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Studies on reinforcement learning have developed the representation of

curiosity, which is a type of intrinsic motivation that leads to high performance in

a certain type of tasks. However, these studies have not thoroughly examined

the internal cognitive mechanisms leading to this performance. In contrast

to this previous framework, we propose a mechanism of intrinsic motivation

focused on pattern discovery from the perspective of human cognition. This

study deals with intellectual curiosity as a type of intrinsic motivation, which

finds novel compressible patterns in the data. We represented the process of

continuation and boredom of tasks driven by intellectual curiosity using “pattern

matching,” “utility,” and “production compilation,” which are general functions of

the adaptive control of thought-rational (ACT-R) architecture. We implemented

three ACT-R models with di�erent levels of thinking to navigate multiple

mazes of di�erent sizes in simulations, manipulating the intensity of intellectual

curiosity. The results indicate that intellectual curiosity negatively a�ects task

completion rates in models with lower levels of thinking, while positively

impacting models with higher levels of thinking. In addition, comparisons with

a model developed by a conventional framework of reinforcement learning

(intrinsic curiosity module: ICM) indicate the advantage of representing the

agent’s intention toward a goal in the proposed mechanism. In summary,

the reported models, developed using functions linked to a general cognitive

architecture, can contribute to our understanding of intrinsic motivation within

the broader context of human innovation driven by pattern discovery.

KEYWORDS

cognitivemodeling, ACT-R, intrinsicmotivation, intellectual curiosity, pattern discovery

1 Introduction

According to Baron-Cohen (2020), human evolution and the development of

civilization are associated with “systematizing mechanisms,” which are achieved by

discovering, combining, and using patterns of cause-and-effect relationships in an

environment. He also stated that the ability of humans to think systematically has

evolved by using the “if-and-then” logic to combine patterns, resulting in inventions and

innovations that lead to our modern society.

Several studies have reported that such an ability of pattern discovery is associated with

fun, a personal feeling leading to intrinsic motivation (Caillois, 1958; Csikszentmihalyi,

1990; Huizinga, 1939; Koster, 2013). The other researchers (Aubret et al., 2019;

Schmidhuber, 2010) have also explored the computational realization of intrinsic

motivation employing the framework of reinforcement learning (Sutton and Barto, 1998).

However, these studies have not explored the link between intrinsic motivation and
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primitive cognitive functions related to pattern discovery.

Therefore, further analysis of the computational mechanisms of

intrinsic motivation in terms of agents’ internal processing is

needed.

The aforementioned problem can be addressed by using a

cognitive architecture that integrates the basic cognitive functions

involved in various tasks. Despite the existence of several cognitive

architectures, the architectural differences have been reduced over

the years and integrated into a common structure (Laird et al.,

2017). The representative architecture adopting such a structure

is adaptive control of thought-rational (ACT-R), developed by

Anderson (2007). According to Kotseruba and Tsotsos (2020)’s

comprehensive review of the topic, ACT-R is one of themost widely

used cognitive architectures, including a greater number of features

compared to the other architectures.

In this study, we propose a mechanism of intrinsic motivation

based on pattern discovery by integrating primitive cognitive

functions of ACT-R. The main advantage of the proposed

approach is its interpretability. Based on commonly used building

blocks in the architecture, our proposed mechanism can provide

a foundation for understanding intrinsic motivation from the

perspective of human cognition. Furthermore, this study presents

a simulation experiment to explore the conditions of stimulating

intrinsic motivation and the learning process driven by stimulated

intellectual curiosity. Our analysis confirmed that the proposed

mechanism can represent the role of intellectual motivation in

human learning at diverse levels of thinking and task difficulty.

Additionally, we examined the relationship between the proposed

mechanism and an existing mechanism of intrinsic motivation

based on reinforcement learning.

The remainder of this paper is organized as follows. Section 2

summarizes the existing studies related to this concept. Section 3

introduces the proposed mechanism, which is developed based on

pattern discovery. The effectiveness of the mechanism is discussed

based on simulations in Section 4. Finally, Section 5 summarizes

the findings and indicates directions for future investigations.

2 Related works

The objective of this study is to represent a mechanism of

intrinsicmotivation based on the discovery of patterns. This section

focuses on three directions of previous studies, namely, human

curiosity, machine curiosity, and cognitive models with cognitive

architectures.

2.1 Human curiosity

Numerous studies have attempted to systematize intrinsic

motivation as a driving factor to continue activities in a wide

range of fields, including education, entertainment, healthcare,

sports, and work. For instance, Malone (1981), who tried to

systematize this concept in entertainment fields, categorized

intrinsic motivation into three types, namely, “challenge,” which

originates from goals of appropriate difficulty; “fantasy,” which

leads to the imagination of unrealistic experiences; and “curiosity,”

which is stimulated by a surprising, interesting, or fun activity.

Here, curiosity is related to the discussion presented in Section

1 that pattern discovery accompanying the feeling of fun has led

to human innovations. However, we believe that the first type

of intrinsic motivation, challenge, is inseparable from curiosity.

Rather than treating those as independent factors, we assume that

curiosity is a mechanism of intrinsic motivation, stimulated by the

appropriate difficulty (challenge) of a task.

The above assumption is supported by several authors who

reported the relationship between the levels of task difficulty, the

preferred level of thinking, and intrinsic motivation. The theory

behind this is referred to as the optimal level of intrinsic motivation

(Csikszentmihalyi, 1990; Yerkes and Dodson, 1908). According to

this theory, intrinsic motivation is effectively stimulated when the

task difficulty level matches the preferred level of thinking of a

person. Furthermore, the level of thinking can be located on an

axis with at least two levels. These include a shallow automatic level

without careful thinking (fast process) and a deep deliberative level

that requires time to carefully think (slow process) (Brooks, 1986;

Evans, 2003; Kahneman, 2011).

2.2 Machine curiosity

Based on the aforementioned discussion, we assumed a close

relationship between curiosity and the feeling of fun involved in

the discovery of patterns. This relationship was computationally

theorized by Schmidhuber (2010), wherein the discovery of

patterns is defined as identifying and compressing recurring

canonical patterns in data. Schmidhuber also related compressing

data or obtaining compressible data to fun by assuming that the

agent aims to maximize fun as a reward. This idea was based on the

prediction error theory (Friston, 2010), which considers curiosity

to be caused by the difference between prior predictions and the

current situation (Bayesian surprise). In Schmidhuber’s theory,

prediction implies applying already compressed data; here, surprise

occurs when identifying a pattern that can be newly compressed.

