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Active learning is a field of machine learning that seeks to find the most e�cient

labels to annotate with a given budget, particularly in cases where obtaining

labeled data is expensive or infeasible. This is becoming increasingly important

with the growing success of learning-based methods, which often require large

amounts of labeled data. Computer vision is one area where active learning has

shown promise in tasks such as image classification, semantic segmentation, and

object detection. In this research, we propose a pool-based semi-supervised

active learning method for image classification that takes advantage of both

labeled and unlabeled data. Many active learning approaches do not utilize

unlabeled data, but we believe that incorporating these data can improve

performance. To address this issue, our method involves several steps. First,

we cluster the latent space of a pre-trained convolutional autoencoder. Then,

we use a proposed clustering contrastive loss to strengthen the latent space’s

clustering while using a small amount of labeled data. Finally, we query the

samples with the highest uncertainty to annotate with an oracle. We repeat this

process until the end of the given budget. Our method is e�ective when the

number of annotated samples is small, and we have validated its e�ectiveness

through experiments on benchmark datasets. Our empirical results demonstrate

the power of our method for image classification tasks in accuracy terms.

KEYWORDS

active learning, contrastive learning, clustering, semi-supervised learning, human-in-

the-loop

1 Introduction

In recent years, computer vision has made significant advancements, primarily driven

by machine learning and, more specifically, deep learning. However, these methodologies

are highly dependent on having a substantial number of labeled samples. Acquiring such a

large volume of data poses a significant challenge for several reasons. Initially, the process

of annotating images is time-intensive, ranging from a few seconds for simple image

classification to several hours for more complex image segmentation tasks. This makes

it impractical to annotate a large data set in a short time frame. Additionally, image

annotation often requires specialized expertise, adding another layer of complexity. In

some cases, annotations require professionals, which increases the cost and complexity of

the annotation process.

An effective strategy to address these issues involves employing an active learning

methodology. Active Learning, often abbreviated as AL, entails the process of selecting and

prioritizing data that require labeling to have the most significant impact on the training of
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a machine learning task. Through the utilization of AL, machine

learning algorithms can enhance their accuracy using a reduced

number of training labels, thereby economizing time and resources

during model training. Settles (2009) provides a comprehensive

overview of various AL techniques in machine learning. In

essence, there are three primary scenarios where active learning

can be beneficial for those seeking to maximize accuracy while

minimizing the number of labeled instances, typically involving the

submission of queries in the form of unlabeled data instances to be

labeled by an oracle, such as a human annotator. These scenarios

includemembership query synthesis (Angluin, 1988), stream-based

selective (Atlas et al., 1989) sampling, and pool-based sampling. In

this research, we will be focused on the third scenario, pool-based

sampling (Lewis, 1995).

In numerous practical scenarios, it is often straightforward to

gather a substantial amount of unlabeled data, which serves as

a driving force behind the adoption of the pool-based sampling

method. Let us consider a pool of unlabeled data Pu alongside a

limited quantity of labeled data Pl. In pool-based sampling in each

query, we will sample a small amount of data from Pu and annotate

it with human oracle, then add it to Pl. Assuming we have a good

query that selects the most relevant samples from Pu, Pl will be a

good representative group of Pu.

Employing a pool-based sampling active learning approach,

where the model selects samples for annotation, can decrease

the quantity of labeled data required to achieve a similar model

accuracy. This represents a significant benefit of active learning

for deep learning tasks, which has only recently started to be

investigated (Gal et al., 2017; Sener and Savarese, 2017; Sinha et al.,

2019).

As previouslymentioned in numerous practical scenarios, there

is a significant volume of unlabeled data, which motivate our study.

In this research, we present a novel approach that utilizes pool-

based active learning to fully exploit all unlabeled data. The method

we suggest begins by clustering the unlabeled data in the latent

space. Then, it proceeds to choose the samples with the highest

entropy based on their representation in the latent space and the

clustering within that space. Our central concept involves clustering

the unlabeled data from Pu, querying samples with the highest

entropy for human annotation, and employing labeled data from

Pl to refine the clustering via our suggested clustering contrastive

learning. The above process iterates until either a satisfactory level

of accuracy is achieved, the model converges, or the annotation

budget is exhausted.

