
TYPE Original Research

PUBLISHED 22 January 2025

DOI 10.3389/frai.2024.1403187

OPEN ACCESS

EDITED BY

Yiqiang Chen,

Chinese Academy of Sciences (CAS), China

REVIEWED BY

Yingwei Zhang,

Chinese Academy of Sciences (CAS), China

Vivek Parmar,

Indian Institute of Technology Delhi, India

*CORRESPONDENCE

Mohsen Imani

m.imani@uci.edu

†These authors have contributed equally to

this work and share first authorship

RECEIVED 19 March 2024

ACCEPTED 31 December 2024

PUBLISHED 22 January 2025

CITATION

Rezvani A, Huang W, Chen H, Ni Y and

Imani M (2025) Self-trainable and adaptive

sensor intelligence for selective data

generation. Front. Artif. Intell. 7:1403187.

doi: 10.3389/frai.2024.1403187

COPYRIGHT

© 2025 Rezvani, Huang, Chen, Ni and Imani.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Self-trainable and adaptive
sensor intelligence for selective
data generation

Arghavan Rezvani†, Wenjun Huang†, Hanning Chen, Yang Ni and

Mohsen Imani*

Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, CA,

United States

With the increasing integration of machine learning into IoT devices, managing

energy consumption and data transmission has become a critical challenge.

Many IoT applications depend on complex computations performed on server-

side infrastructure, necessitating e�cient methods to reduce unnecessary data

transmission. One promising solution involves deploying compact machine

learningmodels near sensors, enabling intelligent identification and transmission

of only relevant data frames. However, existing near-sensor models lack

adaptability, as they require extensive pre-training and are often rigidly

configured prior to deployment. This paper proposes a novel framework that

fuses online learning, active learning, and knowledge distillation to enable

adaptive, resource-e�cient near-sensor intelligence. Our approach allows near-

sensor models to dynamically fine-tune their parameters post-deployment

using online learning, eliminating the need for extensive pre-labeling and

training. Through a sequential training and execution process, the framework

achieves continuous adaptability without prior knowledge of the deployment

environment. To enhance performance while preserving model e�ciency, we

integrate knowledge distillation, enabling the transfer of critical insights from a

larger teacher model to a compact student model. Additionally, active learning

reduces the required training data while maintaining competitive performance.

We validated our framework on both benchmark data from the MS COCO

dataset and in a simulated IoT environment. The results demonstrate significant

improvements in energy e�ciency and data transmission optimization,

highlighting the practical applicability of our method in real-world IoT scenarios.

KEYWORDS

active learning, intelligent sensing, Internet of Things, knowledge distillation, machine

learning, near-sensor computing

1 Introduction

Over the past few years, the Internet of Things (IoT) has garnered substantial research

interest. The commonly recognized definition of the IoT characterizes it as a network

infrastructure that enables the connection of various objects to the Internet using specified

protocols (Patel et al., 2016). This connectivity allows for information sensing equipment

to facilitate the exchange and communication of data, enabling smart recognition (Bianchi

et al., 2019), positioning (Ghazal et al., 2021), monitoring (Huang et al., 2021), and

administration capabilities (Kim et al., 2017). According to a recent forecast by the

International Data Corporation, the estimated number of IoT devices will reach 55.7

billion by 2025. Meanwhile, these devices are expected to generate ∼80 zettabytes of data.

This exponential growth in devices and data poses significant challenges for real-time

processing and analysis in IoT ecosystems. To handle this deluge of data, many IoT

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1403187
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1403187&domain=pdf&date_stamp=2025-01-22
mailto:m.imani@uci.edu
https://doi.org/10.3389/frai.2024.1403187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1403187/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

applications rely on complex machine learning (ML) models

to analyze sensor-collected data (Afshan and Rout, 2021;

Mahdavinejad et al., 2018; Yang and Shami, 2022; Ha et al., 2020;

Sharma et al., 2022; Huang et al., 2024a).

However, despite ML models empowering sensing frameworks

with the capability to execute complex tasks [e.g., classification

(Lin et al., 2020), segmentation (Wan et al., 2022), pose estimation

(Huang et al., 2024b)], they face significant challenges during

actual deployment in real-world IoT environments. Due to

the constrained computational capabilities of the edge devices,

deployed ML models experience difficulties concerning energy

consumption, inference speed, and accuracy (Li and Príncipe,

2021). These are especially problematic for applications that

require a relatively complex and expensive ML model. A common

approach to address this limitation is to offload computationally

expensive tasks to more powerful central servers (Huang et al.,

2019). Nevertheless, naive offloading the tasks to a central server

results in considerable extra resource pressure and wastage since

it lacks targeted intelligence (Tsakanikas et al., 2023). In many

IoT applications [e.g., fire alarm, crime surveillance (Yogameena

et al., 2019), wildlife monitoring], only a small fraction of data

generated by sensors contains useful information. Therefore,

continuously running computationally expensive ML models on

dense, redundant data is both resource-intensive and inefficient.

It leads to a continuous process using complex ML models on

dense data, while only a small fraction of frames carry out useful

information. In fact, the ML model only targets that small fraction

of data, but it still has to process large amounts of unnecessary data.

To mitigate these inefficiencies, researchers have proposed several

alternative approaches. One method involves compressing sensor

data before transmission (Redondi et al., 2013). While compression

can reduce energy and storage consumption, it often introduces

trade-offs. Mild compression may still accumulate substantial

data over time, whereas aggressive compression can degrade

data quality, adversely impacting downstream analyses (Bagdanov

et al., 2011; Tsifouti et al., 2012). Another approach involves

transmitting extracted features from the raw data (Redondi et al.,

2013), utilizing feature extraction techniques such as SIFT (Lowe,

2004), SURF (Bay et al., 2006), or BRISK (Leutenegger et al.,

2011). However, these methods often lack generalization, as the

extracted features are highly task-specific, limiting their versatility

for broader analytical purposes.

Intelligent sensing frameworks, such as the one proposed in

Huang et al. (2024c), provide a promising solution to address

energy consumption challenges in IoT systems. By selectively

transmitting only sparse and relevant data—referred to as

Frames of Interest (FoI)—these frameworks significantly reduce

unnecessary data transmission while maintaining the quality of

transmitted frames. This is achieved through a lightweight ML

model deployed near the sensor, which identifies FoI for further

processing by amore powerful central server. Inspired by biological

sensors that generate data volumes orders of magnitude smaller

than the raw sensed input (Dodda et al., 2022), intelligent sensing

offers a practical means to reduce resource consumption in

IoT applications. However, the seamless integration of intelligent

sensing into conventional sensing frameworks remains challenging.

Current intelligent sensing frameworks rely on pre-trained

lightweight models near the sensor, which lack adaptability

and generalizability compared to more complex central models.

Consequently, their inference performance is heavily influenced by

variations in input data distributions, limiting their effectiveness in

dynamic real-world environments.