Schmidhuber’s proposal can be discussed as an extension

of conventional reinforcement learning. Typically, agents in

reinforcement learning receive rewards from the environment

and intend to maximize them over time. Sutton and Barto

(1998) distinguished the boundaries between the agent and the

environment from the physical boundaries between the body and

the environment. Based on this idea, Singh et al. (2005) proposed

a framework of intrinsically motivated reinforcement learning

(IMRL), which divides the environment into external and internal

segments. In contrast to conventional reinforcement learning,

which directly receives a reward from the external environment,

rewards in IMRL are determined depending on the state of

the internal environment, such as stimulating curiosity for an

unexpected response.

Since the proposal of IMRL, the framework of reinforcement

learning has significantly progressed by integrating deep learning

techniques. The preliminary framework was referred to as Deep Q

Network (DQN) (Mnih et al., 2015), which combined Q learning

with a convolutional neural network (CNN). Subsequently, several

researchers introduced the concept of intrinsic motivation in

deep reinforcement learning. For instance, Bellemare et al.
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(2016) developed count-based exploration methods, wherein visit

counts were used to guide an agent’s behavior toward reducing

uncertainty. In their research, calculating prediction errors as

internal rewards led the agents to search for novel states and

ultimately outperformed DQN. Following this idea, Pathak et al.

(2017) proposed the intrinsic curiosity module (ICM), which

regarded the difference between the predicted state of an agent and

the situation obtained from the pixel information on the screen

as curiosity. Herein, ICM was integrated with the asynchronous

actor-critic model (A3C) (Mnih et al., 2016). Based on this

method, Burda et al. (2018) implemented an approach to explore

the environment using only internal rewards regarding curiosity.

Moreover, Burda et al. (2019) proposed a method named random

network distillation, which made it possible to learn tasks that were

difficult to accomplish with the previous methods.

2.3 Cognitive models with cognitive
architectures

Although the aforementioned studies successfully represented

curiosity in reinforcement learning, their integration with cognitive

functions has not been sufficiently explored. As explained in

Section 2.1, curiosity is associated with the discovery of patterns.

Therefore, the computational representation should include basic

human cognitive functions behind pattern discovery; this can

be achieved using ACT-R. The subsequent section explains the

representation of individual cognitive functions in ACT-R and

the type of learning realized by combining cognitive functions.

Herein, we predominantly focus on the cognitive functions of

ACT-R involved in this study. Further information on ACT-R can

be obtained from Anderson (2007), the ACT-R manual (Bothell,

2020), and other reviews (Ritter et al., 2019).

2.3.1 Structure of ACT-R modules
ACT-R comprises modules corresponding to brain regions,

as indicated in Figure 1. The mapping between the modules

and regions has been discussed based on neuroscientific findings

(Stocco et al., 2021). The principal assumption of this structure

is that one module takes responsibility for a set of functions.

For instance, the declarative module comprises functions for

storing experience and knowledge, the imaginal module contains

functions to create new knowledge by combining multiple internal

representations, and the function of the goal module is to maintain

the current status of tasks to manage the process of the model.

The state of each module at each time point (e.g., the declarative

knowledge being recalled and the state of the current goal)

is expressed using a symbol referred to as a chunk, which is

stored in a buffer for each module. The chunks stored in the

buffer are evaluated using a type of procedural knowledge, called

“productions,” comprising IF (conditions) and THEN (actions)

clauses in the production module. The productions transmit

chunks describing commands to modules as actions, such as

searching for knowledge that satisfies the conditions and updating

the current state of the task.

FIGURE 1

Overview of the adaptive control of thought-rational (ACT-R)

modules. Modules excluded in this study are grayed out. This figure

is created with reference to Anderson et al. (2004) and Ritter et al.

(2019). VLPFC, ventrolateral prefrontal cortex; ACC, anterior

cingulate cortex; DLPFC, Dorsolateral prefrontal cortex; PPC,

posterior parietal cortex.

Therefore, the declarative and production modules in ACT-

R contain different types of knowledge. The retrieval cost of

declarative knowledge (chunks) in the declarative module is greater

than that of procedural knowledge (productions) in the production

module. The cost in ACT-R corresponds to the processing time,

which simulates human reaction times (van der Velde et al., 2022).

A single production can be executed in 50 ms, whereas the retrieval

of declarative knowledge requires longer as various factors are

involved. Moreover, declarative knowledge is not automatically

retrieved from the goal module or the external environment as

it is always used by applying two productions; one for retrieving

declarative knowledge and the other for applying the retrieved

knowledge to change the states of buffers (e.g., goal or perceived

external environment).

Biologically, the ACT-R theory assumes that the two types of

knowledge are connected through the cortico-basal ganglia loop. As

depicted in Figure 1, the productions are assumed to be executed in

the basal ganglia; however, the ones used for retrieving declarative

knowledge require the prefrontal cortex as well. Figure 2 illustrates

a simple example of retrieving and using declarative knowledge

through two productions. In the figure, variables “var1” and “var2”

in the productions are bound to numerical values, such as 1 and

2, stored in the declarative module. This mechanism is referred to

as “pattern matching” and is assumed to be executed intentionally

in the prefrontal cortex [particularly in the ventrolateral prefrontal

cortex (VLPFC) indicated in Figure 1]. Therefore, we considered
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FIGURE 2

Simple example of pattern matching in the adaptive control of

thought-rational (ACT-R) architecture. This example illustrates the

flow of a declarative knowledge query to the declarative module

(DM) in the THEN clause of the previous production. The variables

are bound in the IF clause of the subsequent production.

the pattern matching between the current situation (buffers)

and knowledge in the declarative module as the criterion for

distinguishing the aforementioned levels of thinking (Section 2.1).

In this framework, the shallow level of thinking involved fewer

pattern-matching scenarios than the deliberative level of thinking.

2.3.2 Learning in ACT-R
The existence of pattern matching also makes a distinction

between two types of learning in ACT-R: learning with pattern

matching and learning without pattern matching. The latter

type uses “utility learning,” which corresponds to reinforcement

learning. Specifically, it changes the selection probability of

productions that conflict with each other by receiving rewards from

the environment. Many studies have used this type of learning

in ACT-R modeling (Anderson et al., 1993; Balaji et al., 2023;

Ceballos et al., 2020; Xu and Stocco, 2021). For example, Fu and

Anderson (2006) developed amodel to solve the repeatedmaze task

by applying procedural knowledge representing up-down and left-

right movements. The model received positive rewards for actions

that led to the achievement of the current goal and negative rewards

for actions that failed to achieve the goal. As a result of their

simulation, the model was able to learn optimal behavior in the

maze search by repeating the rewarding trials.

The other type of learning in ACT-R involves pattern

matching to retrieve chunks in the declarative module, which

is called instance-based learning (IBL) (Gonzalez et al., 2003).