In addition to addressing the challenges posed by limited

labeled data, our research holds promise for real-world applications

where unlabeled data is abundant. By leveraging a pool-based active

learning approach, our method enables the effective utilization of

unlabeled data in scenarios where acquiring labeled samples is

impractical or costly, such as medical imaging diagnosis, satellite

image analysis, and industrial inspection. This capabilitymaximizes

the efficiency and effectiveness of machine learning models in

practical settings, facilitating improved accuracy and insights from

limited labeled samples. Furthermore, our approach can identify

and prioritize hard examples for labeling, ensuring that the

annotated data provide the most informative training signal for

the model.

The contributions of the research are:

• A new approach is proposed to integrate Deep Clustering

and Deep Active Learning (DAL) in order to maximize the

extraction of information from both labeled and unlabeled

data.

• Propose a novel contrastive clustering loss (CCL) that has

the potential to enhance the transition from unsupervised

clustering to a semi-supervised framework.

• Achieving a high level of accuracy in image classification with

a reduced number of labeled samples.

2 Previous work

2.1 Deep clustering

There has been significant research on deep clustering in

recent years. Most deep clustering algorithms can be categorized

into two groups. The first group includes two-stage clustering

algorithms that first generate a data representation before applying

clustering. These algorithms leverage existing unsupervised deep

learning frameworks and techniques. For instance, Tian et al.

(2014) and Peng et al. (2016) utilize autoencoders to learn low-

dimensional features of original data samples and subsequently

apply conventional clustering algorithms like k-means to the

learned representations. Mukherjee et al. (2019) introduces

ClusterGAN a generative adversarial network that clusters the

latent space by sampling latent variables from a combination of

one-hot encoded variables and continuous latent variables. The

second group comprises approaches that simultaneously optimize

feature learning and clustering. These algorithms aim to explicitly

define a clustering loss, resembling the classification error in

supervised deep learning. Yang et al. (2016) propose a recurrent

framework that integrates feature learning and clustering into a

unifiedmodel with a weighted triplet loss, optimizing it end-to-end.

Xie et al. (2016) suggests a clustering loss that operates on the latent

space of an autoencoder, enabling the simultaneous acquisition

of feature representations and cluster assignments. Building upon

this, Guo et al. (2017) DCEC (Deep Clustering with Convolutional

Autoencoders) enhances the method by proposing Convolutional

Autoencoders (CAE), which surpasses DEC while ensuring the

preservation of local structure. This study directly adopts the

clustering loss and clustering layer from DCEC.

We briefly review their definitions:

The trainable parameters of the clustering layer are µj
k
1

which represent the cluster center. The intuition behind the math

operation of that layer is it maps each embedded point in the latent

space zi into a soft label qi by the student’s t-distribution (Van der

Maaten and Hinton, 2008).

qij =
(1+ ||zi − µj||

2)−1
∑

j(1+ ||zi − µj||2)−1
(1)

Where qij is the jth entry of qi, representing the probability of

zi belonging to cluster j.
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The clustering loss is defined as:

Lclu = KL(P||Q) =
∑

i

∑

j

pij log
pij

qij
(2)

where P is the target distribution, defined as:

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

(3)

2.2 Active learning

Active learning is a subfield of machine learning empowering

algorithms to select and prioritize the most informative data points

for labeling, aiming to enhance model performance using less

training data. Active learning scenarios commonly occur in three

main contexts:

1. Membership Query Synthesis: In this scenario (Angluin,

1988), the learner synthesizes new instances to be labeled by

an oracle, aiming to generate maximally informative instances,

particularly beneficial when labeled data is scarce or expensive

to obtain. 2. Stream-Based Selective Sampling: This scenario

(Atlas et al., 1989) involves a continuous stream of unlabeled

instances, with the learner making real-time decisions on which

instances to label based on the current model state and incoming

data. Such scenarios are common in sequential data streams like

online learning or sensor data. 3. Pool-Based Sampling: Here

(Lewis and Gale, 1994), the learner is presented with a fixed

pool of unlabeled instances and selects a subset for labeling,

aiming to identify the most informative instances. This approach

involves evaluating the informativeness of unlabeled samples, often

utilizing query strategies like uncertainty sampling (Lewis and

Gale, 1994), recently Liu and Li (2023) had an extensive work to

explain this strategy even further, or query-by-committee (Seung

et al., 1992). Active learning plays a crucial role in determining

which data should be labeled to maximize the effectiveness of

training supervised models. Traditional active learning methods

are comprehensively reviewed by Settles (2009), while Ren et al.

