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Introduction: The deep echo state network (Deep-ESN) architecture, which

comprises a multi-layered reservoir layer, exhibits superior performance

compared to conventional echo state networks (ESNs) owing to the divergent

layer-specific time-scale responses in the Deep-ESN. Although researchers

have attempted to use experimental trial-and-error grid searches and Bayesian

optimization methods to adjust the hyperparameters, suitable guidelines for

setting hyperparameters to adjust the time scale of the dynamics in each layer

from the perspective of dynamical characteristics have not been established. In

this context, we hypothesized that evaluating the dependence of themulti-time-

scale dynamical response on the leaking rate as a typical hyperparameter of the

time scale in each neuron would help to achieve a guideline for optimizing the

hyperparameters of the Deep-ESN.

Method: First, we set several leaking rates for each layer of the Deep-ESN and

performed multi-scale entropy (MSCE) analysis to analyze the impact of the

leaking rate on the dynamics in each layer. Second, we performed layer-by-layer

cross-correlation analysis between adjacent layers to elucidate the structural

mechanisms to enhance the performance.

Results: As a result, an optimum task-specific leaking rate value for producing

layer-specific multi-time-scale responses and a queue structure with layer-to-

layer signal transmission delays for retaining past applied input enhance the

Deep-ESN prediction performance.

Discussion: These findings can help to establish ideal design guidelines for

setting the hyperparameters of Deep-ESNs.

KEYWORDS

multi-scale dynamics, machine learning, reservoir computing, echo state network, deep

echo state network

1 Introduction

Reservoir computing, which is a branch of recurrent neural networks (RNNs), has

garnered significant interest in terms of machine-learning applications (Lukoševičius and

Jaeger, 2009; Tanaka et al., 2019; Gallicchio and Micheli, 2021). A neural network for

reservoir computing consists of three layers: an input layer, a reservoir layer, and an output

layer (Jaeger, 2001; Lukoševičius and Jaeger, 2009). In reservoir computing, the input
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time-series data are transformed into spatio-temporal patterns in

the reservoir layer. The responses of individual neurons act as

a kernel for these transformed patterns, representing the desired

output signal, which is consequently used for time-series prediction

and classification (Jaeger, 2001; Gallicchio and Micheli, 2021).

The echo state network (ESN), which is a representative model

in reservoir computing, operates based on the response of the

firing rate (Jaeger, 2007). In an ESN, as depicted in Figure 1, the

synaptic connections of the reservoir weights are fixed, and only the

synaptic connections of the output weight matrix are adjusted in

the learning process (Tanaka et al., 2019). This architecture differs

from that of other RNNs, wherein all synaptic connections within

the network undergo updates during learning (Williams and Zipser,

1989). Thus, ESNs are more learning efficient (Werbos, 1990)

than the widely utilized long-short-term memory model, despite

exhibiting lower accuracy (Salehinejad et al., 2017; Gallicchio et al.,

2018). Such efficient learning architectures may offer the potential

for applications in areas that are characterized by resource-limited

hardware, such as edge devices (Tanaka et al., 2019; Sakemi et al.,

2024).

The deep echo state network (Deep-ESN) model, which

possesses the multi-layered reservoir structure illustrated in

Figure 2, has also been proposed. This model performs better than

the conventional ESN, which consists of a single-layered reservoir

(Deng et al., 2012; Gallicchio et al., 2017; Gallicchio and Micheli,

2021). The divergent responses in each layer of the Deep-ESN,

which exhibits multiple time-scale dynamics, enhance the memory

capacity and feature representation compared to its single-layered

counterpart (Malik et al., 2016; Gallicchio et al., 2017; Tchakoucht

and Ezziyyani, 2018; Gallicchio and Micheli, 2019; Long et al.,

2019; Kanda and Nobukawa, 2022). These advantages of the Deep-

ESN may enable applications in tasks involving nonlinear dynamic

signals that exhibit multi-time-scale behaviors in various types of

systems, such as biological systems, power systems, and financial

markets (Venkatasubramanian et al., 1995; Costa et al., 2002;

Bhandari, 2017; Chen and Shang, 2020; Yan and He, 2021).

