, to explore the effectiveness of various machine learning 
models in predicting live-birth occurrences in IVF cycles. In Figure 3, 
the ROC curves for machine learning models evaluated on the HFEA 
dataset (2010–2016) are presented. Notably, the ensemble models, 
such as AdaBoost and Random Forest, exhibited strong performance 
with AUC values ranging from 0.96 to 0.98, indicating excellent 
classification ability. The detailed comparison of model performance 
can be found in Table 11 for the 2017–2018 dataset and Table 4 for the 
2010–2016 dataset. The AdaBoost and LogitBoost models, in 
particular, consistently achieved high accuracy (96.35%) across both 
datasets, as outlined in these tables, reinforcing their robustness and 
suitability for IVF outcome prediction. The findings shed light on both 
the machine learning and gynecological aspects of IVF success 
prediction. The research objectives revolved around exploring 
advanced machine learning models for IVF success prediction. The 
study effectively addressed these objectives by comparing various 
machine learning algorithms, including neural network, across two 
different datasets. It also considered the gynecological factors that 

TABLE 8 Impact of removing individual infertility causes on model metrics (2010–2016).

Removing each cause of infertility individually 
while keeping the others

ACC Precision Recall F1

Tubal disease 0.90 0.81 0.97 0.88

Ovulatory disorder 0.89 0.82 0.96 0.88

Male factor infertility 0.89 0.81 0.97 0.88

Patient unexplained infertility 0.88 0.80 0.94 0.86

Endometriosis infertility 0.89 0.81 0.96 0.88

TABLE 9 Comparison of model metrics with and without infertility causes 
(2010–2016).

Metrics Without causes 
of infertility

With causes of 
infertility

ACC 0.89 0.96

Precision 0.81 0.87

Recall 0.98 0.99

F1 0.89 0.92

TABLE 10 SHAP feature importance scores.

Feature SHAP importance score

Maternal age 0.245

Previous IVF cycles 0.198

Luteinizing hormone 0.153

Gonadotropin dosage 0.142

Infertility type 0.125

Embryo count 0.110

Patient ethnicity 0.075

Partner ethnicity 0.062

Number of embryos transferred 0.052
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contribute to IVF success, providing a holistic perspective on 
the problem.

7.1 Gynecological implications

 • Patient demographics: The study’s results suggest that certain 
patient demographics and characteristics play a significant role 
in IVF success. Factors such as maternal age, years of infertility, 
gonadotropin (Gn) dosage, luteinizing hormone (LH) levels, and 
ovarian response are all associated with different success rates. 
These findings align with gynecological knowledge that these 
factors impact fertility outcomes (Huang et  al., 2019; Yu 
et al., 2019).

 • Infertility factors: The analysis revealed that infertility factors, 
such as male factor, ovulatory dysfunction, and tubal factor, were 
associated with better live birth rates, while patients with a poor 
ovarian response had lower odds of success. These findings 
underscore the importance of considering the underlying causes 
of infertility when predicting IVF outcomes, which is consistent 
with gynecological principles (Carson and Kallen, 2021).

 • Oocyte activation and fertilization: Notably, patients with low 
fertilization rates in the first cycle showed higher live birth rates 
when oocyte activation agents were used in subsequent cycles. 
This observation reinforces the clinical significance of oocyte 
activation techniques and their potential to improve IVF 
outcomes, aligning with gynecological practices (Bonte 
et al., 2019).

 • Factors influencing success: The study identifies several factors 
that appear to influence the likelihood of a successful IVF 
outcome in subsequent cycles. These factors include shorter years 
of infertility, lower gonadotropin (Gn) dosage, and lower 
luteinizing hormone (LH) levels in the first cycle. This 
information can guide gynecologists in making informed 
decisions regarding treatment plans. For instance, patients with 
these favorable characteristics may require less aggressive 
stimulation protocols, reducing the risk of overstimulation and 
its associated complications.

 • Relevance of multiple cycles: The study aligns with previous 
research in suggesting that the majority of patients achieve live 
births within the first three IVF cycles. This underscores the 
importance of continuity in treatment. Gynecologists should 

counsel patients about the potential need for multiple cycles to 
increase their chances of success, especially when dealing with 
certain infertility factors.