This framework accumulates past problem-solving instances in

the declarative module and uses it for future task trials. Several

studies show that IBL outperforms conventional utility learning.

Relating to this method, Reitter and Lebiere (2010) constructed

a model to solve maze like Fu and Anderson (2006), but unlike

them, by combining path-finding with backtracking and instance-

based inference. In their model, location information of the maze

was represented as declarative knowledge to construct a topological

map (graph-like structure representing geological locations). In

addition to conventional knowledge-search algorithms (e.g., depth-

first search), an instance-based inference was applied by using

stored maze-solving experience in the declarative module. By

conducting simulations using the strategies of maze search, they

demonstrated the advantage of this memory-based search.

Furthermore, ACT-R contains another learning function that

uses the two aforementioned functions. This function is the

“compilation,” which combines two productions into a single

production (Taatgen and Lee, 2003). During the task execution, this

function integrates a repeatedly selected series of productions and

reduces the number of productions used in the task as learning

progresses. Typically, the target series of compilation involves

pattern matching to retrieve declarative knowledge (Figure 2). The

function replaces the variables present in the production with

instantiated values in the declarative knowledge. Additionally,

the conflicting conditions for pre-compiled and post-compiled

productions are resolved using the utility learning. The post-

compiled production inherits higher utility from those associated

with the two pre-compiled productions. Furthermore, the utility

of post-compiled production increases with the compilation of the

same series of productions. This process increases the probability

of selecting a post-compiled production to represent a routine and

automatic operation (procedural knowledge) in a task.

2.3.3 Emotion in ACT-R
The subject of the present study, motivation, is considered

part of the emotional or affective phenomena in the recently

emerging field of affective science.1 In this field, researchers have

repeatedly pointed to the relations between emotions, cognition,

and body (Barrett, 2017; Damasio, 2003; LeDoux and Pine, 2016),

underscoring the importance of incorporating emotional and

physiological responses into cognitive models.

Following these trends in affective science, several researchers

have constructed ACT-R models that represent the interactions

between cognition, emotion, and the body. For example, van

Vugt and van der Velde (2018) constructed a model explaining

depression based on the proportion of memories accompanied by

emotional moods. Similarly, Juvina et al. (2018) considered the

relationship between emotional memories and reward functions.

In addition to these links between emotion and cognition,

researchers have included psychophysiological factors such as

fatigue (Atashfeshan and Razavi, 2017; Gunzelmann et al., 2009)

and stress (Dancy et al., 2015) in ACT-R. Based on these models

of emotions, several ACT-R models of motivations have been

developed (Nishikawa et al., 2022; Nagashima et al., 2022; Yang and

Stocco, 2024). Furthermore, in recent discussions on the common

cognitivemodel, Rosenbloom et al. (2024) proposed an architecture

including metacognitive modules to represent interactions between

cognition and emotion.

However, to implement such emotional processes, all the

aforementioned studies developed novel modules or functions of

ACT-R. By contrast, the current study aims to model intrinsic

motivation using the existing built-in functions of ACT-R. While

1 The mission of the society for a�ective science includes “motivated

states.” See https://society-for-a�ective-science.org/about-sas/.
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we recognize the importance of developing new modules to create

a neurally faithful structure, we believe that, in line with the

philosophy of cognitive architecture (Anderson et al., 2004), it is

preferable to represent various cognitive processes by integrating a

small set of core functions.

3 Mechanism of intellectual curiosity
based on pattern discovery

This section proposes a mechanism of intrinsic motivation.

Before presenting details of the mechanism, the basic idea behind

our proposal is introduced.

3.1 Basic idea

The mechanism proposed here focuses on intellectual curiosity

among the types of intrinsic motivation. We used the modifier

“intellectual” based on the discussion reported by Malone

(1981). According to him, the curiosity derived from higher-

cognitive functions is distinguished from that derived from sensory

perceptions. He further argued that the former initiates “a desire to

bring better form to one’s knowledge structures.” This discussion

is consistent with the principle of fun discussed by Schmidhuber

(2010), who claimed that discovering the compressible structure of

data would be beneficial to organize knowledge structures in the

agent.

We developed a mechanism of intellectual curiosity by

associating ACT-R pattern-matching computation. As explained

earlier, pattern matching of ACT-R is a core mechanism for

understanding higher-order cognitive processes with the discovery

of structures (patterns) that map data (declarative knowledge) to

a current situation (buffer states of the module) according to a

pattern of variables in the production. This mechanism has been

considered essential for achieving cognitive flexibility that adapts

changing environments by leveraging existing knowledge in novel

forms (Spiro et al., 2012). In fact, Anderson (2007) demonstrated

that ACT-R could model human-specific cognitive functions, such

as linguistic processing, metacognition, and analogical reasoning

by using a certain type of pattern matching.2 More importantly,

ACT-R pattern matching is involved in the learning mechanisms,

as described in Section 2. In the following part of this section,

the learning mechanisms of ACT-R are combined into a general

framework of intrinsic motivation.

3.2 Components of intellectual curiosity

To understand the role of intellectual curiosity in general

cognitive processes, we first discuss its decay (boredom) process.

Typically, boredom is caused by stimulus saturation and is

related to learning processes as suggested by Csikszentmihalyi

(1990). According to his theory, boredom occurs when the person

2 Claimed by Anderson (2007) in the chapter featuring “dynamic pattern

matching” in ACT-R.

extensively learns a particular task and it becomes less challenging.

Raffaelli et al. (2018) reviewed research confirming such a process

based on subjective and physiological indices, which sometimes

showed complex interactions between cognitive and physiological

processes. Based on these discussions especially about the relation

between learning and boredom, we used the “utility learning” and

“production compilation” to represent the decay of intellectual

curiosity. Although the general concept of these mechanisms has

already been discussed, the subsequent sections focus on the

technical details of the modules as ingredients of our integrated

mechanism of intellectual curiosity.

3.2.1 Motivation as utility for task continuation
We used utility learning in this study as a mechanism for

determining whether a task should be continued or terminated.

As mentioned in Section 2.3, the utility learning corresponds to

reinforcement learning (Fu and Anderson, 2006). When multiple

productions (i.e., the production for task continuation and the

production for task termination) match the current situation, the

probability of selecting a production can be calculated as

P(i) = eUi/
√
2s

∑

j e
Uj/

√
2s
, (1)

where e denotes the base of the natural logarithm, s indicates the

parameter that determines the variance of noise according to the

logistic distribution, and j distinguishes the conflicting productions.