The adjustment of numerous hyperparameters in the Deep-

ESN is often based on experimental measurements, trial-and-error

grid searches, and Bayesian optimization methods (Adeleke, 2019;

Lukoševičius and Uselis, 2019; Bai et al., 2023; Viehweg et al.,

2023). In terms of Bayesian optimization in Deep-ESNs, emphasis

is mainly placed on performance, and the analysis of the reservoir

dynamics and mechanisms of functionality enhancement is often

overlooked; consequently, no specific design guidelines on the

dynamics have been presented (Bai et al., 2023). In terms of

hyperparameters that adjust the time scale of each layer, several

studies have applied scaling methods to the input weight matrix

W(l), as illustrated in Figure 2 (Kanda and Nobukawa, 2022), to

achieve the establishment of guidelines. By integrating this method,

the signal strength between layers decreases as the depth increases,

which results in a layer-specific time-scale response for each layer

(Kanda andNobukawa, 2022). This characteristic has been revealed

by analyzing the layer dynamics using the multi-scale entropy

(MSCE) method (Humeau-Heurtier, 2015; Kanda and Nobukawa,

2022). However, this approach, in which the input weights are

scaled, has a major drawback. The signal strength in the reservoir

layer diminishes quickly owing to the small scaling rate between

layers. In addition, the leaking rate is a hyperparameter that

influences the temporal history effect of the dynamics in x(l)(t) of

Figure 2 (Jaeger et al., 2007; Schrauwen et al., 2007). Essentially, the

leaking rate adjusts the decay factor of the dynamics in each neuron

(Jaeger et al., 2007; Schrauwen et al., 2007). Therefore, the method

for adjusting the leaking rate is another suitable candidate for

achieving the layer-specific dynamical response in the Deep-ESN.

In this context, we hypothesized that evaluating the dependence

of the dynamical response in the multi-layered reservoir in terms

of adjusting the leaking rate would provide insights into achieving

a guideline for optimizing the hyperparameters of the Deep-

ESN. For the preliminary investigation, we set the same leaking

rate for each layer of the Deep-ESN and performed an MSCE

analysis to investigate the impact of the leaking rate on the

dynamics in each layer. The results confirmed that each layer

of the Deep-ESN generates dynamics at different time scales,

which induces a queue-like property whereby the delay response

is preserved by the hierarchical structure (Inoue et al., 2023).

However, the performance tendencies for more diverse time-series

prediction tasks remain unclear; an evaluation in the case of

setting heterogeneous leaking rates in the multi-layered reservoir

has not been conducted. Therefore, in this study, based on the

preliminary outcomes of a previous study (Inoue et al., 2023),

we further revealed these points. Specifically, Deep-ESNs with

homogenous and heterogeneous leaking rates for each layer were

used to perform and evaluate a time-series prediction task using

three time-series signals: the Lorenz, Rössler, and Mackey–Glass

models. Furthermore, we performed layer-by-layer MSCE and

cross-correlation analyses between adjacent layers to elucidate the

mechanisms behind the functional enhancement achieved through

the leaking rates.

2 Materials and methods

2.1 ESN

Figure 1 shows the architecture of the ESN. The input signal is

defined as u(t) ∈ R
Nu with Nu-dimensional inputs. The reservoir

state is defined by x(t) ∈ R
Nx , where Nx is the number of neurons

in the reservoir layer. The reservoir state x(t) is defined by

x(t) = (1− a)x(t − 1)+ a tanh(Winu(t)+ Ŵx(t − 1)),

where a ∈ [0, 1] is the leaking rate andWin ∈ R
Nx×Nu is the input

weight matrix. Each component ofWin is represented by a uniform

random value, the range of which is [−sin, sin]. Ŵ ∈ R
Nx×Nx is the

recurrent synaptic weight matrix, which is a random matrix with

uniform random numbers, and its spectral radius is set to ρ. The

output of the ESN at time t is determined using

y(t) = Woutx(t),

where Wout ∈ R
Ny×Nx is defined as the output weight matrix and

y(t) ∈ R
Ny is the Ny-dimensional output. The initial value ofWout

is a random matrix of uniform random numbers.
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FIGURE 1

Architecture of ESN.

FIGURE 2

Architecture of Deep-ESN.