The parameter dependencies in our analysis were identified using 
both machine learning model outputs and a heat map analysis. The 
machine learning models, through feature importance evaluation and 
SHAP (Shapley Additive Explanations) values, highlighted the 
significant features influencing IVF success. These insights were 
further supported by a heat map, which illustrated the correlations 
between clinical variables such as patient age, hormone levels, 
infertility type, and previous IVF attempts. This dual approach ensures 
that the dependencies observed are both technically robust and 
clinically meaningful. For example, infertility factors like male factor, 
ovulatory dysfunction, and tubal factor are associated with better live 
birth rates due to their treatable nature. Clinically, interventions for 
male factor infertility (e.g., intracytoplasmic sperm injection) and 
ovulatory dysfunction (e.g., ovulation induction) often lead to higher 
success rates. This aligns with the results shown in Table 2, where male 
factor infertility led to a higher number of successful IVF outcomes 
compared to unexplained infertility. In contrast, patients with a poor 
ovarian response generally experience lower success rates because their 
ovarian reserve is diminished, reducing the number of eggs available 
for fertilization. This is supported by clinical research and our findings 
in Table 3, where patients with poor ovarian response consistently had 
lower success rates across all age groups. The machine learning models 
also identified ovarian response as a key predictor, with poor response 
significantly lowering the predicted probability of success.

7.2 Healthcare practitioners and patients 
implications

 • Clinical decision support: Healthcare practitioners involved in 
reproductive medicine can benefit from the study’s findings by 
incorporating machine learning models into their practice. These 
models can serve as valuable decision support tools, helping 
clinicians provide more accurate prognostications to IVF patients.

 • Patient counseling: Patients considering IVF can gain insights 
into their potential success rates based on their demographic and 
infertility factors. This information can guide informed decision-
making and help manage patient expectations.

TABLE 11 Comparison between classification metrics of different models with feature selection on HFEA (2017–2018).

Model Accuracy Precision Recall F1-Score AUC

Machine learning 

models

Logistic regression 76.63 57.84 63.62 60.59 88

Gaussian NB 75.63 53.65 7.16 12.63 49

MLP(epochs = 1,000) 92.18 77.11 97.02 85.93 97

SVM 85.77 63.49 99.27 77.45 90

KNN 83.40 63.11 78.34 69.91 93

Ensemble Learning 

models

AdaBoost 95.78 85.75 99.38 92.06 98

LogitBoost 95.78 85.75 99.38 92.06 97

RUSBoost 75.25 49.85 99.40 66.40 83

Random forest 95.13 85.68 96.34 90.70 98

RSM 47.71 31.98 99.90 48.46 97
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7.3 Machine learning implications

Data Preprocessing: The study’s approach to data preprocessing, 
including balancing the dataset, one-hot encoding, and feature 
selection, is crucial for enhancing model performance. These 
techniques help mitigate biases and reduce the risk of overfitting. 
Gynecologists and data scientists should collaborate to ensure that the 
data used for predictive modeling is appropriately prepared.

 • Model selection: The study employed a variety of machine 
learning models, including Logistic Regression, Gaussian NB, 
SVM, MLP, KNN, as well as ensemble learning models like 
Random Forest, AdaBoost, Logit Boost, RUS Boost, and 
RSM. Additionally, neural network techniques were applied. 
These models yielded accuracy rates ranging from approximately 
57 to 96%, depending on the dataset and model choice. Such 
diversity in models provides valuable insights into the best-
performing algorithms for IVF success prediction.

 • Ensemble learning: Ensemble learning techniques, including 
AdaBoost and Random Forest, also showed high accuracy. These 
models can be  valuable in clinical decision support systems, 
providing gynecologists with reliable predictions. However, 
model interpretability should be  considered when using 
ensemble methods in clinical practice.

 • Model performance: The machine learning models employed in 
this study demonstrated varying degrees of accuracy in predicting 
IVF success rates. Models such as Random Forest, AdaBoost, and 
Logit Boost achieved high accuracy, highlighting their potential 
for clinical application. However, it’s essential to recognize that 
machine learning models are tools that can aid decision-making 
but should not replace clinical expertise.

 • Neural network results: It achieved accuracy rates of 
approximately 91.44% for the 2017–2018 dataset and 94.71% for 
the 2010–2016 dataset. These results indicate the potential of 
neural network techniques in improving IVF success prediction, 
as they can capture intricate patterns within the data.

7.4 Combined insights

The collaboration between gynecologists and data scientists is 
pivotal in harnessing the full potential of machine learning for IVF 
success prediction. Integrating advanced machine learning paradigms 
into clinical practice can offer several advantages:

 • Personalized treatment: Machine learning models can assist 
gynecologists in tailoring IVF treatment plans based on 
individual patient profiles. By considering factors like years of 
infertility, hormone levels, and infertility causes, treatment 
strategies can be optimized for better outcomes.

 • Risk assessment: Machine learning models can provide 
gynecologists with risk assessments for patients who have 
experienced initial IVF failure. This information allows for more 
informed discussions with patients about the likelihood of 
success in subsequent cycles, helping manage expectations and 
emotional stress.