In this study, we propose a novel approach to overcome

these limitations by incorporating online learning into near-

sensor models. Unlike existing methods, our approach enables

intelligence to be integrated into conventional sensing systems

without requiring costly manual labeling or pre-training. By

leveraging online learning, the near-sensor model can adapt

dynamically to environmental variations and fine-tune itself based

on the predictions of a more complex central model. This results

in the development of an adaptive intelligent sensing framework

that is both flexible and responsive to changes in data distributions.

To further enhance efficiency, we integrate the following key

techniques into the framework: (1) Active Learning (AL): reduces

energy consumption and storage requirements by selectively

identifying the most informative data points for training the near-

sensor model. (2) Knowledge Distillation (KD): compresses the

near-sensor model using the knowledge from the central model,

significantly reducing its size and computational complexity while

maintaining performance.

By combining these components, our framework introduces

a novel, energy-efficient, and self-adaptive intelligent sensing

approach that enables near-sensor models to continuously learn

and optimize their performance post-deployment.

The key contributions of this work are as follows:

• Unsupervised near-sensor training: we demonstrate that

the near-sensor model can be trained without any manual

labeling, leveraging predictions from the central model and

environmental data collected post-deployment.

• Continuous adaptation: the system is designed to

automatically learn and adjust to dynamic environmental

changes, enabling long-term adaptability in real-world IoT

scenarios.

• Zero pre-training: the intelligent sensing framework operates

without initial pre-training of the near-sensormodel, reducing

setup costs and improving flexibility.

• Model compression via KD: knowledge distillation effectively

compresses the edge model, reducing its resource demands

while maintaining high accuracy.

• Energy-efficient training: we develop strategies for training the

near-sensor model under strict energy and data constraints,

addressing practical limitations in IoT environments.

The proposed framework is a comprehensive solution for

achieving energy-efficient, adaptable, and intelligent sensing in IoT

systems. The subsequent sections provide a detailed exploration of

each component and its integration within the framework.

2 Related works

2.1 Intelligent sensing

Previous work in Huang et al. (2024c) presents the idea

of intelligent selective data transmission in sensing frameworks,

which we refer to as intelligent sensing for short, and forms

the core foundation of our current work. This intelligent sensing

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

framework involves the deployment of a lightweight machine

learning model near the sensor. The near-sensor model is designed

for the detection of FoIs. The authors utilized the YOLOv5 model

family as their near-sensor model, which is a well-known object

detection model. This model is capable of detecting objects of

interest at any scale and in any location inside the frame. The

YOLOv5 model computes objectness scores for each frame and

transmits frames that surpass a predefined threshold, ensuring that

only frames containing the object of interest are transmitted.

Since the YOLOv5 model is deployed near the sensor, it needs

to be as lightweight as possible. To address this requirement,

the authors proposed reducing both the width and depth of the

YOLOv5n (nano), which is the smallest variant of the YOLOv5

model. As a result, they were able to create two additional models:

YOLOv5nm with half the depth and width of YOLOv5n, and

YOLOv5ns with one-third of the depth and width of YOLOv5n.

In addition, they introduced a customized loss function, which

places a stronger emphasis on the objectness score rather than

precise bounding box prediction. This adjustment was made to

facilitate faster convergence and enhance performance compared

to the original loss function in this particular context.

The near-sensor model is subsequently employed to toggle a

switch on and off based on its detections. When the near-sensor

model detects an FoI, the sensor transmits the captured frames at

full resolution and at the camera’s refresh rate. However, when no

FoI is detected, the transmission frequency is reduced to zero. To

mitigate potential misdetections and information loss at the server,

the authors propose the adoption of a predetermined non-zero

minimum transmission frequency for non-FoIs. Their experiments

validate the enhanced performance resulting from this approach.

Figure 1A represents how an intelligent sensor utilizing a non-zero

minimum transmission frequency exploits the near-sensor model’s

confidence to set the transmission frequency. Additionally, they

introduce a “lazy sensor deactivation” scheme, which leverages

the temporal correlation among frames, gradually reducing the

transmission frequency to alleviate potential misdetections.

2.2 Knowledge distillation

Knowledge distillation (KD) is a method to transfer knowledge

from a larger network or ensemble of networks (teacher model) to

a smaller and less complex model (student model) (Hinton et al.,

2015). It can be considered as a way to compress a larger model into

a smaller one, making it more efficient and less resource-hungry,

which is most effective for deploying models on edge devices (Gou

et al., 2021). The intuition behind KD is that supervising the student

model with the teacher model helps the student model to mimic the

teacher model with comparable accuracy. The distilled knowledge

from the teachermodel also reveals some underlying patterns in the

data, making it easier to learn by a smaller model. The very first idea

of knowledge distillation is presented in Buciluǎ et al. (2006), where

the student model utilizes the predictions of the teacher model on

a large set of pseudo data (unlabeled or synthetic data with the

same distribution as the original training data) to get an idea of

the function learned by the teacher model. The idea is generalized

in Hinton et al. (2015) by formalizing knowledge distillation as a

method to supervise a small student by a large teacher model to

obtain a competitive performance.

3 Method

Our proposed framework builds upon the previously

introduced intelligent sensing framework (Huang et al., 2024c),

enhancing its adaptability and efficiency through the integration

of online learning, active learning, and knowledge distillation.

In Huang et al. (2024c), the near-sensor model is tasked with

identifying FoI. While this is conceptually similar to a classification

task, object detection is more suitable for practical sensing

scenarios, as objects of interest may vary in scale and location

within the frame. Furthermore, identifying the location of objects

in the frame can facilitate downstream tasks on the server

side, improving overall processing efficiency. To address these

requirements, we utilize a customized YOLOv5 model as the

near-sensor model. YOLOv5’s balance of computational efficiency

and high detection accuracy makes it well-suited for resource-

constrained IoT environments. The integration of YOLOv5

enables the near-sensor model to not only identify relevant frames

but also extract detailed spatial information about objects of

interest, further optimizing the efficiency of data transmission

and server-side analysis. Figure 1B illustrates how the general

intelligent sensing framework is enhanced by incorporating these

intelligent and adaptive features.

The following sections detail the key methodologies employed

in the adaptive intelligent sensing framework: online learning for

near-sensor model adaptability, knowledge distillation for model

efficiency, and active learning for resource-constrained training

data selection.

3.1 Online learning

To empower intelligence in a sensing framework, a lightweight

model is deployed near the sensor to detect Frames of Interest (FoI).

Only the FoI are transmitted to the server for further analysis.

Traditionally, the near-sensor model must be pre-trained on a

labeled dataset, which imposes significant costs for data labeling,

especially in conventional sensing frameworks. This requirement

creates a barrier to seamlessly upgrading existing sensing systems

into intelligent ones.