2.2 Deep-ESN

The multi-layered Deep-ESN is constructed based on the

single-layered ESN; Figure 2 exhibits a diagram of the Deep-ESN

(Deng et al., 2012; Gallicchio et al., 2017; Gallicchio and Micheli,

2021). The only difference from the ESN is that the reservoir layer

is multi-layered. The reservoir state vector of the Deep-ESN is

defined by

x(l)(t) = (1− a(l))x(l)(t − 1)+ a(l) tanh(W
(l)
in i

(l)(t)

+θ
(l) + Ŵ

(l)
x(l)(t − 1)),

where variables consisting of l refer to l-layer parameters. θ
(l) ∈

R
Nx is the bias in the reservoir coupling weight matrix. W

(l)
in ∈

R
Nx×Nu is the input weight matrix for each layer, and Ŵ

(l)
∈

R
Nx×Nx is the recurrent weight matrix for each layer. The dynamics

of each reservoir layer can be defined as x(l)(t) by averaging the

reservoir state vector x(l)(t) over all neurons. In addition, i(l)(t)

represents the input to the l-th layer in the Deep-ESN, which is

expressed as

i(l)(t) =

{

u(t) if l = 1,

x(l−1)(t) if l > 1.

The output of the Deep-ESN at time t is determined by

y(t) = Wout[x
(1)(t) x(2)(t) ... x(NL)(t)]⊤ + θout,

where NL is defined as the total number of reservoir layers and

y(t) ∈ R
Ny is the output in Ny dimensions. Wout ∈ R

Ny×NLNx

is the output weight matrix. The bias in the output layer is set to

θout = [1, 1, ..., 1]⊤.

In this study, the total number of layers was set to NL = 10, the

number of neurons in each layer was set to Nx = 100, the scaling

parameter of the input weight matrix Win was set to sin = 1, the

spectral radius was set to ρ = 1.0, 0.9, 0.8, and ridge regression

was used as the learning algorithm. For the settings of the leaking

rate a(l) in this experiment, a homogeneous model with the same

leaking rate in all layers and a heterogeneous model with different

leaking rates in each layer were used. The leaking rate a(l) of the
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FIGURE 3

Prediction performance in the Mackey–Glass time series. (Left panel) Dependence of the performance of the Deep-ESN on leaking rates

(a(l) = 1.0, 0.9, ..., 0.1 for all layers) in the homogeneous (hm) model with spectral radii ρ = 1.0 (A), 0.9 (B), and 0.8 (C). The profiles of the NRMSEs in all

spectral radii exhibited a U-shape against the leaking rate, indicating the presence of an optimal leaking rate for the prediction tasks. (Right panel)

NRMSEs for the most superior cases in the homogeneous model (corresponding to the cases with minimum NRMSEs presented in the left panel) and

for the cases of the heterogeneous (het) model in which the leaking rate was set to decrease by 0.1 in each layer, from 1.0 to 0.1. The NRMSE of the

heterogeneous model was low [based on the paired-t test using a Bonferroni false discovery rate with q < 0.05 (p < 0.05/9)] only for the

Mackey–Glass time series (τ = 64) throughout all spectral radii.

homogeneous model was set to be a(l) = 1.0, 0.9, ..., 0.1 in all

layers. In the heterogeneous model, the leaking rate a(l) was set to

decrease incrementally by 0.1 across each layer, starting from 1.0

and decreasing to 0.1. For simplicity, the same values were set for

the hyperparameters NL, Nx, sin, ρ, and a(l) for each layer in the

reservoir. In addition, Win, Ŵ
(l)
, Wout, and x(0) were initialized

with different random seeds for each trial. The seed values were

changed during the execution of the time-series prediction task,

and 100 trials were performed.

2.3 Time-series prediction task

In terms of the impact of the leaking rate on the performance,

the Mackey–Glass, Lorenz, and Rössler equations were prepared as

time-series signals with different dynamical characteristics. In this

study, homogeneous and heterogeneous models were used in the

time-series prediction task, which was evaluated by predicting the

five-step-ahead value from the current input. The input signal was

continuously applied to the models. Each task involved 100 trials

with different initial values. The normalized root mean square error

(NRMSE) was used to evaluate the prediction accuracy for each task

in the homogeneous and heterogeneous models.