Additionally, U representing the utility of controlled production

can be estimated as

Ui(n) = Ui(n− 1)+ α[Ri(n)− Ui(n− 1)]. (2)

Here, α represents the learning rate, and Ri(n) denotes the

reward obtained by production i at time n. In general, rewards

occur when a production associated with the goal of the task is

executed. Typically, rewards are backpropagated to the productions

that are executed before the reward is triggered. Each time a

production is rewarded, the utility values of all productions that

have been executed since the last update (n − 1) are updated using

Equation 2. In this study, events related to intellectual curiosity

and boredom are represented by assigning positive and negative

rewards, respectively.

3.2.2 Reduction of pattern matching through
production compilation

As mentioned earlier, production compilation compresses

productions to reduce frequencies of pattern matching. Therefore,

the fun generated by pattern matching (identifying structures in

the data) was considered decayed by the compression accompanied

with production compilation.

Figure 3 depicts the traces of an ACT-R model in a maze task

used in simulations performed in this study. The vertical axis

indicates time, and each column indicates an event in a module.

The left-hand side trace represents the process of identifying the

path from the declarative knowledge using pattern matching. The

trace on the right-hand side expresses the search for a path without
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FIGURE 3

Example illustrating the before and after of learning using the production compilation.

pattern matching or retrieving paths from the declarative module;

in other words, it represents the processing after production

compilation.

3.3 Integrated mechanism of task
continuation based on intellectual curiosity

We propose a mechanism for determining the continuation

or termination of a task based on intellectual curiosity. Figure 4

illustrates the procedure of task continuation when executing

general tasks. At the beginning of each round (unit related to the

continuation of a task), the model determines whether to continue

or terminate the task based on the conflict resolution between

the two productions (stop and continue productions). The model

proceeds with the round by firing various productions, such as

searching the map, after deciding to continue the task. When the

model encounters a condition that terminates the round, a new

round is initiated, and the model again determines whether the task

should be continued or terminated.

In the aforementioned process, the assigned initial values of

utilities are higher in the continue production than in the stop

production. At the beginning of the task, it can be assumed that

agents intend to continue the task. The process of experiencing

boredom from this initial state can be modeled by assigning a

trigger of negative reward to the production recognizing the end

of each round.3 The utility of the production decreases when a

negative reward is generated by the continue production at the end

of the round, which in turn increases the firing probability of the

stop production.

To deter boredom and continue the task, positive rewards

corresponding to “fun” are necessary. This study associates the

occurrence of pattern matching with the feeling of fun. We

3 A similar mechanism of stopping a navigation task was presented by

Anderson et al. (1993), although the exact equations of utility calculationwere

di�erent because of the architectural di�erence.

consider that this association is consistent with the definition of fun

reported by Schmidhuber (2010) because it involves the discovery

of patterns in the environment. However, repeated application of

the same production causes habituation (production compression)

and increases the opportunity to generate negative rewards to

the continue production at the end of a round. In other words,

the factor that ensures task continuation in the mechanism is

the continued stimulation of intellectual curiosity through the

discovery of declarative knowledge (data), which is the target of

pattern matching.

4 Simulation

We performed simulations to verify the proposed mechanism

of intellectual curiosity. This section explains the purpose of the

simulations, the employed task, model details, and other settings

involved in the simulations. Finally, the obtained results are

summarized.4

4.1 Aims and indicators

To examine the mechanism of intellectual curiosity based on

pattern discovery, we address the following questions.

1. What type of environment stimulates intellectual curiosity?

2. How does stimulated intellectual curiosity affect task learning?

3. What is the relationship between the proposed mechanism

and the curiosity represented in existing reinforcement learning

models?

The first question was answered by distinguishing between

external and internal environments surrounding the model. Here,

based on the previous discussion on IMRL (Singh et al., 2005), we

adopted the term internal environment to explore the individual

4 The models and data are included in https://github.com/

AcmlNagashima/CuriosityAgents.
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FIGURE 4

Flowchart of the task continuation model. The model generates positive rewards when pattern matching occurs.

differences surrounding and affecting intellectual curiosity. In this

context, the external environment was manipulated by varying the

complexity (difficulty level) of the learning environment, while the

internal environment was defined as the strategy employed by the

model to explore the external environment.

Furthermore, we examined how the factors of the internal

and external environment affect intellectual curiosity using the

indicators

(a) up-time ratio (percentage of time themodel was running relative

to the time limit of one run); and

(b) number of rounds (frequency of firing the task continuation

production, depicted in Figure 4).

These indicators represent the extent to which the model

engaged with the task. By definition, if the model obtains strong

motivation, these indicators are assumed to be increased. We

explored the internal and external environments that fostered this

effect. As an internal environment, we manipulated the depth of

thinking when searching external environments. According to the

discussion presented in Section 2.1, this factor is expected to affect

the effect of intrinsic motivation of the model via the interactions

with the difficulty level of the external environment.

To answer the second question, the effect of stimulated

intellectual curiosity on learning in the task was examined using

the indicators

(c) entropy (variety of behavior patterns in the environment

search);

(d) goal rate (the goal achievement rate); and

(e) the number of newly generated productions (frequency of

occurrence of production compilation).

These indicators quantify the effect of intellectual curiosity on

three aspects, namely, the behavior pattern (c), learning outcome

(d), and internal states (e). We assumed that these indicators would

increase with higher intellectual curiosity. In other words, the

higher the motivation, the more opportunities the model has to

explore the map. Moreover, as the model is extensively exploring

the map, entropy (c) and the goal rates (d) increase while the model

discovers more patterns in the external environment (e).

The complexity of model behavior (c) was computed as the

entropy normalized for the frequency of occurrence of states of the

task as follows:

Hr = −
∑

i∈n p(xi) log p(xi)

log n
(3)

Here, xi denotes a particular state in an environment, and n

represents the total number of states in an environment. This index

increased when the model extensively explored the environment

and the value decreased during local behaviors.

Finally, to address the last question, we used these indicators to

examine whether the proposed behavior of curiosity was consistent

with the previous models of curiosity. Among several models, we

focused on the ICMmodel (Pathak et al., 2017) as the representative

mechanism of deep reinforcement learning with curiosity and

compared it with the ACT-R models with various internal and

external environments.

4.2 Task: manipulation of the external
environment

Based on the previous reports (Fu and Anderson, 2006; Reitter

and Lebiere, 2010) onACT-R explained in Section 2.3.2, we adopted

the task of searching mazes. To systematically manipulate the

difficulty level of the task, we applied a maze generation algorithm5

to grids of sizes 5 × 5, 7 × 7, and 9 × 9, with 10 different maps

prepared for each size; Figure 5 depicts an example of the maps. As

indicated in the figure, the created mazes are loop-less structures

with the starting location at the top-leftmost corner, and the goal

location at the corner where themaximumnumber of corner points

is traversed from the start point. In other words, two corner points

with the highest number of hops were selected as the start and

goal locations. The difficulty level of this task corresponded to the

size of the maps. As described in Section 2.2, we assumed that

an appropriate level of difficulty stimulates intrinsic motivation.

