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Diabetic retinopathy is a condition that a�ects the retina and causes vision loss

due to blood vessel destruction. The retina is the layer of the eye responsible

for visual processing and nerve signaling. Diabetic retinopathy causes vision

loss, floaters, and sometimes blindness; however, it often shows no warning

signals in the early stages. Deep learning-based techniques have emerged

as viable options for automated illness classification as large-scale medical

imaging datasets have becomemore widely available. To adapt tomedical image

analysis tasks, transfer learning makes use of pre-trained models to extract

high-level characteristics from natural images. In this research, an intelligent

recommendation-based fine-tuned E�cientNetB0 model has been proposed

for quick and precise assessment for the diagnosis of diabetic retinopathy from

fundus images, whichwill help ophthalmologists in early diagnosis and detection.

The proposed E�cientNetB0 model is compared with three transfer learning-

based models, namely, ResNet152, VGG16, and DenseNet169. The experimental

work is carried out using publicly available datasets from Kaggle consisting of

3,200 fundus images. Out of all the transfer learning models, the E�cientNetB0

model has outperformed with an accuracy of 0.91, followed by DenseNet169

with an accuracy of 0.90. In comparison to other approaches, the proposed

intelligent recommendation-based fine-tuned E�cientNetB0 approach delivers

state-of-the-art performance on the accuracy, recall, precision, and F1-score

criteria. The system aims to assist ophthalmologists in early detection, potentially

alleviating the burden on healthcare units.
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1 Introduction

High blood glucose levels can lead to diabetic retinopathy, an eye disorder caused

by damage to the retinal blood vessels. The retina is the layer of the eye responsible

for visual processing and nerve signaling. Diabetic retinopathy often shows no early

warning signs but can eventually cause blurred vision, floaters, and even blindness. Diabetic

retinopathy can be either non-proliferative or proliferative, depending on the severity of

the disease. Maintaining a healthy blood sugar level and scheduling routine eye exams
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can help stop or reduce the development of diabetic retinopathy.

Early detection is key because treatment with laser therapy or

surgery can prevent permanent loss of eyesight. Normal eye

examinations are fundamental for individuals with diabetes to

detect diabetic retinopathy and other eye complications (Nazir

et al., 2019; Raja and Balaji, 2019). Diabetic retinopathy may be a

potential consequence of diabetes, which can lead to permanent

vision loss or visual deficiency if left untreated expeditiously. It

is the leading cause of visual impairment in adults of working

age in numerous economically developed nations. Individuals

with diabetes, particularly those with uncontrolled blood sugar

levels, are at a higher chance of developing diabetic retinopathy.

The probability of an increase in complications of diabetes is

observed for longer periods (Gayathri et al., 2021). Moreover,

diabetic retinopathy may be a precursor to other diabetes-related

issues such as nerve injury or kidney infection. Subsequently, it is

fundamental for people with diabetes to oversee their blood sugar

levels and cholesterol levels to maintain a strategic distance from

this condition and other issues. Diabetic retinopathy can be viably

treated on the probability that it is recognized and treated early.

Diabetic retinopathy is classified into two subtypes. In its

earliest stage, diabetes can cause a disease known as non-

proliferative diabetic retinopathy (NPDR). Exudates are deposits

formed when injured blood vessels in the retina leak. In its

earliest stages, NPDR rarely causes any noticeable symptoms or

vision loss. Proliferative diabetic retinopathy (PDR) is a more

severe form of the disease. In brief, PDR happens when new,

fragile blood vessels form on the surface of the retina and

have the potential to bleed into the vitreous, gel-like fluid that

fills the inside of the eye. PDR can lead to total blindness if

left untreated.

Early diagnosis of diabetic retinopathy is essential in avoiding

permanent vision impairment or blindness. Untreated diabetic

retinopathy, a condition that affects the retinal blood vessels,

can cause severe vision loss or even blindness. DR often

shows no signs in its early stages or only moderate signs

such as impaired vision. However, if the disease worsens, it

can cause significant vision loss, and by then, it may be

too late for effective treatment. Diabetic retinopathy can be

detected and treated early on if patients undergo routine eye

examinations. Treatments such as laser therapy and injections can

be used to halt or delay the growth of the disease if they are

administered early on. In rare circumstances, surgery may be the

only option.