2.3.1 Mackey–Glass equation
For the time-series prediction, time series were generated from

the Mackey–Glass equation (Glass and Mackey, 2010):

dxmg

dt
=

0.2xmg(t − τ )

1+ xmg(t − τ )10
− 0.1xmg(t),
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FIGURE 4

Prediction performance in the Lorenz time series. (Left panel) Dependence of the performance of the Deep-ESN on leaking rates [a(l) = 1.0, 0.9, ..., 0.1

for all layers] in the homogeneous (hm) model with spectral radii ρ = 1.0 (A), 0.9 (B), and 0.8 (C). The profiles of the NRMSEs in all spectral radii

exhibited a U-shape in response to the leaking rate, indicating the presence of an optimal leaking rate for the prediction tasks. (Right panel) NRMSEs

for the most superior cases in the homogeneous model (corresponding to the cases with the minimum NRMSEs highlighted in the left panel) and for

the cases of the heterogeneous (het) model in which the leaking rate was set to decrease by 0.1 in each layer, from 1.0 to 0.1. The NRMSE of the

homogeneous model was low [based on the paired-t test using a Bonferroni false discovery rate with q < 0.05 (p < 0.05/9)] for the Lorenz time

series [xl(t) and yl(t)] throughout all spectral radii.

where τ is a constant representing the delay. In this study, under

the condition of τ = 32, 64, and 128, the solution was obtained

using the fourth-order Runge–Kutta method, and the trajectories

were sampled in a time window of 1t = 10.

2.3.2 Lorenz equation
The Lorenz equation is represented by a system of nonlinear

differential equations of the form (Manneville and Pomeau, 1979)

dxl

dt
= σ (yl − xl),

dyl

dt
= xl(ρ − zl)− yl,

dzl

dt
= xlyl − βzl.

The parameters for the Lorenz equation were σ = 10, r = 28,

and b = 8/3. These values are known to exhibit chaotic behavior.

In this study, the solution was obtained using the fourth-order

Runge–Kutta method, and the trajectories were sampled in the time

window 1t = 0.02.

2.3.3 Rössler equation
The Rössler system, which is a nonlinear dynamical system

(Rössler, 1983), was adopted to generate chaotic time-series data.

The system is defined by the following set of three nonlinear

ordinary differential equations:

dxr

dt
= −yr − zr,

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1397915
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Inoue et al. 10.3389/frai.2024.1397915

FIGURE 5

Prediction performance in the Rössler time series. (Left panel) Dependence of the performance of the Deep-ESN on leaking rates

[a(l) = 1.0, 0.9, ..., 0.1 for all layers] in the homogeneous (hm) model with spectral radii ρ = 1.0 (A), 0.9 (B), and 0.8 (C). The profiles of the NRMSEs in all

spectral radii exhibited a U-shape against the leaking rate, indicating the presence of an optimal leaking rate for the prediction tasks. (Right panel)

NRMSEs for the most superior cases in the homogeneous model (corresponding to the cases with the minimum NRMSEs shown in the left panel)

and for the cases of the heterogeneous (het) model in which the leaking rate was set to decrease by 0.1 in each layer, from 1.0 to 0.1. The NRMSE of

the homogeneous model was low [based on the paired-t test using a Bonferroni false discovery rate with q < 0.05 (p < 0.05/9)] for the Rössler time

series [xl(t), yl(t) and zl(t)] throughout all spectral radii.

dyr

dt
= xr + ayr,

dzr

dt
= b+ zr(xr − c).

In these equations, xr, yr, and zr represent the system states. The

parameters a, b, and c directly affect the system’s behavior. For our

experiments, the parameters were set to a = 0.2, b = 0.2, and

c = 5.7. In this study, the solution was obtained using the fourth-

order Runge–Kutta method, and the trajectories were sampled in

the time window 1t = 0.02.

2.4 MSCE analysis

MSCE analysis is a method for performing coarse-graining

of the time series of interest and quantitatively evaluating the

complexity across multiple time scales (Humeau-Heurtier, 2015).

As an analytical procedure, the first step is to coarse-grain the

dynamics of each reservoir layer x(l)(t) with a time-scale factor τs,

using

z
(τs ,l)
j = (

1

τs
)

jτs
∑

i=(j−1)τs+1

x(l)(i), (1 ≤ j ≤
N

τs
).