5 https://algoful.com/Archive/Algorithm/MazeExtend.
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FIGURE 5

Manipulation of external environments.

Therefore, the factors that stimulate the proposed intellectual

curiosity were examined by comparing different sizes of the

external environments.

This task was implemented in ACT-R using a simplifiedmethod

to obtain stable results over numerous runs. Rather than presenting

a visual representation of themap to themodel, we included chunks

representing the structure of the map in the declarative module of

the model.6 In other words, the task corresponded to a situation

where the model performed path planning without actually moving

the body with respect to the topologically represented declarative

knowledge of the environment.

The topological map provided to the model comprised chunks

representing nodes (corner points) and paths (connections between

the corner points) of the maze. When the task was executed, the

model stored a node chunk in the goal module that indicated the

currently focused corner point. From this state of the goal module,

the model attempted to discover the chunk of paths stored in the

declarative modules by matching them with patterns of variables

embedded in the productions. When the chunk containing the

current node was retrieved from the declarative module, the other

node associated with the corresponding path chunk was newly

stored in the goal module. This process was repeated until the

model reached the goal point or the designated time was elapsed.

4.3 Search strategy: manipulation of the
internal environment

To examine the internal environment that stimulates

intellectual curiosity, we manipulated the strategy of exploring

the external environment in terms of different levels of thinking

(Brooks, 1986; Evans, 2003; Kahneman, 2011). As explained in

Section 2.1, human mental activities are traditionally divided

6 The exclusion of perceptual and motor processes in basic simulations is

also recommended in the o�cial ACT-R tutorial.

into at least two levels despite a continuous debate on the simple

separation. This study follows the discussion reported by Conway-

Smith and West (2022), suggesting that individual mental process

is characterized by a spectrum between the fast automatic and slow

deliberate processes. According to them, the levels in this spectrum

can determine the amount of mental effort (computational cost)

required for the task. Among several types of computational costs,

we focused on the effort of retrieving declarative knowledge. As

described in Section 2.3.1, retrieval of declarative knowledge in

ACT-R can be hypothesized to increase prefrontal cortex activity.

Therefore, it can be reasonably assumed that deliberative levels

of thinking, which affect the optimal level of intrinsic motivation

(Csikszentmihalyi, 1990; Yerkes and Dodson, 1908), are estimated

from the amount of declarative knowledge retrieved during the

task execution.

Figure 6 depicts the manipulation of the levels of thinking in

this study focusing on the maze search task. The process of the

model became complex from left to right, and the amount of

declarative knowledge used in the task was assumed to increase.

These models were developed based on the authors’ previous work

(Nagashima et al., 2021) with two modifications; more complex

pattern matching in the path retrieval and leveraging all pattern

matching as triggers of intrinsic reward. In the previous research,

the smallest number of variables in the productions was only one, so

there was no pattern in the rule. Also, the previous research limited

the triggers of intrinsic rewards only when the maze searching rules

were fired, omitting rewards generated from pattern matching that

occurred by other productions during the task.

These changes were made to ensure the model’s consistency

with our theoretical assumptions. There may be debate about

assuming that every pattern match triggers intrinsic rewards. For

example, it might be possible to prioritize pattern matching based

on complexity or to select productions for positive rewards by

setting certain criteria. However, in this study, we prioritized a

simpler setting to verify the basic idea, avoiding any arbitrariness.

The next sections explain the specific process of the model in each

internal environment.
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FIGURE 6

Manipulation of internal environments. DFS, depth-first search; IBL, instance-based learning.

4.3.1 Random model
The model with the lowest level of thinking randomly

transitioned to the current location stored in the goal module. The

model repeated the following process during each round until the

goal was achieved or the time limit was reached.

1. Path search: the model retrieved the declarative knowledge

related to the paths adjacent to the current location. To retrieve

the declarative knowledge, the model used productions in which

the current location was bound to a variable.

2. Move:

(a) If the path retrieval was successful (pattern matching

occurred), the model updated the state of the goal module

according to the retrieved path, and the model returned to

Step (1).

(b) If the path retrieval failed, the model returned to Step (1)

without modifying the state of the goal module.

While the model explored the maze using this search strategy,

the productions that were used for the successful retrieval of

the path were compiled. The model was assumed to have

a few opportunities for pattern matching because production

compilation occurred only when the stored path was retrieved.

Therefore, stimulating intellectual curiosity in this model was

considered as difficult.

4.3.2 Stochastic Depth-first Search (DFS) model
To include higher cognitive functions (declarative module), we

constructed a probabilistic DFSmodel, which backtracked to search

the environment based on the study by Reitter and Lebiere (2010).

As indicated in Figure 7, the model exhibited a stacked structure

with chunks generated by the imaginal module of ACT-R. The push

function in the stack was realized by storing a chunk that contained

the name of the previous chunk in the Link slot. Additionally,

the pop function in the stack was realized by returning this

slot value to the previous slot value. We implemented all these

processes using only ACT-R productions without defining any

external functions written in other programming languages, such

as LISP.

Similar to the random model, the stochastic DFS model

compiled productions that could retrieve declarative knowledge

of paths and backtrack to learn new productions that did not

contain variables. The specific model behavior can be summarized

as follows.

1. Path search: the model determined the destination by retrieving

the declarative knowledge associated with the path, similar to

the random model. The IF clause included the current location

stored in the goal buffer and five variables, corresponding to the

current location and the directions (west, north, east, and south),

which were flags indicating whether the direction was already

searched or not.

2. Move:

(a) If the knowledge retrieval was successful (pattern matching

occurred), the model flagged the retrieved direction as

“searched,” created a new chunk using the imaginal module,

and stored the chunk as declarative memory, as depicted

in Figure 7. Simultaneously, the model updated the current

location of the goal buffer according to the retrieved path.

At this point, the searched flag in the goal buffer was reset,

whereas the searched flag in the direction opposite to the

direction of movement was set to prevent its return to the

previous location. After this procedure, the model returned

to Step (1).

(b) The backtracking process was executed if the path retrieval

failed, returning the model to the previous state by popping

chunks in the stack; eventually, the model returned to Step

(1).

The model repeated this behavior until the goal was

achieved or the time limit was reached. Contrary to the

random model, the DFS model used the stack when the path

search failed. Therefore, the model required more rounds to

compress (compile the production) the declarative knowledge of

the paths.
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FIGURE 7

Construction of the stack structure using chunks of adaptive control

of thought-rational (ACT-R) architecture. This stack was

implemented using the imaginal module of ACT-R.