(2021) offer insights into the more contemporary Deep Active

Learning (DAL) approach, integrating active learning with deep

learning methodologies.

Notable active learning methodologies are Uncertainty

Sampling (Lewis and Gale, 1994) and Variational Adversarial

Active Learning (VAAL) (Sinha et al., 2019). VAAL integrates

variational inference and adversarial training, leveraging a

generator network to produce informative data points and a

discriminator network to differentiate between real and generated

instances, aiding in sample selection. Additionally, LADA (Kim

FIGURE 1

Visual representation of proposed methodology. Images from pl and pu are inferred through the CAE and provide feature vectors in the latent space

the feature vectors are clustered by the clustering layer and the contrastive clustering loss then the n-th feature vectors from the latent space with the

highest entropy are queried and annotated by a human oracle this process is repeated until the end of the annotation budget or model convergance.
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et al., 2021) introduces data augmentation techniques to improve

the efficiency of data acquisition in deep active learning, while

SRAAL (Zhang et al., 2020) integrates adversarial training

techniques with active learning principles to address sample

selection challenges.

Moreover, approaches like the Core-Set Approach (Sener and

Savarese, 2017) and Bayesian Active Learning (BALD) (Houlsby

et al., 2011) offer strategies for selecting informative instances,

with Core-Set identifying a compact, diverse subset of unlabeled

data, and BALD leveraging Bayesian inference for strategic

instance selection. These methodologies collectively contribute to

enhancing model training efficiency and performance in active

learning settings.

2.3 Semi-supervised learning

Semi-supervised learning (SSL) is a specialized form of

supervised learning that involves training on a small set of labeled

data along with a large set of unlabeled data. Positioned between

supervised and unsupervised learning, SSL is commonly used in

scenarios where the availability of labeled data is limited due to

constraints such as budgetary restrictions or data ambiguity, where

the class of a sample is uncertain. Semi-supervised algorithms are

input : Labeled pool (Pl), Unlabeled Pool (Pu),

Model parameters: θE, θD, θc,

Hyperparameters: epochs, α1, α2, α3, γ

output: Labeled pool (Pl), Yp

1 θE , θD ← preTraining(θE , θD, Pl , Pu)

2 θc ← initCentroids(θc , Pl)

3 while budget 6= 0 do

4 // Active Learning Loop

5 Zu = θE(Pu)

6 Xs ← querySamples(Zu , θc, Pu)

7 Pl ← Annotate(Xs)

8 for e in epochs do

9 for b in batches do

10 Zul ← θE(Pu, Pl)

11 Xr ← θD(Zul)

12 Lrec compute using Eq. 5

13 Lclu compute using Eq. 2

14 Lccl compute using Eq. 7

15 Ltotal ← α1 ·Lrec +α2 ·Lclu + α3Lccl

16 θ ′E , θ
′
c ← θE , θc − γ∇Ltotal

17 θc ← updateCentroids(Zul)

18 if updateCentroids is True then

19 P← updateP(zul) compute using Eq. 1

Algorithm 1. Contrastive active learning.

designed to address such challenges. In this study, we propose an

SSL approach for the classification of image data, aiming to leverage

the benefits of both active learning (AL) and SSL. To achieve this,

we suggested clustering contrastive loss (CCL) in conjunction with

unsupervised training.

2.4 Entropy

Entropy Shannon (1948) is an information-theoretic measure

of uncertainty. It quantifies the amount of information needed to

encode a distribution. In active learning, entropy is widely used

to select the most uncertain or ambiguous samples for annotation.