In the case of τs = 1, the original time series is coarse-grained to

longer-scale dynamics as τs increases. At each time scale τs and layer

l, the complexity of the coarse-grained time series is then quantified

by the sample entropy (SampEn). SampEn is given by

SampEn(r,m,N) = − log
Um+1(r)

Um(r)
,
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FIGURE 6

MSCE analysis of reservoir dynamics (temporal scale τs = 1, 10, 20) with spectral radius ρ = 1.0 in the case of the Mackey–Glass task. The first,

second, and third columns list the cases with Mackey–Glass delay time constants τ = 32, 64, and 128, respectively. The first, second, and third

columns correspond to the maximum value of the leaking rate [a(l) = 1.0], the leaking rate when the NRMSE was the best, and the minimum leaking

rate [a(l) = 0.1], respectively. In the case of the homogeneous model, a trend toward reduced complexity on the fast time scale (τs = 1) was observed

as the leaking rate was reduced. The complexity on the slow time scales (τs = 10, 20) tended to vary across layers or to be almost constant

depending on the time scale of the task and leaking rate. In the heterogeneous model case, the complexity on the fast time scale (τs = 1) tended to

decrease according to the layer depth. The complexity on the slow time scale (τs = 10, 20) tended to increase layer by layer.

where Um(r) represents the probability of being |z
m
i − zmj | < r(i 6=

j, i, j = 1, 2, ...) and zmi represents the m-dimensional vector zmi =

{z
(τs ,l)
i , z

(τs ,l)
i+1 , ..., z

(τs ,l)
i+m−1}. Thus, the complexity of the dynamics of

each layer can be analyzed and evaluated from different time-scale

perspectives.

2.5 NRMSE

The NRMSE is a statistical measure that is used to assess the

accuracy of a model’s predictions and is defined as follows:

NRMSE =

√

∑T
t=1(y(t)− yd(t))2

Tσ 2(yd)
.

In this study, the task inputs and outputs were one-dimensional.

Therefore, y(t) is the output of the ESN in the case with Ny = 1 at

time t, yd(t) is the teacher signal at time t, σ 2(y(t)) is the variance of

the teacher signal, and T is the evaluation period (number of data

points). The NRMSE was evaluated among 100 trials with different

initial conditions.

2.6 Cross-correlation analysis

Cross-correlation analysis, which evaluates the synchronization

with a delay between two time-series signals, is extensively used

for the signal transmission of neural activity in hierarchical brain

networks (Adhikari et al., 2010; Dean and Dunsmuir, 2016).

Thus, we adopted the cross-correlation analysis for the signal

transmission in the Deep-ESN. We used the cross-correlation

Corr(k) between the dynamics of the reservoir state at the l-th and

l + 1-th layers, i.e., the time-series x(l)(t) and x(l+1)(t − k), where k

is the delay time and each time series is z-score transformed.

2.7 Experimental procedures

This study implemented the following procedures to explore

parameters that demonstrate dynamics that can achieve high

performance in Deep-ESNs: We initially employed MSCE analysis

to identify the time-scale dependency of the dynamical responses

in terms of complexity among the layers. This analysis aims to

guide the optimization of Deep-ESNs for enhanced handling of

time-series prediction tasks. After completing the MSCE analysis,

we proceeded with the synchronization analysis to detect delays

between adjacent layers. This sequential approach facilitates a

comprehensive understanding of both the dynamics of each layer

and the interactions between layers. Through these analyses, our

focus shifted to establishing guidelines for setting hyperparameters,

particularly in cases where previous studies on Deep-ESNs did not

yield significant findings on the dynamical characteristics. These

guidelines are designed to refine the time scale of the dynamics
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FIGURE 7

MSCE analysis of reservoir dynamics (temporal scale τs = 1, 10, 20) with spectral radius ρ = 1.0 in the case of the Lorenz task. The first, second, and

third columns display the cases with Lorenz tasks xl(t), yl(t), and zl(t), respectively. The first, second, and third columns correspond to the maximum

value of the leaking rate [a(l) = 1.0], the leaking rate when the NRMSE was the best, and the minimum value of the leaking rate [a(l) = 0.1], respectively.