By using deep learning techniques, automated systems for the

early diagnosis of diabetic retinopathy have been created. Fundus

photography is a typical technique used for capturing an image of

the back of the eye. To train deep learning models, we may use

large labeled datasets of fundus images that have been classified

as either healthy or showing signs of diabetic retinopathy. After

being trained, these algorithms can determine if a new fundus

image is healthy or showing signs of diabetic retinopathy, and

some can even assign a severity score to the condition. Deep

learning has shown encouraging results in the early detection

of diabetic retinopathy, and it has the potential to improve the

efficacy and precision of screening programs, especially in areas

with limited access to ophthalmologists (Li et al., 2019; Washburn,

2020).

Diabetic retinopathy can be diagnosed and managed with

several different imaging techniques, including but not limited to

the following:

In fluorescein angiography, a dye is injected into the arm,

and the blood vessels in the retina are photographed as the dye

travels through the body. It can be used to detect and monitor

the growth of aberrant retinal blood vessels. Similarly, indocyanine

green angiography, an invasive imaging modality, entails injecting

a dye into the arm and then taking pictures of the retina while

the dye travels through the blood arteries. Patients with diabetic

retinopathy often undergo indocyanine green angiography to assess

choroidal circulation. The high-frequency sound waves used in

ultrasonography can be used to create images of the eye without

causing any damage. It can detect and monitor changes in the

retina, optic nerve, and other components of the eye.

The major contributions of this research are as follows:

• Four transfer learning models, namely, EfficientNetB0,

ResNet152, VGG16, and DenseNet169, have been simulated

for the two-class classification of fundus images for the

diagnosis of diabetic retinopathy. For this diagnosis, two

classes of fundus images having 3,200 images are considered.

• Furthermore, fine-tuning of pre-trained models has been

performed by adding a global average pooling layer, a flatten

layer, a dropout layer, and a dense layer to save time and

resources and to improve the performance of the model.

• The performance of the best model has been compared

with that of state-of-the-art techniques based on precision,

recall, accuracy, and F1-score, in which EfficientNetB0 has

outperformed other models.

• This research can help ophthalmologists gain further

information, which will help them in the early detection and

diagnosis of the disease.

The remainder of this article is structured as follows: Section 2

provides the literature review; Section 3 describes the proposed

methodology; Section 4 shows the results of this study; and

Section 5 provides the conclusion.

2 Literature review

Various researchers have used different techniques for

diagnosing diabetic retinopathy from retinal images. Kaggle

Asia Pacific Tele-Ophthalmology Society (APTOS), Messidor,

Messidor-2, Kaggle eyePACS, STARE, HRF, Indian Diabetic

Retinopathy Image Dataset (IDRiD), and DDR are only some of

the datasets that have been used by researchers.

Anoop (2022) presented the convolutional neural networks

(CNN) architecture for the binary class classification of DR and

non-DR images. By comparison, using different hyperparameters,

they obtained an accuracy (Acc) of 0.946, a sensitivity (Se) of

0.860, and a specificity (Sp) of 0.960. Pamadi et al. (2022) worked

using the MobileNetV2 architecture for the binary and multimodal

classification of DR images. They used the Kaggle APTOS dataset

and attained an Acc of 0.780. Saranya et al. (2022) presented

DenseNet models for the diagnosis of DR. They attained an Acc

of 0.830 and a Pr of 0.99. Sanjana et al. (2021) worked using
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five different transfer learning models for the detection of DR

with 1,115 fundus images consisting of two classes. They obtained

an Acc of 0.861, a Se of 0.854, and a Sp of 0.875. Kumar and

Karthikeyan (2021) used different models such as EfficientNet and

Swin-Transformer with 3,600 fundus images and obtained an Acc

of 0.864 on Swin-Transformer. Lahmar and Idri (2022) presented

automatic two-class classification using 28 hybrid architectures.

They combined four classifiers and seven deep learning algorithms

and used Kaggle DR, Messidor-2, and APTOS datasets for the

simulation, which produced the highest value of an Acc of 0.890

on the APTOS dataset.