The entropy can be shown as:

H(x) := −
∑

x∈X

p(x) log p(x) (4)

3 Method

This study proposes a novel active learning approach based

on pool-based sampling. It involves training a convolutional

autoencoder (CAE) (Masci et al., 2011) to learn a low-dimensional

latent space for both labeled and unlabeled samples. The latent

space is then clustered using a clustering layer. After each iteration

of the active learning process, a subset of data points associated

with the latent space vectors is selected for annotation. To leverage

information from the labeled data, the study introduces the

contrastive clustering loss (CCL), which is a modified version of

the contrastive loss (Chopra et al., 2005). The CCL operates on the

latent space vectors, pulling samples of the same class toward their

TABLE 1 Algorithm symbols and their explanations.

Notation Explanation

Pl Labeled pool

Pu Unlabeled pool

θE Encoder model parameters

θD Decoder model parameters

θc Centroid parameters

α1 , α2 , α3 Losses weights

γ Learning rate

Zu Encoded representations of unlabeled pool

Xs Samples selected for annotation

Pl Updated labeled pool

Zul Encoded representations of both labeled and unlabeled

pool

Xr Reconstructed samples

θ ′E , θ
′
c Updated encoder and centroid parameters

∇ Gradient operator

P P distribution
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respective cluster centers and pushing samples of different classes

apart.

3.1 Problem definition and notation

The main focus of this study is a semi-supervised active

learning approach designed for image classification. Assuming

there is a large set of unlabeled images Pu and a small set of labeled

images Pl, along with a predetermined annotation budget, the goal

is to select the most informative samples from the unlabeled set

Pu to enhance the classification accuracy. These selected samples

will be labeled by a human annotator and incorporated into the

labeled set Pl. The initial step involves training a Convolutional

Autoencoder (CAE) to learn a condensed representation of the

images, referred to as latent space features. Each image i is

transformed by the CAE into a feature vector zi in the latent space.

Subsequently, all latent space features zi, ∀i ∈ Pl ∪ Pu are clustered

into clusters, denoted as µj where j represents the centroid of the

j− th cluster. Finally, the proposed cluster contrastive loss Lccl (see

Eq. 7) is applied to the labeled samples zl, ∀l ∈ Pl. This loss function

aims to attract the feature vectors zj toward µj while pushing them

away from µn ∀n 6= j. for all n 6= j.

3.2 Suggested method

The primary objective of this study is image classification,

aiming to categorize images into their respective classes with

optimal accuracy by leveraging labeled images from the

restricted labeled data pool Pl. To achieve this, we introduce

a pool-based active learning strategy that integrates contrastive

learning and clustering, mutually enhancing their performance

in every training cycle. Our approach follows a human-in-

the-loop methodology, in which an active learning loop

comprises model training, image quering, and annotation by

an oracle. This iterative process continues until the budget is

fully utilized.

The model consists of a CAE (Masci et al., 2011) and a

clustering layer (Xie et al., 2016). Samples from Pl and Pu are

fed into the model based on the active learning training stage.

During each iteration of the active learning process, samples from

Pu are chosen for labeling. The proposed module is depicted

in Figure 1.

Prior to commencing the active learning iteration, certain

initial steps are carried out. Initially, our CAE is pre-trained

by reconstructing images from Pu and Pl using the MSE loss

(Eq. 5). This process allows the CAE to acquire knowledge of

lower-dimensional features within the dataset. Once the network

is trained, the resulting latent space provides a feature zi∀i ∈ pi ∪

pl. Subsequently, the cluster centroids in the clustering layer are

initialized with the average values of the vectors in the latent space

of each class in our labeled pool Pl as depicted in Eq. 6.

Lrec =
1

n

n∑

i=1

(Yi − Ŷi)
2 (5)

µc =
1

nc

nc∑

1

zc (6)

Next, we incorporate clustering into the training of the CAE

by clustering the acquired latent space with the utilization of a

clustering layer (Guo et al., 2017) and employing a Kullback-Leibler

divergence loss (Csiszár, 1975) as shown in Eq. 2. The primary

objective of this stage is to organize the latent space into clusters,

ensuring that similar image pairs produce proximate feature vectors

within the latent space.

In the final stage, we incorporate the image labels from Pl.