In the case of the homogeneous model, a trend toward reduced complexity on the fast time scale (τs = 1) was observed as the leaking rate was

reduced. The complexity on the slow time scales (τs = 10, 20) tended to vary across layers or to be almost constant, depending on xl/yl/zl and the

leaking rate. In the heterogeneous model case, the complexity on the fast time scale (τs = 1) tended to decrease according to the layer depth. The

complexity on the slow time scales (τs = 10, 20) tended to increase layer by layer.

in Deep-ESNs based on the insights gained from our MSCE and

cross-correlation analyses.

3 Results

3.1 Time-series prediction task

We evaluated the dependence of the performance of Deep-

ESNs on the leaking rates a(l) in the time-series prediction tasks in

the nonlinear dynamical signals of the Mackey–Glass, Lorenz, and

Rössler equations. Figures 3–5 convey the results of the evaluation

of the homogeneous and heterogeneous models in each time-series

prediction task. In the homogeneous model, the leaking rate was set

to a(l) = 1.0, 0.9, ..., 0.1 for all layers. In the heterogeneous model,

the leaking rate decreased by 0.1 in each layer, from 1.0 to 0.1. The

dependences of theNRMSE on the leaking rate in the homogeneous

model for the spectral radii ρ = 0.8, 0.9, and 1.0 are displayed in the

left panels of Figures 3–5. The results demonstrate that the profiles

of the NRMSEs in all tasks and the spectral radii exhibited a U-

shape in response to the leaking rate, indicating the presence of

an optimal leaking rate for the prediction tasks. Furthermore, the

right panels of Figures 3–5 present a comparison of the NRMSEs

of the most superior cases in the homogeneous model, which were

obtained from the profile of the dependence on the leaking rate

in the left panels, with the heterogeneous model leaking rate. The

results reveal that the NRMSE of the heterogeneous model was

significantly low (based on the paired-t test using a Bonferroni false

discovery rate with q < 0.05) only for the Mackey–Glass time

series (τ = 64) across all spectral radii. This tendency implied that

the heterogeneous models could precisely respond to strong multi-

temporal-scale dynamics, similar to the Mackey–Glass time series

(τ = 64) that exhibited wide multi-temporal-scale components in

this dynamics (see Section 1 of Supplementary material).

3.2 MSCE analysis

MSCE analysis was used to investigate the behavior of the

dynamics of each layer of the reservoir. Figures 6–8 exhibit the

results of the MSCE analysis for the Mackey–Glass, Lorenz, and

Rössler tasks, respectively. The temporal scales τs were set to 1,

10, and 20. In the case of the homogeneous model, a trend toward

reduced complexity on the fast time scale (τs = 1) was observed

as the leaking rate was reduced. The complexity with slow time

scales (τs = 10, 20) may vary across layers or be almost constant,

depending on the time scale of the task and leaking rate. In the

heterogeneous model case, the complexity on the fast time scale

(τs = 1) tended to decrease with the layer depth. The complexity

on the slow time scales (τs = 10, 20) tended to increase layer by

layer.
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FIGURE 8

MSCE analysis of reservoir dynamics (temporal scale τs = 1, 10, 20) with spectral radius ρ = 1.0 in the case of the Rössler task. The first, second, and

third columns convey the cases with Rössler tasks xr(t), yr(t), and zr(t), respectively. The first, second, and third columns correspond to the maximum

value of the leaking rate [a(l) = 1.0], the leaking rate when the NRMSE was the best, and the minimum value of the leaking rate [a(l) = 0.1], respectively.

In the homogeneous case with task xr(t), yr(t), in the case with a high leaking rate, the complexity of the fast time scale (τs = 1) increased with the

layer depths. The complexity on the slow time scales (τs = 10, 20) tended to vary across layers or to be almost constant, depending on xr/yr/zr and

the leaking rate. In the heterogeneous model case with xr(t) and yr(t), the complexity on the fast time scales (τs = 1) tended to decrease with the layer

depth. The complexity on the slow time scales (τs = 10, 20) tended to increase layer by layer.

3.3 Cross-correlation analysis

The signal transmissions in the dynamics of the reservoir

state among layers were evaluated using cross-correlation analysis.