Our adaptive intelligent sensing framework addresses this

limitation by leveraging online learning to train the near-sensor

model post-deployment. In this framework, the near-sensor model

can be deployed without pre-training and incrementally trained

using the predictions of a complex server-side ML model. These

predictions serve as pseudo-ground-truth labels for the near-

sensor model. This approach offers two major benefits: (1)

Eliminates manual labeling costs: since the complex server-

side model generates pseudo-labels, there is no need for costly

manual annotation. (2) Optimized near-sensor accuracy: the near-

sensor model aims to replicate the server-side model’s predictions,

ensuring consistency between their outputs. While the near-sensor

model may not surpass the accuracy of the server-side model,

this is by design: the near-sensor model functions primarily as

a filter, and the server-side model ultimately determines the

final output.

Even if the near-sensor model detects an FoI that the

server cannot process, the server disregards it, ensuring that

the system’s overall accuracy is not compromised. Consequently,

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

FIGURE 1

Sensing frameworks. (A) Intelligent sensing framework exploits the confidence of the near-sensor model to detect FoIs and tune its transmission

frequency. (B) Comparison of conventional sensing (1), intelligent sensing (2), and the adaptive intelligent sensing (3) frameworks. The conventional

sensing framework transmits all the frames captured by the sensor, while the intelligent sensing framework utilizes a pretrained lightweight model

near the sensor to only transmit frames containing valuable information. The general intelligent sensing framework does not require the pretrained

model from the beginning, but it enables the training of the lightweight model only based on the predictions of the server-side model. (C) The

adaptive intelligent sensing framework exploits a training phase and multiple execution phases. In the training phase, all the frames are transmitted to

the server. In the execution phase, the near-sensor model is exploited to extract and transmit the positive frames. From these transmissions of the

execution phase, the misdetections are stored on the server. After each phase, the near-sensor model will be updated based on the stored frames.

It’s worth mentioning that in this figure, FoI and background frames correspond to the positive and negative detections of the server-side model. The

highlighted frames (frames 14, 16, and 29) in the execution phases are the transmitted frame in which the YOLO and server-side model do not agree

on the labels, thus considered as misdetections, and are added to the near-sensor model’s training set.

using server-side predictions as ground truth is both effective and

efficient for training the near-sensor model. Figure 1C illustrates

the adaptive intelligent sensing framework. In this framework, FoI

and background frames are defined based on the predictions of the

complex server-side model. The framework operates in two distinct

phases:

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

1. Training phase: in this phase, the system functions like a

conventional sensing framework, transmitting all captured

frames to the server. On the server side, all frames and

their corresponding predictions from the complex model

are stored. The stored data is used to train or retrain the

near-sensor model. To minimize energy consumption on

edge devices, training occurs server-side. Once training is

complete, the updated model weights are transmitted back to

the sensor.

2. Execution phase: during this phase, the sensing framework

transmits frames based on the predictions of the near-sensor

model. Misdetections (discrepancies between the predictions of

the near-sensor model and the complex model) are inevitable.

These misdetections are stored on the server for retraining the

near-sensor model. At the end of the execution phase, the near-

sensor model is retrained using a dataset comprising all frames

collected during previous training phases and misdetections

from prior execution phases.

The system alternates between training and execution phases,

adapting dynamically to environmental changes. This iterative

process ensures that the near-sensor model continuously learns and

improves while adhering to energy constraints.

3.2 Data selection via active learning

The consecutive training and execution phases in our

framework require storage and computational resources. However,

in scenarios where resource limitations exist—such as constrained

storage, energy, or time—retaining all sensor-collected data

for retraining the near-sensor model is infeasible. To address

these challenges, we introduce a data selection mechanism

based on AL. The goal is to store only a subset of data

that preserves the model’s performance while adhering to

resource constraints.

AL reduces the need for labeled data by focusing on the most

informative or uncertain samples (Settles, 2009). In our framework,

we define a buffer with a fixed capacity, representing the maximum

number of frames that can be stored on the server for training. At

the end of each phase, the buffer is refined to ensure it contains

the most valuable data for retraining. The refinement process

differs depending on whether the phase is a Training phase or an

Execution phase, as described below.

3.2.1 Training phase
For refining the buffer at the end of a training phase, where

we have transmitted all the sensor-collected data to the server,

first, half of the capacity of the buffer is dedicated to previous

samples; meaning that, we chose at random half of the frames

stored in the buffer from the previous phases and discarded them.

The rest of the buffer is filled with uncertain samples from the

sensor-transmissions of this phase. To this end, we follow these

steps:

1. Feed all the sensor-transmitted data to the trained near-sensor

model.

2. For each frame, there will be many bounding box predictions

with their corresponding model confidence. Keep the maximum

confidence for each frame.

3. Sort the maximum confidence values from the previous step.

4. Define a threshold of objectness, meaning that, if the maximum

confidence of an image is below that threshold, we consider no

objects in that image. We define such a threshold in order to

keep the most informative data from our training phase.

5. Remove frames with the maximum confidence below the

defined threshold.

6. Keep the frames corresponding to the least confidence values

until the buffer is filled.

This combination is beneficial for model training; the first

half of the previous samples chosen at random can be beneficial

for the model to remember the general pattern of the data. The

reason is that only relying on the uncertain samples may mislead

the model. Moreover, relying only on the learned samples disables

the opportunity to improve model performance on the recently

captured data. Therefore a combination of both would bring best

of both worlds for near-sensor model training. Figure 2A visualizes

the buffer design during the training phase.

3.2.2 Execution phase
In the execution phase, only a small fraction of the sensor-

captured data is transmitted to the server due to the filtering effect

of the near-sensor model. At the end of the phase, the buffer is

refined by focusing exclusively on misdetections (cases where the

near-sensor model’s predictions differ from the server-side model).

These misdetections are critical for retraining, as they highlight

areas where the near-sensor model needs improvement. The steps

for refining the buffer during the execution phase are as follows:

1. Use the trained near-sensor model to evaluate frames stored in

the training buffer.

2. Compare the near-sensor model’s predictions with those of the

server-side model: We retain only misdetections (frames where

the two models disagree). And we discard frames with high

confidence predictions, as these are considered less informative

for retraining.

3. Replace the most certain samples in the buffer with newly

identified misdetections.

This approach ensures that the buffer focuses on samples that

are most likely to improve the near-sensor model’s performance.

Since the near-sensor model’s accuracy improves with each phase,

the number of misdetections is expected to decrease over time.

Removing the most certain samples from the buffer is unlikely

to impact training negatively, as these samples contribute less to

refining themodel. Figure 2B visualizes the buffer design during the

execution phase.