El-Ateif and Idri (2022) used seven different pre-trained

algorithms using APTOS and Messidor datasets. They obtained an

Acc of 0.907 on the DenseNet121 architecture. Jiang et al. (2017)

presented a CNNmodel architecture for the two-class classification

of fundus images. They used 8,626 images for training and 1,925

images for validating the model and attained an Acc of 0.757. Rêgo

et al. (2021) used the Inception-V3 model with 295 images. They

obtained an Acc of 0.95%, followed by a Se of 0.808 and a Sp of

0.973. Kolla and Venugopal (2021) proposed a binary CNN that

reduces the power and efficiency of retinopathy classification. They

used the Kaggle dataset onDR images and obtained an Acc of 0.910.

Kazakh-British et al. (2018) presented the training of an ANN using

400 fundus images. They obtained an increased Acc of 0.600. Elwin

et al. (2022) used a deep learning algorithm for the diagnosis of the

retina. They obtained Acc, Se, and Sp values of 0.9142, 0.9254, and

0.9142, respectively. Shorfuzzaman et al. (2021) used a weighted

fusion of different models for the detection of DR by using three

datasets, namely, APTOS, MESSIDOR, and IDRiD. They obtained

a Pr of 0.970, a Se of 0.980, and an AUC of 0.978. Elswah et al.

(2020) performed the diagnosis of DR using three steps. In the first

step, fundus images were pre-processed using augmentation and

normalization. In the second step, the ResNet-based CNN model

was used for the diagnosis, followed by the classification of DR

fundus images. They obtained an Acc of 0.866.

Sakaguchi et al. (2019) presented the graph neural network

for the diagnosis of DR. They used three datasets and obtained

accuracy values of 0.783, 0.774, and 0.759. Shaik and Cherukuri

(2022) presented the Hinge Attention Network for DR diagnosis.

They used the transfer learning-based VGG16 network

architecture. The authors worked using Kaggle APTOS 2019

and ISBI IDRiD datasets and obtained the accuracy values of 85.54

and 66.41%, respectively. AbdelMaksoud et al. (2022) combined

the EyeNet and DenseNet models for the diagnosis of DR and

used four datasets, namely, EyePACS, Indian diabetic retinopathy

image dataset, MESSIDOR, and Asia Pacific Tele-Ophthalmology

Society (APTOS 2019), and resized the images to 256 ∗ 256. The

proposed model achieved an Acc of 0.912, a Se of 0.96, and a Sp of

0.69. Thota and Reddy (2020) used the VGG16 pre-trained neural

network for the diagnosis of DR and achieved the values of Acc, Se,

and Sp of 0.740, 0.80, and 0.65, respectively. Barhate et al. (2020)

worked using three pre-trained models, namely, VGG19, VGG16,

and AlexNet. They proposed the VGG autoencoder network and

worked using the EyePACS dataset. They obtained an Acc of 0.762

with the proposed model.

Kwasigroch et al. (2018) proposed deep CNN for the diagnosis

of DR. They achieved an Acc of 82% and a Kappa score of 0.776.

Wang et al. (2018) presented different pre-trained networks for

the diagnosis of DR. They used 166 fundus images obtained from

the Kaggle dataset and obtained Acc values of 37.43% on AlexNet,

50.03% on VGG16, and 63.23% on InceptionNetV3. Zhou et al.

(2018) proposed a multi-cell architecture that boosts the training

time and increases the classification Acc to 0.632. Shrivastava and

Joshi (2018) presented a CNN-based network for the detection of

DR in fundus images and used the InceptionV3 CNN architecture,

and the features were extracted using the Support Vector Machine

(SVM). They obtained an Acc of 0.877 on binary class and 0.818

on multi-class classifications. Maistry et al. (2020) proposed the

CNN for the diagnosis of DR from fundus images. They carried

out the analysis on the EyePACS dataset and obtained an Acc of

0.869 and an F1-score of 0.80. Khaled et al. (2020) presented the

cascade model to detect DR and classify it into four stages. They

used 61,248 retinal fundus images. They had obtained a Sp of 96.1%.