To utilize these labels effectively, we employ the suggested cluster

contrastive loss Lccl as shown in Eq. 7 on all vectors in the latent

space derived from Pl, meaning that solely annotated images are

taken into account by this loss. The CCL loss works by either

pulling or pushing the feature vectors Zi in the latent space toward

their respective cluster centerµi, or away from other cluster centers

µj where j 6= i. This method allows us to enhance the purity of

clusters while using a limited number of labeled images from Pl,

during this stage we continue to make use of the previous clustering

stage. Finally, we add all those losses and update the parameters of

the model. The process is reiterated until reaching convergence or

utilizing the entire annotation budget.

At the end of every active learning iteration, we perform query

sampling to choose the n-th image that exhibits features with

the highest entropy compared to all other clusters. These features

are the most ambiguous in terms of their cluster assignment,

and by labeling them, we gain valuable insights that the model

failed to generalize. Algorithm 1 presents a generic pseudo-code

for this approach, in Table 1 the symbols used in the algorithm are

elucidated, providing clarity on their respective meanings and roles

within the context of the algorithm.

FIGURE 2

An intuitive explanation of the contrastive clustering loss is that the

black dots correspond to samples assigned to cluster #1, the blue

dot symbolizes the cluster center, and the green dot represents a

sample from a di�erent cluster. This loss function aims to move the

black dots closer to the blue dot while pushing the green dot farther

away from the blue dot.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1398844
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Roda and Geva 10.3389/frai.2024.1398844

3.2.1 Cluster contrastive loss
The cluster contrastive loss (CCL) is a revised variant of the

supervised contrastive loss introduced in Khosla et al. (2020).

To enhance the purity of the clusters, the proposed approach

incorporates the labeled images from Pl into the clustering

procedure. Consequently, this results in the adoption of the

proposed CCL. The mathematical expression for the CCL is

displayed below:

Lccl = −
∑

c∈C

∑

i∈Ic

log
exp(zi · µc/τ )∑

z′∈Ic′

exp(z′ · µc/τ )
(7)

Where c ∈ C is the class index, Ic is the set of all the samples

indexes in class c, Ic′ is the set of all the samples indexes in all the

classes beside class c. zi is the i-th sample in the latent space andµ is

the center of the cluster, τ ∈ R+ is a scalar temperature parameter.

An intuition of the loss can be shown in Figure 2.

This loss involves both pulling samples toward their cluster

center and pushing from other unmatched centroids centers

simultaneously. It specifically affects the labeled data points. The

CCL serves as a complementary approach to the unsupervised

methods we currently employ, and empirical experiments indicate

their mutual benefit. Figure 2 provides a visual representation of

CCL as defined in Eq. 7.

3.2.2 The need for the contrastive clustering loss
During the training for CAE, we are provided with

representation vectors in the latent space. In order to group

the latent space into clusters corresponding to each class, as

elaborated in Section 2.1, the clustering layer is utilized. This layer

aims to streamline the process of image classification. Nevertheless,

the clustering mechanism is proficient in grouping vectors with

high certainty, which may result in certain images not being

grouped together, particularly those from the same class that map

to distant vectors in the latent space. Therefore, the integration of

the suggested contrastive clustering loss becomes essential. This

suggested CCL loss function works on adjusting vectors that were

not properly aligned by the clustering process. Through this loss

function, we can enhance the separation of classes in the latent

space, even when dealing with a limited number of labeled images

or when images are challenging to cluster due to the low confidence

in the P-distribution of the clustering process.

3.2.3 Pre-training
During the initial phase, we train the convolutional

autoencoder. We are using all the images from the unlabeled

data pool Pu and the labeled data pool Pl. Each image xi ∼ Pl ∪ Pu
inferences through the encoder and provides zi a lower dimension

latent vector zi = σ (xi ∗W)) where w is the weights of the encoder

layers, σ is a nonlinear activation function, and ∗ is a convolution

operation. The latent vector zi is inference through the decoder

FIGURE 3

TSNE visualization of the query method the red circle represents samples with high entropy.
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which provides an x̂ which is a reconstruction of the original image

xi. x̂ = σ (zi ∗ U) where U is the weight for the decoder. x̂i and xi
are entered to MSE loss (Eq. 5) which provides a high loss when xi
looks different from x̂i and a low loss when they are similar. At the

end of this step, the CAE has trained weightsW and U.