3.3 Near-sensor model compression using
knowledge distillation

To enhance the efficiency of the near-sensor model in this

study, we employ KD by transferring knowledge from a trained

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

FIGURE 2

Utilizing active learning empowers our model to overcome resource constraints. The training bu�er in this case has a limited capacity, and at the end

of each phase must be refined in order to keep the most useful information in the bu�er for training. (A) At the end of each training phase, half of the

bu�er is dedicated to previous samples, and we remove at random half of the samples in the bu�er. Then we get the near-sensor model prediction

on the sensor-transmitted frames, remove those with confidence value below the objections threshold, and fill the rest of the bu�er with the most

uncertain samples. (B) In the Execution phase, the sensor transmitted data contains misdetections and also correctly detected samples, which we

only need to keep the misdetections, therefore we sort all the previous training bu�er samples based on their confidence values, and then remove

the most certain ones to let the misdetections be added to the training bu�er.

near-sensor model to a compact one. Both models belong to the

YOLO family. Typically, in object detection models, the imbalance

between foreground and background instances, coupled with

the simultaneous requirements for localization and classification,

hinders the effectiveness of KD methods originally designed for

classification tasks. Moreover, object detection models prioritize

local regions that overlap with ground truth objects. Consequently,

minimizing the discrepancy between the full feature maps of the

teacher and student models introduces substantial noise from

regions that are less relevant.

Taking into account these considerations, we applied the KD

method introduced in Wang et al. (2019) to train the student

YOLO model. This involved utilizing ground truth labels (in

our study, derived from the output of the complex model on

the server) and imitating the teacher’s feature response on close

object anchor locations. This approach is particularly valuable in

situations where there are strict constraints on the near-sensor

model. By training a compact model using knowledge from a

larger one, we can achieve improved performance compared to

training the smaller model independently, without assistance from

the larger model. To enhance the performance, we adopted the

approach suggested in Huang et al. (2024c) to adjust the student

model’s loss function. Specifically, we modified it to consider only

the objectness score, excluding the bounding box terms. Despite the

teacher model not being trained with this modified loss function,

applying it to the student model has been shown to significantly

improve its performance. This approach effectively reduces the size

of the near-sensor model while preserving its performance at a

comparable level.

4 Results

4.1 Experimental setup

In this study, our system underwent training and evaluation

in the context of animal detection, utilizing the widely adopted

Microsoft Common Objects in Context (MS COCO) dataset (Lin

et al., 2014) for object detection tasks. Within this context, we

carefully selected and re-labeled images from the dataset. Images

featuring at least one object categorized as an animal were identified

as FOI and labeled as 1, while the remaining frames were designated

as background and labeled as 0. To align with the scenario, we

organized the data in the test set with a specific logic: FOIs

and background frames were presented in a fragmented manner,

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

FIGURE 3

Online learning results. (A) Illustrates the training process of a near-sensor model, starting with 2% of the COCO training set for the initial training

phase, followed by ten execution phases. (B) Each curve represents a near-sensor model upon completing the first training phase, during which a

specific percentage of the COCO dataset was utilized, as indicated on the plot. As anticipated, there’s a direct correlation between the volume of

data utilized in the first training phase and the resultant AUC: the greater the data portion, the higher AUC achieved. (C) The same models from (B)

were subjected to two execution phases using the remaining data, ultimately converging to identical performance levels.

appearing consecutively and alternating with each other. The

frames within these fragments were then randomly ordered.

The near-sensor lightweight model was designed to detect and

transmit FOIs while effectively filtering out background frames.

These detected frames were subsequently transmitted to a server for

fine-grained tasks. In all experiments, we used YOLOv5n (Nano)

with 32-bit floating-point precision, unless stated otherwise. The

entire system was implemented using PyTorch (Paszke et al., 2019).

4.2 Online learning

The essence of an adaptive intelligent sensing framework is its

ability to enhance the near-sensor model progressively by training

it with increasing segments of data over several phases, with each

phase’s model deployed near the sensor.

To validate the effectiveness of this strategy in gradually

improving the near-sensor model, we initially set up two

experiments, outlined as follows. The results of these experiments

are illustrated in Figure 3.

In Figure 3A, we start with the assumption that the initial

training phase used only 2% of the entire COCO training set,

followed by 10 execution phases. The goal for the general intelligent

sensing framework is to begin with a model that’s slightly better

than random, trained in this first phase and deployed near the

sensor. By incorporating the misdetections of this initial model

into subsequent execution phases, we aim to systematically enhance

its accuracy. This iterative process of using the improved model

for the next phase leads to steadily increasing AUC values, as

shown in Figure 3A. By phase 6, the performance of our near-

sensor model almost reaches that of a model trained on the full

COCO dataset, despite only using data from the initial training

phase and misdetections from subsequent phases. This finding

highlights the feasibility of progressively refining the near-sensor

model throughout the phases, leveraging the improved model from

each previous phase for further enhancements. In real-world sensor

deployments, the operational lifespan of the sensor far exceeds

the time required for its training. However, our method of online

learning ensures the model rapidly adapts to the environment in

the early phases of deployment.

From Figure 3B, it becomes evident that initiating the first

training phase with varying percentages of the dataset impacts the

initial performance of the near-sensor model. Yet, after the model

trains on sufficient data (in this case, the whole COCO dataset,

presented as two Execution phases), its performance converges to

a similar level regardless of the initial starting point, as depicted in

Figure 3C. This observation allows deployers to make an informed

decision: opting for a more substantial portion of data in the initial

phase accelerates the sensor’s intelligent capabilities activation but

demands increased storage space, as all the training phase data are

retained on the server.

In the third experiment, we aimed to explore how well our

method could adapt to changes in the data distribution over

time, a challenge frequently observed in real-world sensing tasks.

Therefore we designed the experiment as follows. Initially, we

divided the animal categories in the COCO dataset into two distinct

groups. Subsequently, we partitioned the training dataset into two

segments, ensuring that the positive samples in the second segment

exclusively comprised animals from group 2. This experiment

differs from the prior ones due to a shift in the environment, which

we modeled by grouping animals, while previously the distribution

was consistent across diiferent phases.

We compared the performance of two intelligent sensing

frameworks, one with online learning and one without, in a

test scenario sequentially featuring animals from two groups.

Initially, sensor activity involved only Group 1 animals, followed

by the introduction of Group 2 animals. Figure 4A illustrates

the comparative performance of these two frameworks in a test

setting. The IS/WO (Intelligent Sensing Without Online Learning)

framework, only trained on Group 1 animals and lacking an

automatic update mechanism, fails to adapt when Group 2 animals

are introduced. This results in poor detection of FOIs, leading to

their omission on the server side.