4.3.3 Stochastic DFS plus Instance-based
Learning (IBL) model

This model combined the stochastic DFS with the IBL, which

leverages past memories to solve current tasks (Gonzalez et al.,

2003; Lebiere et al., 2007). In this task, the model held all the

retrieved paths in the stack from the beginning of each round until

the goal was reached. After the model attained the goal, the path

chunks in the stack were retrieved one by one, and the chunks

labeled “correct path” were generated. During each round, the

model repeated the following two steps until the goal was achieved

or the time limit was reached.

1. Determining strategies: at the beginning of each round, the

model decided between the stochastic DFS and the IBL strategies

by retrieving chunks associated with the current location and

labeled “correct path.”

2. Move:

(a) When the DFS strategy was employed (failed to retrieve the

“correct path”), themodel behaved as a stochastic DFSmodel.

(b) When the model successfully retrieved the “correct path,” the

model updated the current location according to the retrieved

path chunk. Subsequently, the model returned to Step (1).

The model behaved as the stochastic DFS model in the early

stages of the task. With the repetition of rounds and the increase

in the number of instances with the “correct path,” the model

effectively reached the goal. Here, IBL was a time-consuming

process in comparison with the DFS strategy. This was because the

model had to retrieve the path in the stack at the end of the round to

assign a label to a path. Moreover, retrieval trials for past successful

rounds at the beginning of each round resulted in additional time,

which was not included in the other models. We hypothesized that

similar to the stochastic DFSmodel, this model is likely to stimulate

intellectual curiosity, and the IBL function would positively affect

the learning of the task.

4.3.4 Deep reinforcement learning model based
on curiosity

To explore the relationship between the aforementioned ACT-

R models and previous models of intrinsic motivation using deep

reinforcement learning, we constructed an ICM model based on

the report by Pathak et al. (2017). The ICM model in this study

explored the maze using the policy π in actor-critic model.7 This

search resulted in a policy that maximized the rewards represented

as

rt = rit + ret . (4)

Thus, the reward of the model was calculated as the sum of

the internal reward (ri) and external reward (re). Based on this

equation, themodel explored the environment by balancing the two

types of rewards.

In this study, following Pathak et al. (2017), the internal reward

was determined by

rit =
η

2

∥

∥

∥

φ̂ (st+1) − φ (st+1)

∥

∥

∥

2

2
. (5)

Here, state s is defined as pixel data in deep reinforcement learning.

In this study, the maze situation (players, walls, and paths) was

converted into a grayscale image (42 × 42) and served as input to

a CNN, whose parameters were represented as φ. By subtracting

the predicted and actual outputs of CNN, prediction errors were

computed and weighted using the coefficient η. This coefficient was

regarded as the intensity of curiosity.

By contrast, the external reward was defined as

re =















−1 if failed to move;

0 if succeeded to move;

10 if the goal was achieved.

(6)

In each action, the model attempted to select one of the directions,

namely, west, north, east, or south, and to transition the state from

one corner point to another. If the model selected a direction that

did not lead to a path, the action was considered a failure. If the

model reached the goal owing to its movement, it was rewarded for

its success; subsequently, the task moved on to the next round.

The search for the maze was terminated when the condition

th < ri × 500+ egs (7)

was satisfied. Here, th denotes the threshold value, and egs indicates

noise. The model search was terminated when the internal reward

was less than the threshold.8

7 Discount rate gamma = 0.99.

8 A fixed value of 500 was tentatively multiplied because the scales of the

internal reward in the ACT-R and ICM models were di�erent.
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4.4 Simulation settings

4.4.1 Setting for ACT-R models
As parameters relevant to the general model of task

continuation (Figure 4), the simulation assigned the initial utility

values of the continue and stop productions to 10 and 5, respectively.

Additionally, we assigned the triggers of the negative reward (r =
0) to productions that recognized the end of the round, which was

either reaching the goal or recognizing that the time limit of each

round was elapsed. Conversely, the triggers of the positive reward

were assigned to productions that included pattern matching,

which corresponded to intellectual curiosity. We manipulated the

intensity of the model’s intellectual curiosity by sampling the

positive reward at five equal intervals, ranging from 2 to 18. For

parameters not directly related to our proposed mechanism, we

adopted values from previous studies. Following Anderson et al.

(2004), the activation noise level (ANS), which represents the noise

in memory recall, was set to 0.4, and the production noise level

(EGS), which reflects the noise in comparing utilities for continuing

or terminating productions, was set to 0.5.

To enable the above setting of rewarding by pattern matching,

we made small modifications to the original source code of ACT-

R (Ver. 7.21). We first modified the source code of ACT-R to

assign the reward trigger at any time point after the production

compilation occurred. Subsequently, we modified the code to

not inherit those triggers after the compilation. In the original

ACT-R source code, the compiled production inherits the reward

triggers from the original production. We redefined this function

to represent boredom caused by the lack of new production

compilation.

Simulations based on these settings were run 10 times for each

map and each positive reward setting. The limits in the ACT-R

simulation time for each round and run were set to 180 and 3,600

s, respectively.

4.4.2 Setting for ICM model
The ICM model was implemented using PyTorch (ver. 1.9.0),

with parameters set to match those of the ACT-R, wherein the

simulations were run on 30maps and the proportion of the internal

reward (η) for each run was divided into five samples with equal

intervals, ranging from 0.1 to 0.9. We compared the sum of the

internal reward (ri) and the noise (egs) with the threshold (th = 5)

in Equation 7 to determine whether the task was continued or

terminated. Furthermore, we set 156 and 3,130 steps as the limit

of the action in each round and run, respectively. These steps were

set to be equivalent to the time limit set at the ACT-R models. One

step of the ICM model was equivalent to the rule transition time of

1.15 s in the default random model. The ICM model was run 100

times for each reward setting as it could run faster than the ACT-R

models.

4.5 Simulation results

Figures 8, 9 illustrate the simulation results as a function of the

internal reward for each of the indicators discussed in Section 4.1.

Each graph depicts the average value, which was n = 100 (10 times

× 10 maps) for the ACT-R models and n = 1, 000 (100 times

× 10 maps) for the ICM model, aggregated for each internal and

external environment condition with respect to the map size. The

influence of the maps of the external environment was examined by

comparing the three series in each graph, whereas the influence of

the internal environment (random, DFS, DFS + IBL) of the model

was analyzed based on the difference between the graphs aligned

in the horizontal direction. The subsequent sections discuss the

obtained results based on the three questions posed as objectives

of the simulation.