3.2.4 Initialization and update centroids
Once the CNN is pre-trained, the centroids in the clustering

layer are initialized using the average value of each class projection

from Pl in the latent space. Subsequently, every 80 iterations, the

distribution of P is updated by the following (Eq. 3). As detailed

in Section 2.1, the centroids represent the weights of the clustering

layer, and therefore they are adjusted during each training iteration.

3.2.5 Query samples
In this stage, our objective is to acquire image annotations

by engaging a human annotator in the active learning procedure.

At this point, we have already acquired a clustered latent space

generated by the model itself. Any vectors within the latent space

that are not clustered or are distant from the cluster center

are identified as hard examples, representing images that require

annotation. We select samples linked to vectors in the latent space

that do not clearly belong to any cluster and annotate them based

on the uncertainty criterion detailed in Eq. 4. More specifically, we

target the vectors that exhibit the highest entropy in the cluster

distribution. A visual representation of this approach is shown in

Figure 3. By focusing on a small number of samples associated with

feature vectors located far from the cluster center, we gain insight

into these samples and the clusters they are associated with, thereby

enhancing the overall clustering process.

3.3 Combination of contrastive learning
and clustering

When the suggested clustering method is applied to the latent

space, there may be instances where some feature vectors are not

accurately clustered. This situation can arise when feature vectors

within the latent space that should belong to the same cluster

are spatially distant from each other. As a result, the clustering

layer may encounter challenges in grouping these feature vectors

effectively. To address this issue, we introduce our proposed CCL,

FIGURE 5

Visualization of the USPS dataset.

FIGURE 4

Visualization of MNIST and FashionMNIST datasets at the left is the FashionMNIST and on the right is the MNIST dataset.
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which works to minimize the distance between distant feature

vectors that belong to the same cluster while maximizing the

separation between those that do not. Furthermore, we incorporate

a query mechanism to select challenging examples (i.e., samples

that are significantly distant from their corresponding cluster

center) for manual annotation. By integrating these strategies and

progressively bringing the feature vectors closer together in a semi-

supervised fashion, followed by clustering using the clustering layer,

we improve the purity of the clustering outcomes.

3.4 Implementation details

In this work, we used a convolutional autoencoder for our

model. The encoder consists of 3 convolutional layers, a batch

normalization layer, and a linear embedding layer with a size

of 10. The decoder consists of a linear de-embedding layer, 3

deconvolutional layers, and a batch normalization layer. The

clustering layer weights are initialized with the mean of the latent

space clusters using the starting labeled images in Pl, and are then

updated with the kl-loss using the Q and P distribution as described

earlier. The P-distribution, or target distribution, is initialized every

80 steps. Each benchmark dataset is split into a 20% validation set

and 80% training set, which is further divided into two data pools:

a labeled data pool Pl and an unlabeled data pool Pu. First, we pre-

trained the model for 50 epochs. Then each active learning training

iteration was set to 10 epochs and for the duration of overall 20

active learning loops. In each active learning loop, we query 250

image samples using the uncertainty strategy for annotation.

4 Experiments and results

4.1 Datasets

We have evaluated our method in image classification tasks.

We have used MNIST (LeCun, 1998), FashionMNIST (Xiao et al.,

2017), and USPS (Hull, 1994) datasets. Both the MNIST and the

FashionMNIST datasets have 60K grayscale images of size 28x28.

Examples of MNIST and FashionMNIST datasets can be viewed

at Figure 4, and USPS has 9298 grayscale images of 16x16 size. An

example of USPS dataset can be viewed at Figure 5.

4.2 Performance measurement

We evaluate the performance of our method with the image

classification task by measuring the accuracy over different

amounts of labeled images from 500 to 5k images with a raising of

250 images from query to query. The results of all our experiments

are averaged over 3 runs.