On the other hand, the adaptive intelligent sensing framework,

designed to accommodate environmental changes through regular

retraining, demonstrates robust adaptability. This capability

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

FIGURE 4

The impact of online learning on the performance of near-sensor model experiencing a shift in data distribution. (A) The first model (depicted in red)

is only trained on the animals belonging to group 1, but after the change of the environment, the second model (depicted in blue) underwent a

training phase to deal with the change of the environment. The plot here shows the confidence of both models in the test environment, where both

groups 1 and 2 are present. (B) Comparison of ROC curves for two models: the Intelligent Sensing Framework (red) and the Adaptive Intelligent

Sensing Framework (blue) across all test data. (C) Comparison of ROC curves for the same models: Intelligent Sensing Framework (red) and Adaptive

Intelligent Sensing Framework (blue), specifically for test data featuring only animals from Group 2.

ensures sustained performance levels, enabling accurate FOI

detection despite the data distribution shift. This distinction

highlights the critical importance of online learning in dynamic

sensing environments, where the ability to adapt to new

information can significantly enhance detection accuracy and

reliability of sensing framework.

To quantify the outcomes, ROC curves for both models

across the entire test set, which includes animals from both

Group 1 and Group 2, are presented in Figure 4B. Furthermore,

Figure 4C specifically illustrates how these models perform on the

portion of the test set excluding Group 1 animals, reflectiung the

environmental changes.

It’s important to highlight that certain general features are

common across animals in both groups. For example, most animals

in the COCOdataset possess four legs. Consequently, the intelligent

sensing framework without online learning might still identify

some Group 2 animals based on this generalized feature. However,

in real-world scenarios, these broad characteristics may be more

challenging for the model to utilize, potentially leading to even

lower performance following an environmental shift.

4.3 Knowledge distillation

In order to show the effectiveness of KD, we introduced a

few models, namely yolov5nm (medium, with 24.5% of yolov5n

parameter) and yolov5ns (small, with 6.2% of yolov5n parameter),

which share the same architecture as yolov5n but vary in the

network’s depth and the number of filters in different layers

(width). The experiment is performed by distilling the knowledge

from the largest model (yolov5n) to each of the smaller ones. As

illustrated in Figures 5A, B, yolov5nm and yolov5ns trained using

distillation from yolov5n, outperform the conventional yolov5nm

or yolov5ns, indicating the effectiveness of knowledge distillation to

attain a better performance while the size of the near-sensor model

is constrained.

Figure 5C demonstrates the benefits of employing the modified

loss function, as outlined in the methods section, for training the

student model. The orange curve, representing the student model

trained with this modified loss function, shows notably superior

performance in comparison to the green curve, which depicts the

student model trained using the traditional loss function.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

FIGURE 5

Results of knowledge distillation. (A) Distilling knowledge from YOLOv5n (teacher) to YOLOv5nm (student). (B) Distilling knowledge from YOLOv5n

(teacher) to YOLOv5ns (student). (C) Distilling knowledge from YOLOv5n (teacher) to YOLOv5ns with modified loss (student) and comparing with the

student model with original loss. (D) Comparison of the e�ect of loss function on the performance of student model. (E) Comparison of the

performance of teacher and di�erent student models.

TABLE 1 AUC of the student model YOLOv5ns with di�erent quantization

levels, trained on the modified loss.

Performance

Quantization fp32 fp16 int8 int5 int4

AUC 0.94 0.94 0.94 0.92 0.89

The terms fp32, fp16, int8, int5, and int4 refer to 32-bit floating point, 16-bit floating point,

8-bit integer, 5-bit integer, and 4-bit integer, respectively.

Moreover, to confirm that the observed enhancement is

attributed to both KD and loss modification, we conducted a

comparative analysis. This involved evaluating the performance

of the original YOLOv5ns model trained with the modified loss

against that of the student YOLOv5ns model trained with both KD

and the modified loss function. The results, presented in Figure 5D,

validate that the KD-trained model exhibits notable performance

gains. Figure 5E provides a comparative analysis of the AUC values

for all models trained with KD and modified loss function.

We also investigated the influence of quantization on the

model performance. The student model YOLOv5ns trained on the

modified loss is quantized into different bit precisions, i.e., 16-bit

float point (fp16), 8-bit integer (int8), 5-bit integer (int5), and 4-bit

integer (int4). The performance of both the fp16 and int8 quantized

models remains unaffected. However, as illustrated by Table 1,

when we further reduce bit precision to int5, a slight degradation

in AUC is observed (from 0.94 to 0.92), and a degradation in

performance is noticeable when the model is quantized to int4

(from 0.94 to 0.89).

4.4 Energy consumption and data selection

The intelligent sensing framework can lead to significant energy

and storage savings compared to traditional sensing frameworks,

thanks to its selective data transmission policy. If we define M

as the ratio of the number of background frames to FOIs, the

efficiency of the intelligent sensing approach becomes increasingly

apparent as M rises. This is because the intelligent sensor is

capable of filtering out many unnecessary processes on the server

side. Figure 6A illustrates these results. In this figure, while

the count of FOIs remains constant, altering the number of

background frames modifies the M ratio. As M grows, energy

consumption generally climbs due to the higher total number

of frames needing processing. However, the intelligent sensing

framework demonstrates a significantly smaller increase in energy

use compared to conventional sensing frameworks.

In the framework we propose, the most influential training

occurs primarily during the first training phase and initial execution

phases. After this period, in the absence of environmental changes,

our system’s energy consumption is similar to that of a typical

intelligent sensor. However, our framework does require occasional

updates to the near-sensor model at the end of each training

or execution phase. The energy consumption and time needed

for these updates are crucial factors for us. The training time

and energy consumption of deep neural networks are profoundly

influenced by the volume of training data. It is in this context

that the value of our active learning-based data selection method

becomes particularly evident.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

FIGURE 6

(A) Comparison of energy consumption of conventional sensing framework and intelligent sensing framework across di�erent values of M

(background to FOI ratio). (B) The e�ect of utilizing active-learning-based data selection and fixed size training bu�er on training time and model

performance. (C) Comparison of total number of frames used for retraining the near-sensor model for two frameworks with and without AL. Only

the first phase is a training phase and the rest of the phases are execution phases. (D) Comparison of total number of frames used for retraining the

near-sensor model for two frameworks with and without AL. The first and third phases are training phases, while the second and forth phases are

execution phases. (E) Comparison of energy consumption for training one epoch with and without AL on two platforms [correspond to C] (F)

Comparison of energy consumption for training one epoch with and without AL on two platforms [correspond to D].

TABLE 2 Latency and power measurement of the near-sensor model across platforms.

Platform Orin Orin nano Nano TPU USB TPU Dev TPU Mini ZCU104 Kria 260

Host Cortex-A78AE Cortex-A57 Cortex-A72* Cortex-A53 Cortex-A35 Cortex-A53

Kernel GPU Edge TPU Coprocessor Xilinx DPU

Framework PyTorch TensorFlow Lite and PyCoral Vitis AI

Latency (ms) 30 34 140 7 4 23 56 50

Power (W) 22.9 7.3 3.9 5.02 3.47 0.92 8.9 7.6

The model adopted is YOLOv5n, and * marks utilizing R Pi as the host machine.