4.5.1 Environment that stimulates intellectual
curiosity

In Section 4.1, the first question posed was “What type of

environment stimulates intellectual curiosity?” To address this

question, we focused on the up-time ratio (Figure 8A) and

number of rounds (Figure 8B) as the behavior indicators of

intellectual curiosity. These indicators increased continuously with

the increase in the strength of intellectual curiosity for every series

(map size) in every graph (levels of thinking) of Figure 8. This

general trend suggested that the implemented intellectual curiosity

actually enhanced the motivation for the task and ensured task

continuation.

In terms of the difference in the external environment, the up-

time ratio (Figure 8A) increased as the map became more complex

(9 × 9 > 7 × 7 > 5 × 5). However, the number of rounds

(Figure 8B) presented a reverse trend, wherein the simpler external

environment increased the number of rounds (9 × 9 < 7 × 7 <

5 × 5), except for the DFS model (Figure 8B2). The discrepancy

between the two indices of motivation was caused by the time limit

of the simulation (3,600 s). The model could complete the simple

map faster, resulting in a greater number of rounds within the time

limit (Figure 8B). However, as indicated by Figure 8A, the simple

map enabled the model to terminate the task early owing to the lack

of new patterns for production compilation. This result implies that

the complex external environment stimulates intellectual curiosity.

Furthermore, we determined the difference between the

internal environment, which was not expected in advance. When

comparing the three horizontally aligned ACT-R models, we

observed that the models with high levels of thinking (DFS + IBL

and DFS) had smaller indicators of motivation than the random

model. The reason for this difference could be the advantage of the

random model with less thinking time and more trials and errors.

In this condition without physical constraints, the random model

had a better chance of receiving positive rewards by identifying

novel paths than the other models.

4.5.2 E�ect of task continuation on model
learning

The second question posed was “How does stimulated

intellectual curiosity affect task learning?” Figure 9 presents the

three learning indices, namely, the changes in behavior (Figure 9C:

entropy), the learning outcome (Figure 9D: goal rate), and the

changes in internal state (Figure 9E: the number of productions).
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FIGURE 8

Simulation results. The numbers in the horizontal line distinguish the models (1–3: adaptive control of thought-rational (ACT-R) models; 4: intrinsic

curiosity module (ICM) model), and the vertical alphabet di�erentiates the indicators (A: Up-time ratio; B: Number of rounds). The error bars in each

graph indicate the mean value (n = 10) of the standard deviations (ACT-R: n = 10, ICM: n = 100) obtained for each map when multiplied by 1/10.

FIGURE 9

Simulation results. The numbers in the horizontal line distinguish the models (1–3: adaptive control of thought-rational (ACT-R) models; 4: intrinsic

curiosity module (ICM) model), and the vertical alphabet di�erentiates the indicators (C: Entropy; D: Goal rate; E: Number of productions). The error

bars in each graph indicate the mean value (n = 10) of the standard deviations (ACT-R: n = 10, ICM: n = 100) obtained for each map when multiplied

by 1/10.

Based on the analysis of Figure 8, we confirmed that all

conditions of the internal and external environments were

stimulated by intellectual curiosity. However, Figure 9 indicates

that the effect of intellectual curiosity on task learning differs

depending on the internal environment. The intensity of

intellectual curiosity affected positively for higher levels of thinking.
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In the highest level of thinking (the DFS + IBL model), all learning

indices (Figures 9C1, D1, E1) increased with the intensity of

intellectual curiosity. In the middle level (the DFSmodel) increased

the number of productions (Figure 9C2) while maintaining the

entropy (Figure 9C2) and goal rate (Figure 9D2). In the case of the

lowest level (the randommodel), the intrinsic motivation decreased

all indices (Figures 9C3, D3, E3). These trends indicated that the

DFS + IBL model exhibited a goal-oriented behavior because of

the learning effect of the IBL strategy, whereas the behavior of

the DFS model had to search the entire map. Furthermore, the

random model did not lead to the goal; this was because the model

reinforced unfavorable behavior by repeatedly visiting the same

location without expanding the search.

In terms of the effect of the challenge of the task (task difficulty),

the entropy (Figure 9C) and the goal rate (Figure 9D) were greater

on the small map, whereas the number of productions was higher

on the large map. These differences may be attributed to the

fact that the small map was easier to explore, which in turn

increased the entropy and the goal rate. Conversely, the large map

exhibited more pattern-matching opportunities, leading to more

accumulated knowledge by frequent compilation.

In summary, intellectual curiosity promoted learning in the

DFS + IBL model, which exhibited the highest level of thinking.

By contrast, learning in the DFS and random models was

not promoted by intellectual curiosity. Moreover, the effect of

intellectual curiosity negatively impacted the learning environment

in the random model.

4.5.3 ACT-R curiosity vs. ICM curiosity
Finally, we compared the ICM and ACT-R models in Figures 8,

9. Similar to all ACT-R models, the ICM model was stimulated

by stronger intellectual curiosity (Figure 8). However, the effect

of intellectual curiosity for task learning was specifically similar

to the random ACT-R model that exhibited decreasing trends of

the entropy (Figure 9C4) and the goal rate (Figure 9D4) with the

increase in the strength of intellectual curiosity. With respect to the

effect of the external environment, the ICM model was also similar

to the random ACT-R model; the up-time ratio (Figure 8A4) and

the number of rounds (Figure 8B4) were greater for larger maps,

whereas the entropy (Figure 9C4) and the goal rate (Figure 9D4)

were greater for smaller maps.

This comparison confirmed commonalities and differences

between the developed ACT-R curiosity model and the existing

curiosity model in deep reinforcement learning. The proposed

ACT-R curiosity mechanism can represent similar learning to

the existing model by including a simple internal environment

(random search strategy). At the same time, it can incorporate goal-

directed behavior by including “explicit use of success memory.”

Such an explicit nature of the proposed mechanism also leads to a

direct examination of the model’s internal learning. The analysis of

Figure 9E clearly shows this advantage of interpretability made by

the proposed approach.

4.5.4 Cases of paths discovered by the models
To compare detailed behaviors between models, Figure 10

illustrates example paths in a 5× 5 map. The map depicts start and

goal positions at the top left and bottom right corners respectively.

The circles’ colors and line thickness represent visit frequencies

during runs. The randommodel exhibited diagonal movement and

movement through walls, a result of compiling multiple movement

rules. To gather these examples, we conducted 10 runs for each

model across three levels of intrinsic rewards, selecting the runs

with the lowest and highest performance for analysis.

These figures reveal distinct behavioral characteristics of each

model. The random model predominantly exhibits localized

movements within specific areas, often distant from the goal. On

the other hand, the DFS model explores the map evenly but does

not necessarily move directly toward the goal. In contrast, the DFS

+ IBL model demonstrates deliberate behaviors aimed at reaching

the goal, particularly under high-reward conditions. In terms of

localized movement patterns, the ICM model was more similar to

the random and DFS models than the DFS + IBL model. Thus, the

results suggested that the DFS + IBL model had a greater effect on

curiosity strength than the other models regarding directionality

toward the goal. These observations support the findings observed

in the quantitative results shown in Figures 8, 9.