FIGURE 6

TSNE visualization of the clustered MNIST latent space after convergence of our method with 10% of annotated samples.
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FIGURE 7

TSNE visualization of the clustered FashionMNIST latent space after convergence of our method with 10% of annotated samples.

TABLE 2 Ablation study: clustering vs. clustering + CCL (3% of annotated

data).

Dataset
Method

Clustering Clustering + CCL

MNIST 81.6% 91.0%

USPS 68.7% 86.5%

4.3 Experiments details

We begin our experiments with an initial labeled pool of

the size of 250 and in each iteration of the training loop we

provided another 250 images that were annotated by the human

oracle and added to the initial labeled pool Pl. Training is

repeated on the new training set with the new labeled images. We

assume that the dataset is balanced and the oracle annotations

are ideal.

In Figure 6 MNIST result. In Figure 7 FashionMNIST result.

4.4 E�ectiveness of the CCL

In Table 2, we present an ablation study comparing our

proposed method with the use of clustering alone. The study

evaluates the performance of both approaches on the Mnist

and USPS datasets. The results demonstrate that integrating

the CCL with clustering, using only 3% of labeled data,

significantly improves model performance. The CCL operates by

encouraging the model to learn discriminative representations

within clusters while simultaneously enforcing compactness

among cluster centroids. By incorporating this loss function

into our framework, we guide the clustering process to yield

clusters that not only capture inherent data structures but also

ensure inter-class separability. This results in more coherent

and well-separated clusters, facilitating better decision boundaries

and ultimately leading to improved classification accuracy.

Additionally, Figure 8 visually illustrates the difference between

using clustering alone and incorporating the CCL into the

clustering process.

4.5 Comparing with other methods

We conducted a comprehensive evaluation of our

proposed method across multiple datasets, including MNIST,

FashionMNIST, and USPS, as detailed in Tables 3–5. Our results

showcase significant performance improvements over baseline

methods, particularly evident in scenarios with limited labeled

data. When compared to state-of-the-art techniques such as

Core-Set Approach (Sener and Savarese, 2017), Variational

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1398844
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Roda and Geva 10.3389/frai.2024.1398844

FIGURE 8

On the left: t-SNE visualization after clustering. On the right: t-SNE visualization after applying CCL in conjunction with clustering.

TABLE 3 MNIST accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) Core-set (Sener and

Savarese, 2017) and our method with 1, 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Core-set Ours

1% 0.151 0.251 0.255 0.336 0.832

3% 0.600 0.701 0.735 0.805 0.910

5% 0.805 0.813 0.810 0.888 0.948

10% 0.935 0.945 0.917 0.928 0.983

TABLE 4 Fashion MNIST accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) Core-set (Sener

and Savarese, 2017) and our method with 1, 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Core-set Ours

1% 0.318 0.264 0.189 0.305 0.490

3% 0.468 0.360 0.520 0.627 0.671

5% 0.556 0.616 0.602 0.679 0.697

10% 0.637 0.703 0.673 0.729 0.758

TABLE 5 USPS accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) random sampling and our

method with 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Random sampling Ours

3% 0.770 0.821 0.836 0.797 0.865

5% 0.855 0.860 0.876 0.858 0.895

10% 0.909 0.896 0.926 0.894 0.933

Adversarial Active Learning (VAAL) (Sinha et al., 2019), and

Bayesian Active Learning by Disagreement (BALD) (Houlsby

et al., 2011), our approach consistently demonstrates competitive

performance. Figures 9–11 showing our method comparing to

the others (Notably, leveraging pre-trained) Notably, leveraging

pre-trained clustering models contributes to achieving relatively

high accuracy, particularly in scenarios with a scarcity of

labeled samples.

4.6 Experiment analysis

To comprehensively validate the efficacy of our approach, we

conducted an in-depth analysis of clustering quality throughout

the training process. We monitored the evolution of clustering

performance and visualized the t-SNE projections of learned

latent space representations, as depicted in Figures 6, 7, 12. These

visualizations offer insights into the structure of the learned
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FIGURE 9

Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the MNIST dataset.

FIGURE 10

Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the FashionMNIST dataset.

representations, revealing distinct clusters corresponding to each

class. The observed trends in clustering align well with the

accuracy improvements reported in Tables 3–5, corroborating the

effectiveness of our method.