Qian et al. (2021) combined the Res2Net and DenseNet models for

the diagnosis of DR. They achieved the Acc and Kappa scores of

0.832 and 0.8, respectively. Xiao et al. (2021) presented an Inception

module for DR diagnosis. They obtained an Acc of 88.24% and a

Se of 99.43%. In this study, an intelligent fine-tuned EfficientNetB0

model has been proposed for the diagnosis of DR.

3 Proposed methodology

This research presents the simulation of four transfer

learning models, namely, EfficientNetB0, ResNet152, VGG16, and

DenseNet169, for the two-class classification of fundus images

to detect diabetic retinopathy. Figure 1 depicts the input dataset

that includes fundus images. The data augmentation techniques

are applied to the original dataset. The next block represents

the simulation using four pre-trained models. Furthermore, fine-

tuning of the pre-trained models has been performed by adding

the global average pooling layer, the flatten layer, the dropout layer,

and the dense layer to save time and resources and improving the

performance of the model. Out of the four pre-trained models,

EfficientNetB0 is selected as the best-performing model. The

performance of the best model has been compared with that of

state-of-the-art techniques based on precision, recall, accuracy, and

F1-score, in which EfficientNetB0 has outperformed.

3.1 Input dataset

The proposed work has been validated using the retinal disease

dataset that is obtained from public sources (Pachade et al., 2021).

The dataset consists of 3,200 fundus images that are captured using

three different fundus cameras with the help of two senior retinal

experts. Out of the 3,200 images, 1,920 images are used for training,

640 images are used for validation, and 640 images are used for

testing. In total, 60% of the data are used for training, 20% for

testing, and the other 20% for validation purposes. The sample

images are shown in Figure 2. The study uses open data, which are

data that are freely available to the public. Since the data used in this

study are accessible to the public and do not involve any private or

sensitive information, they fall under the category of research that is
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FIGURE 1

Proposed methodology.
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FIGURE 2

Dataset sample: (A) cataract and (B) non-cataract.

exempt from the oversight of the Institutional Review Board (IRB).

Therefore, no IRB approval was required for this study. However,

all analyses were conducted in accordance with ethical standards

and guidelines for research integrity.

3.2 Data augmentation

Figure 3 shows the data augmentation techniques that are

applied to the original dataset to obtain a different variety of images.

Figure 3A shows the original fundus image, Figure 3B shows the

180-degree rotated image, Figure 3C shows the horizontal flipping,

and Figure 3D shows vertical flipping.

3.3 Prediction using pre-trained models

Common deep-learning architectures used for computer

vision tasks include EfficientNetB0, ResNet152, VGG16, and

DenseNet169. Each of these algorithms has its special traits and

advantages when it comes to identifying and categorizing images.

EfficientNetB0 has an outstanding record in the use of

computational resources. Its precision is remarkable given that the

model is so small and easy to run. The architecture scales in depth,

width, and resolution to maximize performance under varying

conditions of availability.

ResNet152, in contrast to EfficientNetB0, is a considerably

more in-depth and complicated model. Because of its basis in the

residual learning framework, even extremely deep neural networks

can be trained with relative ease. With its 152 layers, ResNet152

excels at image classification. However, it has higher computing

requirements because of its increased depth.

The VGG16 architecture for CNNs is another popular choice. It

has 16 layers of movable weights and is renowned for its uniformity

and ease of use. VGG16 has performed exceptionally well in several

computer vision competitions, notably the ImageNet challenge. Its

simple design makes it easy to grasp and put into practice.

DenseNet169 is a convolutional neural network (CNN)

architecture with a substantial focus on feature reuse and a

preference for steep gradient descents. It implements skip links

between layers, providing instant access to feature maps in

higher-level ones. This dense connectivity structure decreases

the likelihood of disappearing gradients and increases accuracy

by facilitating the efficient flow of information and gradient

propagation across the network (Trivedi et al., 2021; Ramesh et al.,

2022).

DenseNet169 uses a dense connection to promote feature

propagation, whereas VGG16 is well-known for its simplicity

and solid performance. EfficientNetB0 provides an excellent

compromise between efficiency and accuracy. The available

computational resources, the quantity of the dataset, and the

desired accuracy all play a role in deciding the model to be used.