As the process progresses, retaining all samples from training

phases and misdetections from execution phases results in an

increasingly large dataset. Moreover, not all these samples provide

valuable information for updating the model. By employing our

active-learning-based approach for data selection, which targets

filling a training buffer of fixed size, we can significantly lower

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

energy consumption during training without compromising the

near-sensor model’s performance, as shown in Figure 6B. In our

experimental setup, we established a sequence of training and

execution phases applied to the entire COCO dataset, with the

buffer size determined by the proportion of the COCO dataset

utilized in the initial training phase. For instance, if 5% of

the COCO dataset was used for initial training, the buffer size

for subsequent phases was set to match the number of frames

representing 5% of the COCO dataset. While reducing the buffer

size and using fewer data points for training and updates may

lead to a minimal decrease in AUC, this impact is negligible.

Importantly, we observed that, to a certain degree, downsizing

the buffer does not detrimentally affect performance. In the

subsequent experiment, illustrated by Figures 6C, D, we evaluate

the total number of frames utilized for retraining the near-sensor

model within two configurations of the adaptive intelligent sensing

framework: one employing AL and the other not. Figure 6C shows

a setup where only the initial phase is dedicated to training, with

subsequent phases being execution phases, each introducing 10%

of the COCO training set to the system. Furthermore, Figure 6D

adopts an alternating training and execution phase pattern, with

each phase presenting 25% of the entire COCO dataset to the

framework. As the process advances through the phases, the

framework not incorporating AL accumulates significantly more

data frames in the training buffer, leading to a marked increase in

training time and energy consumption. This escalation is depicted

in Figures 6E, F, which show the energy consumption for a single

training epoch of the near-sensor model across both frameworks

on two distinct platforms (Nvidia RTX 4090 and Tesla T4). This

observation underscores the efficiency of our method for sensors

with limited resources, achieving substantial reductions in both

energy and time required to retrain the near-sensor model. Upon

examining Figure 6D and comparing the overhead between phases

2 and 3, it becomes evident that the active-learning-based data

selection method is particularly beneficial during a training phase.

This efficiency is realized by eliminating some of the samples

that the model has already learned well from the training buffer,

optimizing the training process.

The modern heterogeneous AI computing system incorporates

multiple levels of memory resources. For instance, GPUs have

fast SRAM and slow DRAM (or HBM), while FPGAs feature fast

on-chip BRAM and slower off-chip DRAM (Dao et al., 2022; Lu

et al., 2021). Due to the significant gap in memory access speeds,

optimizing training speed necessitates prioritizing access to fast

on-chip memory and minimizing communication with slow off-

chip memory (Chen et al., 2024). As depicted in Figures 6B, our

proposed active-learning method resulted in a reduction of over

80% in training data with<1%AUC loss. This reduction in training

data samples reduces access times to slow off-chip memory by over

80%, thereby decreasing the energy consumption of the training

process by ∼5 ×. We also deployed the model on various edge

devices. The measured inference speed and power consumption are

recorded in Table 2.We explored three distinct hardware platforms:

edge GPU, edge TPU, and edge FPGA. Specifically, for edge GPU,

we assessed the Nvidia Jetson Orin (Orin), Jetson Orin Nano (Orin

Nano), and JetsonNano (Nano). Regarding edge TPU, we evaluated

the Google TPU USB, TPU Dev Board (TPU Dev), and TPU Dev

Board Mini (TPU Mini), utilizing R Pi as the host machine for

TPU USB (marked * in Table 2). At the same time, the other

TPU development boards possess host CPUs. For edge FPGA,

our investigation included the Xilinx ZCU104 and Kria 260. The

model kernel for R Pi and Nvidia GPU was implemented using

PyTorch. For edge TPU, TensorFlow Lite and PyCoral API were

employed for quantization and deployment. As for Xilinx FPGA,

Vitis AI was utilized to map the model onto the Xilinx deep

processing unit (DPU). Considering the real-time constraint, we

believe edge TPU families show more advanced performance than

edge GPUs and FPGAs while consuming less power (<5W), which

is ideal for low-power settings. The model’s performance on the

NVIDIA Jetson series is constrained by PyTorch’s optimization for

embedded GPUs, in comparison to TPU. The FPGA DPU, on the

other hand, has a lower frequency (only 300MHz) and limited host-

kernel bandwidth when compared to TPU platforms (Lee et al.,

2023). To achieve better performance on FPGA, customized data

path IP and computing unit IP are necessary (Chen et al., 2023).

5 Conclusion

In this study, we have expanded the concept of intelligent

sensing by incorporating online learning into the near-sensor

model’s training process. Our innovative approach eliminates

the need for manual labeling across various tasks, allowing for

integration with existing sensing frameworks by leveraging server-

side model predictions for near-sensor model training. This

strategy significantly lowers energy consumption and obviates

the need for pre-training the near-sensor model prior to

its deployment.

Additionally, our method is adept at adapting to environmental

changes through the periodic re-training of the near-sensor model.

We achieve this by distinguishing between training and execution

phases: during training phases, the near-sensor model processes

all data without filtering, ensuring comprehensive training;

conversely, in execution phases, it acts as a filter, identifying and

discarding non-informative data.

To enhance the efficiency of our sensing framework further, we

have employed knowledge distillation. This technique streamlines

the near-sensor model, reducing its size while preserving its

effectiveness. Moreover, by applying active learning principles, we

have minimized the volume of training data required, thereby

optimizing the training process. This combination of strategies

enhances the practicality and sustainability of intelligent sensing,

making it a more viable option for a wide range of applications.

Future research will aim to explore the scalability of our

framework, the integration of more sophisticated machine learning

algorithms, and the extension of our approach to a wider range of

sensing applications.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author. The datasetMicrosoft COCO

object detection for this study can be found in Lin et al. (2014).

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

Author contributions

AR: Conceptualization, Investigation, Methodology, Software,

Validation, Visualization, Writing – original draft, Writing

– review & editing. WH: Conceptualization, Data curation,

Methodology, Investigation, Validation, Writing – original draft,

Writing – review & editing. HC: Methodology, Writing –

original draft. YN: Conceptualization, Methodology, Writing –

review & editing. MI: Conceptualization, Funding acquisition,

Project administration, Resources, Supervision, Writing – review

& editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

work was supported in part by the DARPA Young Faculty

Award, the National Science Foundation (NSF) under Grants

#2127780, #2319198, #2321840, #2312517, and #2235472, the

Semiconductor Research Corporation (SRC), the Office of Naval

Research through the Young Investigator Program Award, and

Grants #N00014-21-1-2225 and #N00014-22-1-2067, and Army

Research Office Grant #W911NF2410360. Additionally, support

was provided by the Air Force Office of Scientific Research under

Award #FA9550-22-1-0253, along with generous gifts from Xilinx

and Cisco.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Afshan, N., and Rout, R. K. (2021). “Machine learning techniques for Iot data
analytics,” in Big Data Analytics for Internet of Things, eds. T. J. Saleem, and M. A.
Chishti (Hoboken, NJ: JohnWiley and Sons), 89–113. doi: 10.1002/9781119740780.ch3