Figure 9 depicts the dynamics of the reservoir states between

adjacent reservoir layers (the l-th and l + 1-th layers): |Corr(k)|

in the case of the heterogeneous model (spectral radius ρ = 1.0)

for the Mackey–Glass (τ = 64) task. This setting corresponds

to the highest accuracy in Figure 3A for the Mackey–Glass (τ =

64) task. |Corr(k)| was maximized at the positive lag (k ≥ 0) in

the specific between layers (#3&#4, #4&#5, #5&#6, #6&#7, #8&#9,

#9&#10), i.e., delays in signal transmission occurred from the l-th

to l + 1-th layers. To evaluate this tendency against the different

tasks used in this study, Figure 10 presents the k-values where

|Corr(k)| was maximized for adjacent pair-wise layers. The results

demonstrate that a major part of the pair-wise layers in all tasks

exhibited positive k-values (≥ 1); that is, signal transmission

delays occurred between adjacent layers. This helps to retain

past information. In addition to cross-correlation, it is necessary

to evaluate synchronization with delays in systems involving

nonlinear dynamics. Therefore, we analyzed the synchronization

with delays between the time-series of the reservoir state at the l-th

and l + 1-th layers using mutual information under the conditions

presented in Figure 9 (see Section 3 in Supplementary material).

The results indicate that similar to the findings of the cross-

correlation, themutual information peaked at a positive lag (k > 0),

specifically between layers. This indicates that signal transmission

delays also occurred from the l-th to l + 1-th layer, considering

the nonlinear relationships between the behaviors across layers. In

addition, according to the analysis of the output weight matrix

Wout in the readout, the contributions to the prediction tasks,

which were facilitated by these multi-scale behaviors and layer-to-

layer delays, were distributed among the layers (see Section 4 in

Supplementary material).

4 Discussion

In this section, we first recapitulate the key findings

derived from the results. Our investigation was primarily aimed

at understanding the mechanism of the Deep-ESN function

enhancement and guidelines by adjusting the leaking rate a(l).

In three different experiments, we validated our hypothesis that

the evaluation of the dependence of the dynamical response in

the multi-layered reservoir on adjusting the leaking rate would

provide insights into achieving a guideline for optimizing the

hyperparameters of the Deep-ESN. Specifically, the first experiment

(time-series prediction tasks) with the homogeneousmodel showed

that the profiles of the MSCE in all tasks and the spectral radii

exhibited a U-shape against the leaking rate, indicating an optimal

leaking rate for each prediction task. The heterogeneous model

was effective for the Mackey–Glass time series (τ = 64), which
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FIGURE 9

Absolute values of cross-correlation for the dynamics of the

reservoir states between adjacent reservoir layers (l-th and l+ 1-th

layers): |Corr(k)| in the case with the heterogeneous model (spectral

radius ρ = 1.0) for the Mackey–Glass (τ = 64) task. This setting

corresponds to the highest accuracy in Figure 3A for the

Mackey–Glass (τ = 64) task. Lag k where the maximized |Corr(k)|

was achieved (represented by the red arrow), expresses the signal

transmission delay from the l-th to l+ 1-th layers. In panels (C–I),

the peaks are k ≥ 1, indicating that the reservoir dynamics were

delayed between layers. (A) #1 & #2. (B) #2 & #3. (C) #3 & #4. (D)

#4 & #5. (E) #5 & #6. (F) #6 & #7. (G) #7 & #8. (H) #8 & #9. (I) #9 &

#10.

contains wide multi-temporal-scale components in its dynamics.

The second experiment (MSCE analysis) with the homogeneous

model indicated that the complexity associated with fast time scales

tended to decrease with the leaking rate, while that of the slow time

scales tended to vary or remain almost constant according to the

number of layers, depending on the task time scale and leaking rate.

In the heterogeneous models, the fast time-scale complexity tended

to decrease with layer depth, while the slow time-scale complexity

tended to increase layer by layer. Finally, the third experiment

(cross-correlation analysis) with homogeneous and heterogeneous

models demonstrated the layer-to-layer signal transmission delay

in all tasks, which helps to retain past information.