In addition to accuracy comparisons, it’s imperative to

delve deeper into the performance metrics of our approach

compared to baseline methods. For instance, on the MNIST

dataset, our method achieves an accuracy of 91% with only 3%

labeled data, outperforming the Core-Set Approach, which attains

80.5% accuracy. This notable performance gain underscores the

superiority of our method in leveraging limited labeled data

effectively.

5 Discussion

The integration of convolutional autoencoders, clustering, and

a novel clustering contrastive loss in our semi-supervised active

learning approach presents a unique and promising strategy for

leveraging both labeled and unlabeled data in image classification

tasks. By combining clustering with active learning, our method

offers a distinctive approach that distinguishes it from previous

methodologies.

A significant strength of our approach lies in its ability

to extract valuable insights from unlabeled data by organizing

it into clusters, thereby guiding the query selection process in
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FIGURE 11

Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the USPS dataset.

FIGURE 12

TSNE visualization of the clustered USPS latent space after convergence of our method with 10% of annotated samples.

active learning. However, the effectiveness of our method may

depend on the quality of clustering initialization, which could

potentially limit performance, particularly in scenarios involving

complex, high-dimensional data. Exploring the applicability of

our approach beyond image classification domains warrants

further investigation.
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Despite these potential limitations, our research represents

a notable advancement in the realm of semi-supervised active

learning. By integrating deep clustering, active learning, and

contrastive learning principles, we address challenges associated

with data scarcity, thereby enhancing model performance in

resource-constrained settings. Moving forward, future research

endeavors could explore the development of more robust clustering

techniques, alternative representation learning methods, and

synergistic combinations with other active learning strategies to

further enhance performance and generalization capabilities.

Theoretically, the clustered representations derived by our

approach hold promise for facilitating various downstream

tasks, including data augmentation, domain adaptation, and

the incorporation of weak or noisy labels. Such capabilities

could prove invaluable in addressing the challenges posed

by limited annotation scenarios. While our work contributes

to the field, it also underscores the inherent challenges and

opportunities associated with semi-supervised learning in real-

world applications, paving the way for continued advancements

and innovation in this domain.

It is essential to acknowledge the use of a smaller

model architecture in our experiments. The complexity

introduced by clustering necessitated the use of a smaller

model to maintain tractability and computational efficiency.

While this choice may have influenced our absolute

performance metrics, it enabled us to explore the feasibility

and efficacy of our approach within practical constraints.

It is plausible that in subsequent studies, researchers

may employ larger, more complex models to further

improve performance.

6 Conclusions and future work

In this study, we have introduced a novel approach to image

classification through a pool-based semi-supervised active learning

technique. By integrating deep clustering and deep active learning,

we aim to enhance classification accuracy by using fewer labeled

images. Our method involves clustering feature vectors in the

latent space that corresponds to images from Pl and Pu, thereby

obtaining a more informative representation of the latent space to

support the active learning procedure. We have also incorporated

a clustering contrastive loss to enhance the clustering of the latent

space even with a limited number of labeled images. Cases where

feature vectors in the latent space are not well grouped together

or are far from their respective cluster centers are recognized

as hard examples and are then queried for annotation by a

human oracle.

Our empirical experiments demonstrated that our method

achieves high classification accuracy even with a small number

of annotations. The iterative combination of clustering with the

suggested contrastive learning and query method leads to a more

separated latent space, which in turn facilitates the classification

process. Thanks to the clustering step, our method achieves high

accuracy from the beginning. However, the clustering step may

have a drawback for complicated datasets, as it can be challenging

to cluster them effectively.We believe that future work can improve

the clustering process to provide better clustering initialization even

for complex datasets.

We used a convolutional autoencoder (CAE) to map samples

to the latent space, but future work could explore more robust

methods like a variational autoencoder that creates smoother

and more connected latent spaces, which will help to improve

clustering. Furthermore, our method is currently designed for

image classification tasks, but it could be extended to other

computer vision tasks such as semantic segmentation and object

detection by inserting a suitable network head to the model for the

requested task.
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