Table 1 shows the parameters of pre-trained models.

4 Results and discussion

This section includes all the findings from various modeling

studies. Pre-trained architectures with varying numbers of epochs

and confusion matrix parameters are compared experimentally

(Sharma and Koundal, 2018; Bhattacharya et al., 2022; Gupta et al.,

2023; Koundal et al., 2023).

4.1 Epoch-wise assessment of di�erent
models

Table 2 shows the epoch-wise assessment of four models. The

model with the lowest loss across all epochs is VGG16, with a loss

value of 0.0080 at epoch 12. The model with the highest loss is

DenseNet169, with a loss of 0.4358 at epoch 3. VGG16 achieves the

highest accuracy among all models, reaching 0.9974 at epoch 12.

DenseNet169 has the lowest accuracy of 0.9161 at epoch 3. VGG16

achieves the highest AUC value among the models, with a peak

of 0.9999 at epoch 12. EfficientNetB0 and ResNet152 also show

excellent AUC values, with EfficientNetB0 reaching 0.9949 and

ResNet152 reaching 0.9912. The model with the highest precision

is VGG16, which achieves a precision of 0.9920 at epoch 12. The

lowest precision among the models is achieved by DenseNet169,

with a precision of 0.7929 at epoch 3. VGG16 achieves the highest
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FIGURE 3

Images after augmentation: (A) original image, (B) rotation (180◦), (C) horizontal flipping, and (D) vertical flipping.

TABLE 1 Pre-trained models.

Model Layers Parameters
(in millions)

Input
layer
size

Output
layer
size

EfficientNetB0 10 8.4 224 x 224

x 3

(2, 1)

ResNet152 164 60.4

VGG16 16 138

DenseNet169 169 27

recall among themodels, reaching 0.9947 at epoch 12. DenseNet169

has the lowest recall, with a value of 0.7739 at epoch 3. In summary,

VGG16 consistently performs well across all the metrics, showing

the lowest loss, the highest accuracy, AUC, precision, and recall.

EfficientNetB0 and ResNet152 also exhibit strong performance,

particularly in terms of the AUC. DenseNet169 generally has lower

performance than the other models in terms of accuracy, precision,

and recall.

EfficientNetB0 demonstrates consistent improvement in

performance with an increase in the number of epochs. It achieves

high accuracy, AUC, precision, and recall values, indicating

an overall good performance. Among the evaluated metrics,

EfficientNetB0 achieves the highest precision and recall at epoch

15. EfficientNetB0 shows competitive performance compared to the

other models in the table. ResNet152 also shows improvement in

performance with an increase in the number of epochs. It achieves

high accuracy, AUC, precision, and recall values. ResNet152

performs particularly well in terms of AUC, with high values across

epochs. The model exhibits competitive performance overall,

similar to EfficientNetB0. VGG16 consistently demonstrates strong

performance across all evaluatedmetrics. It achieves the lowest loss,

the highest accuracy, AUC, precision, and recall values among all

models. VGG16 exhibits consistent improvement with an increase

in the number of epochs. The model consistently outperforms the

other models given in the table. DenseNet169 shows relatively

stable performance across epochs, with some fluctuations in loss

and other metrics. While it achieves lower values compared to the

other models in terms of accuracy, precision, and recall, it still

demonstrates competitive performance. DenseNet169 performs

relatively well in terms of the AUC, although not as high as VGG16

and ResNet152.

4.2 Binary class-wise assessment of
confusion matrix parameters

Table 3 shows the class-wise assessment in terms of confusion

matrix parameters. For the non-infected (N-IN) disease class,

EfficientNetB0 achieves impressive results with a precision of

0.93, a recall of 0.94, an F1-score of 0.94, and an accuracy

of 0.91. These metrics indicate that EfficientNetB0 performs

exceptionally well in correctly identifying and classifying instances

of the N-IN disease class. The high precision and recall

values demonstrate a strong ability to accurately predict positive

cases while minimizing false positives and false negatives.