We first discuss the reasons for the presence of an optimum

leaking rate (see right panel of Figures 3–5). In single neural

dynamics, as the leaking rate increases, the dynamics of the neuron

become faster. Based on this effect, the complexity of fast-scale

dynamics in the case with a large leaking rate increases further,

especially in deep layers, through the multiple-layered propagation

(see the tendency of SampEn when increasing the leaking rate in

the case with τs = 1 in Figures 6–8). This tendency was observed

in the homogeneous case with a large leaking rate and in the

heterogeneous case. Meanwhile, the complexity at slow time scales

exhibited a diverse layer-specific SampEn profile, depending on the

leaking rate and task (see the SampEn of τs = 10, 20 in Figures 6–

8). This tendency may be attributed to the complex interactions

in layer-to-layer signal propagation. In general, to achieve high

ESN performance, the representation of complex desired signals

requires the combination of diverse time-scale dynamical responses

in the readout (Tanaka et al., 2022). The layer-specific time-scale

dynamic response obtained using the Deep-ESN can satisfy this

requirement, and this can be achieved by adjusting the leaking rate.

Next, we discuss the structural effectiveness of the Deep-ESN.

The hierarchical structure causes delays in the layer-to-layer signal

transmission (see Figures 9, 10). Consequently, this delay helps to

retain the information used in the past, specifically that resembling

the queue structure. This characteristic contributes significantly to

the high performance (Gallicchio et al., 2017) of the Deep-ESN.

In addition, to adapt the Deep-ESN to real-world data, the

characteristics of its performance against time series involving

stochastic noise must be considered. In Section 2 of the

Supplementary material, the dependence of the NRMSE on the

leaking rate is demonstrated against the time-series prediction of

the sunspot time series, which involves stochastic behavior. Our

results communicate that the estimation performance increases as

the leaking rate approaches one. This suggests that suppressing

the temporal history effect is essential for accurately modeling

time-series data with stochastic noise, although this suppression

may compromise the ability to capture long-term behaviors. To

address this trade-off, we are currently exploring the integration of

attention mechanisms into ESNs (Sakemi et al., 2024), which could

further enhance the performance of Deep-ESNs for time-series data

involving stochastic noise.

Although this study revealed the existence of an optimal leaking

rate, a grid search is still necessary for a concrete set for the

leaking rate in accordance with the tasks. This facilitates the need

to develop an approach to determine the optimal leaking rate based

on the dynamic characteristics used in this study. Moreover, many

important benchmark tasks for evaluating deep neural networks

have been introduced over the past decade. Notably, Moving

Mixed National Institute of Standards and Technology database

(MNIST) (Shi et al., 2015), motor imagery datasets (available

at https://moabb.neurotechx.com/docs/datasets.html), andMLPerf

(available at https://mlcommons.org/) serve as more contemporary

standard benchmarks for deep neural networks. Therefore, it

is essential to apply these datasets in addition to the classical

prediction tasks described in our study to validate the capability of

Deep-ESNs in practical scenarios. These points should be addressed

in future studies.

5 Conclusion

In conclusion, through MSCE and cross-correlation

analyses, this study has revealed the presence of an optimal

leaking rate to represent the complex desired signal and a

mechanism to retain past information in the Deep-ESN. Despite

some limitations, these findings contribute to establishing

optimum design guidelines for setting the hyperparameters of the

Deep-ESN.
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FIGURE 10

Lag k-values where |Corr(k)| was maximized for adjacent pair-wise layers in the cases with parameter settings (homogeneous/heterogeneous

models) to achieve the superior NRMSE in the time-series prediction task (corresponding to the right panel of A in Figures 3–5). The values are not

plotted when the reservoir dynamics of the l-th and l+ 1-th layers were zero-lag synchronized (the peak of correlation was k = 0) but plotted when

the l+ 1-th layer was delayed against the l-th layer (the peak of correlation was k ≥ 1). The presence of between four and six plot points in each

subfigure confirms that reservoir dynamics delays occurred in the l-th and l+ 1-th layers. (A) Mackey-Glass (τ = 128), Homogeneous model, leaking

rate α = 0.35. (B) Mackey-Glass (τ = 64), Homogeneous model. (C) Lorenz (x-time series), Homogeneous model, leaking rate α = 0.45. (D) Lorenz

(y-time series), Homogeneous model, leaking rate α = 0.45. (E) Rössler (x-time series), Homogeneous model, leaking rate α = 0.45. (F) Rössler

(y-time series), Homogeneous model, leaking rate α = 0.4. (G) Rössler (z-time series), Homogeneous model, leaking rate α = 0.8.
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