Bagdanov, A. D., Bertini, M., Del Bimbo, A., and Seidenari, L. (2011).
“Adaptive video compression for video surveillance applications,” in 2011 IEEE
International Symposium on Multimedia (Dana Point, CA: IEEE), 190–197.
doi: 10.1109/ISM.2011.38

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). “Surf: speeded up robust
features,” in Computer Vision-ECCV 2006: 9th European Conference on Computer
Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9 (Cham: Springer), 404–417.
doi: 10.1007/11744023_32

Bianchi, V., Bassoli, M., Lombardo, G., Fornacciari, P., Mordonini, M., and De
Munari, I. (2019). Iot wearable sensor and deep learning: an integrated approach for
personalized human activity recognition in a smart home environment. IEEE Internet
Things J. 6, 8553–8562. doi: 10.1109/JIOT.2019.2920283

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). “Model compression,” in
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining (New York, NY: ACM), 535–541. doi: 10.1145/1150402.1150464

Chen, H., Ni, Y., Zakeri, A., Zou, Z., Yun, S., Wen, F., et al. (2024). Hdreason:
algorithm-hardware codesign for hyperdimensional knowledge graph reasoning. arXiv
[Preprint]. arXiv:2403.05763. doi: 10.48550/arXiv.2403.05763

Chen, H., Zakeri, A., Wen, F., Barkam, H. E., and Imani, M. (2023).
“Hypergraf: Hyperdimensional graph-based reasoning acceleration on fpga,” in 2023
33rd International Conference on Field-Programmable Logic and Applications (FPL)
(Gothenburg: IEEE), 34–41. doi: 10.1109/FPL60245.2023.00013

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. (2022). Flashattention: fast and
memory-efficient exact attention with IO-awareness. Adv. Neural Inf. Process. Syst. 35,
16344–16359. doi: 10.48550/arXiv.2205.14135

Dodda, A., Trainor, N., Redwing, J. M., and Das, S. (2022). All-in-one, bio-inspired,
and low-power crypto engines for near-sensor security based on two-dimensional
memtransistors. Nat. Commun. 13:3587. doi: 10.1038/s41467-022-31148-z

Ghazal, T. M., Hasan, M. K., Alshurideh, M. T., Alzoubi, H. M., Ahmad, M.,
Akbar, S. S., et al. (2021). Iot for smart cities: machine learning approaches in smart
healthcare—a review. Future Internet 13:218. doi: 10.3390/fi13080218

Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowledge distillation: a survey.
Int. J. Comput. Vis. 129, 1789–1819. doi: 10.1007/s11263-021-01453-z

Ha, N., Xu, K., Ren, G., Mitchell, A., and Ou, J. Z. (2020). Machine learning-enabled
smart sensor systems. Adv. Intell. Syst. 2:2000063. doi: 10.1002/aisy.202000063

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in
a neural network. arXiv [Preprint]. arXiv:1503.02531. doi: 10.48550/arXiv.1503.
02531

Huang, W., Bulut, M., van Lieshout, R., and Dellimore, K. (2021). “Exploration of
using a pressure sensitive mat for respiration rate and heart rate estimation,” in 2021
43rd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC) (Mexico: IEEE), 298–301. doi: 10.1109/EMBC46164.2021.9629997

Huang, W., Chen, H., Ni, Y., Rezvani, A., Yun, S., Jeon, S., et al. (2024a). Ecosense:
energy-efficient intelligent sensing for in-shore ship detection through edge-cloud
collaboration. arXiv [Preprint]. arXiv:2403.14027. doi: 10.48550/arXiv.2403.14027

Huang, W., Ni, Y., Rezvani, A., Jeong, S., Chen, H., Liu, Y., et al. (2024b).
Recoverable anonymization for pose estimation: a privacy-enhancing approach. arXiv
[Preprint]. arXiv:2409.02715. doi: 10.48550/arXiv.2409.02715

Huang, W., Rezvani, A., Chen, H., Ni, Y., Yun, S., Jeong, S., et al. (2024c). A plug-in
tiny AI module for intelligent and selective sensor data transmission. arXiv [Preprint].
arXiv:2402.02043. doi: 10.48550/arXiv.2402.02043

Huang, Y., Wang, F., Wang, F., and Liu, J. (2019). “Deepar: a hybrid
device-edge-cloud execution framework for mobile deep learning applications,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops
(INFOCOMWKSHPS) (Paris: IEEE), 892–897. doi: 10.1109/INFCOMW.2019.8845240

Kim, T.-h., Ramos, C., andMohammed, S. (2017). Smart city and Iot. Future Gener.
Comput. Syst. 76, 159–162. doi: 10.1016/j.future.2017.03.034

Lee, H., Kim, J., Chen, H., Zeira, A., Srinivasa, N., Imani, M., et al. (2023).
“Comprehensive integration of hyperdimensional computing with deep learning
towards neuro-symbolic AI,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC) (San Francisco, CA: IEEE), 1–6. doi: 10.1109/DAC56929.2023.10248004

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). “Brisk: binary robust invariant
scalable keypoints,” in 2011 International conference on computer vision (Barcelona:
IEEE), 2548–2555. doi: 10.1109/ICCV.2011.6126542

Li, K., and Príncipe, J. C. (2021). Biologically-inspired pulse signal processing for
intelligence at the edge. Front. Artif. Intell. 4:568384. doi: 10.3389/frai.2021.568384

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft coco: common objects in context,” in Computer Vision-ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V
13 (Cham: Springer), 740–755. doi: 10.1007/978-3-319-10602-1_48

Lin, Y., Tu, Y., and Dou, Z. (2020). An improved neural network pruning
technology for automatic modulation classification in edge devices. IEEE Trans. Veh.
Technol. 69, 5703–5706. doi: 10.1109/TVT.2020.2983143

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://doi.org/10.1002/9781119740780.ch3
https://doi.org/10.1109/ISM.2011.38
https://doi.org/10.1007/11744023_32
https://doi.org/10.1109/JIOT.2019.2920283
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.48550/arXiv.2403.05763
https://doi.org/10.1109/FPL60245.2023.00013
https://doi.org/10.48550/arXiv.2205.14135
https://doi.org/10.1038/s41467-022-31148-z
https://doi.org/10.3390/fi13080218
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1002/aisy.202000063
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.1109/EMBC46164.2021.9629997
https://doi.org/10.48550/arXiv.2403.14027
https://doi.org/10.48550/arXiv.2409.02715
https://doi.org/10.48550/arXiv.2402.02043
https://doi.org/10.1109/INFCOMW.2019.8845240
https://doi.org/10.1016/j.future.2017.03.034
https://doi.org/10.1109/DAC56929.2023.10248004
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.3389/frai.2021.568384
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/TVT.2020.2983143
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Rezvani et al. 10.3389/frai.2024.1403187