 • Treatment optimization: The identification of factors influencing 
IVF success can guide gynecologists in optimizing treatment 

protocols. For instance, patients with favorable characteristics 
may benefit from less aggressive stimulation, reducing the risk 
of complications.

 • Continuous monitoring: Machine learning models can 
be  integrated into ongoing patient care to provide real-time 
predictions and adapt treatment strategies as needed. This 
ensures that treatment plans remain aligned with each patient’s 
evolving profile and circumstances.

 • Research and collaboration: Gynecologists and data scientists can 
collaborate on further research to refine predictive models and 
improve their clinical utility. Larger multicenter studies can validate 
findings and enhance the generalizability of predictive models.

While several future research opportunities exist, it is important 
to note that the integration of machine learning models into current 
clinical practice offers immediate benefits. For instance, machine 
learning models can be employed to personalize treatment, assist in 
risk assessments, and optimize treatment strategies based on real-time 
data. These models provide continuous monitoring of patient 
progress, allowing for dynamic adjustments in IVF treatment 
protocols. Additionally, the collaboration between gynecologists and 
data scientists will further enhance the clinical utility of these models, 
refining predictive accuracy and improving patient outcomes in the 
near term. However, further work is required to generalize the models 
to other datasets and clinical settings, ensuring broader applicability 
and refinement. Long-term research could focus on external 
validation, larger multi-center studies, and integrating these models 
more seamlessly into clinical decision support systems.

7.5 Potential limitations of the study

One potential limitation of the study is its retrospective nature, 
which hinders the ability to effectively control for unknown 
confounding factors. Prospective studies, incorporating controlled 
variables, could offer more robust findings by minimizing the impact 
of unaccounted variables on the results.

7.6 Future directions

In the realm of future directions, prospective studies offer a 
promising avenue for research, enabling the acquisition of 
meticulously controlled data that facilitates in-depth analyses and the 
discernment of causal factors. Furthermore, an imperative step 
involves external validation of the machine learning models devised 
in this study, employing data from various IVF centers to gage their 
broader applicability and generalizability. Moreover, there is potential 
for continued exploration into the seamless integration of these 
machine learning models within clinical practice, potentially serving 
as valuable tools to aid clinicians in rendering real-time decisions 
throughout the course of IVF treatment.

This study represents a significant step toward enhancing IVF 
success rate prognostication by combining gynecological expertise 
with advanced machine learning techniques. The findings offer 
valuable guidance for both gynecologists and data scientists in 
optimizing IVF treatment plans, managing patient expectations, and 
improving overall success rates in assisted reproduction. Collaborative 
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efforts in this domain have the potential to revolutionize fertility 
treatments and provide hope to millions of couples worldwide 
grappling with infertility challenges.

8 Conclusion

This study represents a significant milestone in the field of assisted 
reproductive medicine, particularly in the context of predicting In-Vitro 
Fertilization (IVF) success rates. By integrating the expertise of 
gynecologists with advanced machine learning techniques, we have 
gained valuable insights that hold great promise for both healthcare 
practitioners and patients alike. From a gynecological perspective, our 
findings underscore the critical role of patient demographics and 
infertility factors in IVF success. Maternal age, years of infertility, 
gonadotropin dosage, luteinizing hormone levels, and ovarian response 
have all emerged as key determinants of live birth rates. These insights 
align with established gynecological knowledge, emphasizing the 
importance of personalized treatment plans that consider these factors. 
Moreover, our study highlights the significance of addressing 
underlying infertility causes when predicting IVF outcomes, such as 
the positive impact of certain infertility factors like male factor, 
ovulatory dysfunction, and tubal factor on live birth rates. Furthermore, 
our exploration of oocyte activation and fertilization rates in relation 
to IVF success provides valuable clinical insights. Patients with low 
initial fertilization rates who subsequently received oocyte activation 
agents showed improved live birth rates, affirming the clinical relevance 
of such techniques. The identification of specific factors influencing 
success, including shorter years of infertility, lower gonadotropin 
dosage, and lower luteinizing hormone levels, empowers gynecologists 
to make more informed treatment decisions tailored to individual 
patient profiles. From a machine learning perspective, our study 
showcases the potential of various algorithms and models in predicting 
IVF success. Machine learning techniques, including ensemble learning 
and neural network, have demonstrated accuracy rates ranging from 
57 to 96%, depending on the dataset and model choice. Notably, neural 
network techniques have proven effective in capturing intricate patterns 
within the data, achieving accuracy rates of approximately 91.44 and 
94.71% for the two datasets, respectively. These findings highlight the 
versatility and potential of machine learning in improving IVF success 
prediction. Our findings offer gynecologists valuable tools for 
personalized treatment planning, risk assessment, and treatment 
optimization. For patients, this means more informed decision-making 
and better-managed expectations during their IVF journey.
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