The F1-score, which combines precision and recall, further

reflects the overall effectiveness of the model. ResNet152 also

performs well for the N-IN disease class with a precision of

0.93, a recall of 0.91, an F1-score of 0.92, and an accuracy

of 0.88. Although slightly lower than that of EfficientNetB0,

these scores still indicate a robust performance in disease

classification. ResNet152 shows good potential in accurately

identifying instances of the N-IN disease class, and the high

accuracy value suggests a reliable overall prediction ability. VGG16,

on the other hand, achieves slightly lower scores than those

in the previous models, with a precision of 0.92, a recall of

0.93, an F1-score of 0.92, and an accuracy of 0.89 for the N-

IN disease class. While these metrics demonstrate a reasonably

accurate classification, they indicate a slightly lower performance

than EfficientNetB0 and ResNet152. However, VGG16 still

shows promise in disease classification tasks. DenseNet169

showcases strong performance for the N-IN disease class, with

a precision of 0.94, a recall of 0.93, an F1-score of 0.94, and

an accuracy of 0.90. Similar to EfficientNetB0, DenseNet169

achieves high precision, recall, and F1-score values, indicating

a robust ability to correctly classify instances of the N-IN

disease class. The accuracy score also suggests reliable overall

predictions. In conclusion, based on the available information,

EfficientNetB0 and DenseNet169 emerge as the top performers

for the N-IN disease class, exhibiting high precision, recall, F1-

score, and accuracy values. ResNet152 follows closely behind

with slightly lower scores, while VGG16 shows comparatively

lower but still promising results. These findings highlight

the strengths of EfficientNetB0 and DenseNet169 in disease

classification tasks, emphasizing their potential for accurate

identification and classification of instances belonging to the N-IN

disease class.
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TABLE 2 Epoch-wise assessment of four models.

Model Epochs Loss Accuracy AUC Precision Recall

EfficientNetB0 5 0.2696 0.9417 0.9503 0.8455 0.8590

10 0.1498 0.9625 0.9797 0.8979 0.9122

15 0.0536 0.9854 0.9949 0.9703 0.9548

ResNet152 3 0.4042 0.9490 0.9465 0.8639 0.8777

6 0.0723 0.9859 0.9896 0.9704 0.9574

9 0.0547 0.9865 0.9912 0.9679 0.9628

VGG16 4 0.2698 0.9531 0.9583 0.8803 0.8803

8 0.0234 0.9911 0.9980 0.9761 0.9787

12 0.0080 0.9974 0.9999 0.9920 0.9947

DenseNet169 3 0.4358 0.9161 0.9143 0.7929 0.7739

6 0.0815 0.9729 0.9904 0.9355 0.9255

8 0.1238 0.9625 0.9815 0.9086 0.8989

Bold values are the best values of accuracy on different models.

TABLE 3 Binary class-wise assessment of confusion matrix parameters.

Models Disease Class Precision Recall F1-score Accuracy

EfficientNetB0 N-IN 0.93 0.94 0.94 0.91

IN 0.76 0.73 0.75

ResNet152 N-IN 0.93 0.91 0.92 0.88

IN 0.69 0.73 0.71

VGG16 N-IN 0.92 0.93 0.92 0.89

IN 0.71 0.68 0.70

DenseNet169 N-IN 0.94 0.93 0.94 0.90

IN 0.75 0.78 0.76

4.3 Comparison curves

After all the evaluations, different comparison curves are

obtained. Figure 4A shows the validation loss comparison curve for

the four pre-trained models. It can be observed that the value of

the loss is 0.5 in the case of the EfficientNetB0 model. Figure 4B

shows the values of accuracy for all four pre-trained models. For

the EfficientNetB0 model, the value of accuracy is 0.91, followed

by 0.90 for DenseNet169. The value of accuracy is 0.89 for VGG16

and 0.88 for ResNet152. Figure 4C shows the AUC comparison

for all four pre-trained models. The values of AUC are 0.90,

0.86, 0.82, and 0.84 for EfficientNetB0, ResNet152, VGG16, and

DenseNet169, respectively. Figure 4D shows the comparison of

false positives for all four pre-trained models. Figure 4E shows

the comparison of the precision with the value of EfficientNetB0

between 0.7 and 0.8. Figure 4F shows the values of recall for

four pre-trained models. The EfficientNetB0 model shows a recall

of 0.70.