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int.
J. Comput. Vis. 60, 91–110. doi: 10.1023/B:VISI.0000029664.99615.94

Lu, A., Fang, Z., Liu, W., and Shannon, L. (2021). “Demystifying the
memory system of modern datacenter fpgas for software programmers through
microbenchmarking,” in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (New York, NY: ACM), 105–115. doi: 10.1145/3431920.34
39284

Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.
P., et al. (2018). Machine learning for internet of things data analysis: a survey. Digit.
Commun. Netw. 4, 161–175. doi: 10.1016/j.dcan.2017.10.002

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf.
Process. Syst. 32. Available at: https://proceedings.neurips.cc/paper_files/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Patel, K. K., Patel, S. M., and Scholar, P. (2016). Internet of things-Iot:
definition, characteristics, architecture, enabling technologies, application & future
challenges. Int. J. Eng. Sci. comput. 6. Available at: https://www.researchgate.
net/profile/Carlos-Salazar-51/publication/330425585_Internet_of_Things-IOT_
Definition_Characteristics_Architecture_Enabling_Technologies_Application_
Future_Challenges/links/5c3f8a24299bf12be3ccc584/Internet-of-Things-IOT-
Definition-Characteristics-Architecture-Enabling-Technologies-Application-Future-
Challenges.pdf

Redondi, A., Baroffio, L., Cesana, M., and Tagliasacchi, M. (2013). “Compress-
then-analyze vs. analyze-then-compress: two paradigms for image analysis in
visual sensor networks,” in 2013 IEEE 15th International Workshop on Multimedia
Signal Processing (MMSP) (Pula: IEEE), 278–282. doi: 10.1109/MMSP.2013.66
59301

Settles, B. (2009). Active learning literature survey. Technical Report. Available
at: https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf?sequence=
1&isAllowed=y

Sharma, K., Lee-Cultura, S., and Giannakos, M. (2022). Keep calm and do not carry-
forward: toward sensor-data driven ai agent to enhance human learning. Front. Artif.
Intell. 4:713176. doi: 10.3389/frai.2021.713176

Tsakanikas, V., Dagiuklas, T., Iqbal, M., Wang, X., and Mumtaz, S. (2023). An
intelligent model for supporting edge migration for virtual function chains in next
generation internet of things. Sci. Rep. 13:1063. doi: 10.1038/s41598-023-27674-5

Tsifouti, A., Nasralla, M. M., Razaak, M., Cope, J., Orwell, J. M., Martini, M. G., et al.
(2012). “Amethodology to evaluate the effect of video compression on the performance
of analytics systems,” inOptics and Photonics for Counterterrorism, Crime Fighting, and
Defence VIII, Vol. 8546 (Edinburgh: SPIE), 235–249. doi: 10.1117/12.974618

Wan, S., Ding, S., and Chen, C. (2022). Edge computing enabled video segmentation
for real-time traffic monitoring in internet of vehicles. Pattern Recognit. 121:108146.
doi: 10.1016/j.patcog.2021.108146

Wang, T., Yuan, L., Zhang, X., and Feng, J. (2019). “Distilling object detectors
with fine-grained feature imitation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (Long Beach, CA: IEEE), 4933–4942.
doi: 10.1109/CVPR.2019.00507

Yang, L., and Shami, A. (2022). Iot data analytics in dynamic environments:
from an automated machine learning perspective. Eng. Appl. Artif. Intell. 116:105366.
doi: 10.1016/j.engappai.2022.105366

Yogameena, B., Menaka, K., and Saravana Perumaal, S. (2019). Deep learning-based
helmet wear analysis of a motorcycle rider for intelligent surveillance system. IET Intell.
Transp. Syst. 13, 1190–1198. doi: 10.1049/iet-its.2018.5241

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1403187
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1145/3431920.3439284
https://doi.org/10.1016/j.dcan.2017.10.002
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.researchgate.net/profile/Carlos-Salazar-51/publication/330425585_Internet_of_Things-IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges/links/5c3f8a24299bf12be3ccc584/Internet-of-Things-IOT-Definition-Characteristics-Architecture-Enabling-Technologies-Application-Future-Challenges.pdf
https://www.researchgate.net/profile/Carlos-Salazar-51/publication/330425585_Internet_of_Things-IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges/links/5c3f8a24299bf12be3ccc584/Internet-of-Things-IOT-Definition-Characteristics-Architecture-Enabling-Technologies-Application-Future-Challenges.pdf
https://www.researchgate.net/profile/Carlos-Salazar-51/publication/330425585_Internet_of_Things-IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges/links/5c3f8a24299bf12be3ccc584/Internet-of-Things-IOT-Definition-Characteristics-Architecture-Enabling-Technologies-Application-Future-Challenges.pdf
https://www.researchgate.net/profile/Carlos-Salazar-51/publication/330425585_Internet_of_Things-IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges/links/5c3f8a24299bf12be3ccc584/Internet-of-Things-IOT-Definition-Characteristics-Architecture-Enabling-Technologies-Application-Future-Challenges.pdf
https://www.researchgate.net/profile/Carlos-Salazar-51/publication/330425585_Internet_of_Things-IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges/links/5c3f8a24299bf12be3ccc584/Internet-of-Things-IOT-Definition-Characteristics-Architecture-Enabling-Technologies-Application-Future-Challenges.pdf
https://www.researchgate.net/profile/Carlos-Salazar-51/publication/330425585_Internet_of_Things-IOT_Definition_Characteristics_Architecture_Enabling_Technologies_Application_Future_Challenges/links/5c3f8a24299bf12be3ccc584/Internet-of-Things-IOT-Definition-Characteristics-Architecture-Enabling-Technologies-Application-Future-Challenges.pdf
https://doi.org/10.1109/MMSP.2013.6659301
https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf?sequence=1&isAllowed=y
https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf?sequence=1&isAllowed=y
https://doi.org/10.3389/frai.2021.713176
https://doi.org/10.1038/s41598-023-27674-5
https://doi.org/10.1117/12.974618
https://doi.org/10.1016/j.patcog.2021.108146
https://doi.org/10.1109/CVPR.2019.00507
https://doi.org/10.1016/j.engappai.2022.105366
https://doi.org/10.1049/iet-its.2018.5241
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Self-trainable and adaptive sensor intelligence for selective data generation
	1 Introduction
	2 Related works
	2.1 Intelligent sensing
	2.2 Knowledge distillation

	3 Method
	3.1 Online learning
	3.2 Data selection via active learning
	3.2.1 Training phase
	3.2.2 Execution phase

	3.3 Near-sensor model compression using knowledge distillation

	4 Results
	4.1 Experimental setup
	4.2 Online learning
	4.3 Knowledge distillation
	4.4 Energy consumption and data selection

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