5 Conclusions

The objective of this study was to develop a mechanism for

intrinsic motivation based on pattern discovery by combining basic

modules of ACT-R. This section summarizes the significance of

the proposed mechanism and presents the potential future lines of

investigation.

5.1 Summary and implications

The proposed mechanism was based on the assumption that

pattern discovery is associated with the feeling of fun and is

the source of intellectual curiosity. Additionally, its attenuation

was expressed by the learning mechanism incorporated in ACT-

R. To support this proposal, we implemented multiple external

environments (challenges in the task) and strategies for exploring

the external environment (levels of thinking) and examined the

role of intellectual curiosity in each situation. The simulation

results indicated that the rewards associated with pattern discovery

exhibited different effects on models at different levels of thinking.

The model with the lowest level of thinking (random) and that

with the middle level of thinking (DFS) had negative and neutral

effects of intellectual curiosity on performance, respectively. The

only model that benefited from intellectual curiosity was the one

with the highest level of thinking (DFS + IBL), which comprised a

function that enabled it to remember previous experiences that led

to the goal.

These results are partially consistent with the past arguments

made for human intrinsic motivation. Particularly, the effectiveness

of intrinsic motivation in the DFS + IBL model is consistent

with a discussion, in which intrinsic motivation operates well with

deliberative thinking, which requires “autonomy,” “mastery,” and

“purpose” (Pink, 2011). Furthermore, consistent with our negative

results in the random model, several reports exist on behavioral

addictions caused by the negative effects of intrinsic motivation
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FIGURE 10

Trajectories of the model runs [(left): low-performance runs, (right): high-performance runs]. The columns indicate the strength of intellectual

curiosity, while the rows correspond to each model.

(Alter, 2017). For instance, people often forget their goals and

become engrossed in exploratory tasks, such as browsing the

internet, resulting in poor performance. This irrational behavior

might also relate to computational psychiatry (Huys et al., 2016).

In addition to the above discussion on the internal

environment, we identified a connection with a previous discussion

on the external environment. Consistent with the discussion on

“challenge” (Malone, 1981), we determined that the up-time ratio

in larger maps was greater than that in the smaller maps. This

result indicates that a complex external environment stimulates

intellectual curiosity. However, we also determined that difficult

challenges generate ineffective learning on a wide map (Figure 9).

The aforementioned positive and negative effects of the task

difficulty indicate the optimal level of challenge (Csikszentmihalyi,

1990; Yerkes and Dodson, 1908).

Furthermore, this study successfully corresponded with past

studies on intrinsic motivation in reinforcement learning. The

comparisons with the ICM model (Pathak et al., 2017) confirmed

that the developed ACT-R model, specifically the random model,

is a succession of existing studies. Although we cannot claim its

superiority as a learning algorithm based on the current simulation

alone, the model with the higher level of thinking (DFS + IBL)

exhibited characteristic behavior toward the ICM model. Future

analysis of more extensively manipulating parameters, such as the

balancing of ri and re in Equation 4 and designing the external

environment stimulating curiosity (Burda et al., 2018), could

reveal further correspondence between the ACT-R model and

reinforcement learning framework.

We believe that the comparisons of the previous model of

reinforcement learning reveal the methodological advantage of

using cognitive architecture. An integrated cognitive architecture,

such as ACT-R, provides criteria to set numerical parameters (e.g.,

time limits and utilities) based on previous studies. Furthermore,

ACT-R comprises neuroscientific modules that correspond to basic

cognitive functions, such as declarative and procedural knowledge.

Based on this relation, arguments associated with human intrinsic

motivation can be developed. Therefore, this study contributes to

the understanding of intrinsic motivation in a wide context of

the relationship between human evolution and the development

of civilization by mapping the discovery of patterns to intrinsic

motivation (Baron-Cohen, 2020).

5.2 Future work

The proposed mechanism of intellectual curiosity has the

potential for several future studies. The primary focus among them

is human experiments that manipulate the internal and external

environments as in the simulation. A simulation study without data

is nothing more than a demonstration derived deductively from

theory. Therefore, the model’s value must be proven by applying

it to human scenarios.
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One of the obstacles to conducting human experiments

for the proposed mechanism is setting tasks to stimulate

human curiosity. In this study, we adopted the maze task

because several previous researchers based on ACT-R have

constructed models for this task. However, setting experimental

situations with human participants to exhibit intrinsic motivation

for solving such simple tasks may be difficult. Therefore,

in the future, we intend to explore tasks that both humans

and developed models can execute with proper intrinsic

motivation.

Other future work will focus on modeling the curiosity and

motivation that was not explained in the current study. As

we discussed in Section 3.1, this study targeted on intellectual

curiosity relating “a desire to bring better form to one’s knowledge

structures” (Malone, 1981) or “intrinsic desire to build a better

model for the world” (Schmidhuber, 2010). Therefore, we have

not yet explained the sensory curiosity that drives us to acquire

new knowledge from the world. These two types of curiosity

are considered complementary, similar to the explore-exploit

trade-off in reinforcement learning. Without including sensory

curiosity in the model, we cannot explain how declarative

knowledge is acquired for intellectual curiosity, nor how the

initial utility settings of continuing the task exceed those of

stopping.

The above future study possibly leads to a deeper exploration of

levels of thinking. Conway-Smith et al. (2023) recently summarized

the relationship between metacognition and levels of thinking,

arguing that compilation of existing knowledge reduces the effort

involved in metacognition, making it more automatic. Building on

this, we can suggest that achieving such a metacognitive state as

a result of higher-level thinking enabled with enough intellectual

curiosity, exemplified by the DFS + IBL model.

On the contrary, we can assume the exploratory role of the

lower level of thinking. As shown in Figure 9, the random model

showed a higher goal ratio with larger learning products in some

conditions. These results suggest links between low-level thinking

and sensory curiosity, leading to exploration of the environment.

Our recent work (Nagashima and Morita, 2024) provides

support for the above interpretation. In the experiment, human

participants observed the behaviors generated by the models in

the current study and rated the random model as having the most

curious features.

The final direction for future research is the generalization

of the ideas presented in this paper to other tasks in real-world

settings. We believe such tasks are linked to the earlier discussion

on the civilization of society (Baron-Cohen, 2020). As suggested

by Toya and Hashimoto (2018), tool-making requires recursive

compilation of intermediate products. Integrating this multi-agent

simulation with the mechanisms proposed in the current study

could offer a detailed explanation of the driving forces behind the

evolution of civilization.
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