From Figure 4, it can be concluded that EfficientNetB0 has

outperformed all the other models in terms of accuracy. The value

of the highest accuracy obtained is 0.91.

4.4 A comparison with the state-of-the-art
methods

The researchers used different transfer learning models for the

diagnosis of DR as shown in Table 4. The different transfer learning

techniques were used by researchers to achieve different values

of performance metrics. The proposed fine-tuned EfficientNetB0

model has outperformed the other models and obtained an

accuracy of 0.91.

5 Conclusion and future work

In summary, identifying diabetic retinopathy in diabetic

patients in fundus images is an essential step in its early detection

and treatment, as it may potentially lead to blindness. Diabetic

retinopathy diagnosis has been greatly aided by the development of

image processing techniques and the proliferation of high-quality

fundus images. Many different CAD systems have emerged to aid

ophthalmologists in the analysis of fundus images over the years.

Automated detection and grading of diabetic retinopathy lesions is
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FIGURE 4

A comparison of transfer learning models: (A) loss, (B) accuracy, (C) AUC, (D) false positives, (E) precision, and (F) recall.

achieved by the use of a wide range of image analysis techniques in

these systems.

Diabetic retinopathy diagnosis has come a long way, but

there are still limitations and room for development. First,

validating and fine-tuning these algorithms on large-scale datasets

is crucial because the performance of existing systems can

vary between datasets. Second, various retinal illnesses may

coexist, making it necessary to consider both validation and

fine-tuning when interpreting fundus images for a diagnosis of

diabetic retinopathy. The proposed intelligent recommendation-

based fine-tuned EfficientNetB0 model has also been compared

with state-of-the-art models in terms of accuracy. From the results,

it is analyzed that the proposed model has outperformed the

other transfer learning models and state-of-the-art models in terms

of accuracy. The proposed intelligent recommendation-based

fine-tuned EfficientNetB0model will alleviate the economic burden

on healthcare units. The proposed framework may aid medical

practitioners and ophthalmologists in the detection and tracking

of retinal illnesses, which in turn may lead to more timely

treatment and better patient outcomes. Because of the flexibility

of the transfer learning method, it might be incorporated into

pre-existing telemedicine systems for use in remote screening

and diagnosis.

The research findings on diabetic retinopathy have significant

practical implications for medical diagnostics and patient care.

By using deep learning models, such as CapsNet-Random

Walrus (CapsNet-RW), for the automated detection and

classification of diabetic retinopathy from retinal images,

healthcare providers can enhance the efficiency and accuracy

of diagnosis. This can lead to early detection and intervention,
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TABLE 4 A comparison with state-of-the-art methods.

References Technique Dataset/number of images Performance parameters

Pamadi et al. (2022) MobileNetV2 Kaggle Aptos/- Acc= 0.780

Saranya et al. (2022) DenseNet - Acc= 0.830, Pr= 0.99

Sanjana et al. (2021) Transfer learning models Fundus/1,115 Acc= 0.861, Se= 0.854, Sp= 0.875

Kumar and Karthikeyan

(2021)

Swin-Transformer Fundus/3,600 Acc= 0.864

Lahmar and Idri (2022) Combination of classifiers and deep

learning algorithms

Kaggle DR, Messidor-2, and APTOS Acc= 0.890

El-Ateif and Idri (2022) Transfer learning models APTOS and Messidor datasets Acc= 0.907

Jiang et al. (2017) CNN 8,626 images and 1,925 images for

validating

Acc= 0.757

Rêgo et al. (2021) Inception-V3 295 Acc= 0.95, Se= 0.808, Sp= 0.973

Kolla and Venugopal (2021) CNN - Acc= 0.910

Kazakh-British et al. (2018) ANN 400 Acc= 0.600

Proposed model EfficientNetB0 Fundus/3200 Acc= 0.91

which are crucial in preventing vision loss and improving

patient outcomes. Additionally, the use of such models can help

in reducing the burden on healthcare systems by optimizing

resource allocation and improving access to timely care for

diabetic patients.
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