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Crickets (Gryllus bimaculatus) produce sounds as a natural means to

communicate and convey various behaviors and activities, including mating,

feeding, aggression, distress, and more. These vocalizations are intricately linked

to prevailing environmental conditions such as temperature and humidity. By

accurately monitoring, identifying, and appropriately addressing these behaviors

and activities, the farming and production of crickets can be enhanced. This

research implemented a decision support system that leverages machine

learning (ML) algorithms to decode and classify cricket songs, along with their

associated key weather variables (temperature and humidity). Videos capturing

cricket behavior and weather variables were recorded. From these videos,

sound signals were extracted and classified such as calling, aggression, and

courtship. Numerical and image features were extracted from the sound signals

and combined with the weather variables. The extracted numerical features,

i.e., Mel-Frequency Cepstral Coe�cients (MFCC), Linear Frequency Cepstral

Coe�cients, and chroma, were used to train shallow (support vector machine,

k-nearest neighbors, and random forest (RF)) ML algorithms. While image

features, i.e., spectrograms, were used to train di�erent state-of-the-art deep

ML models, i,e., convolutional neural network architectures (ResNet152V2,

VGG16, and E�cientNetB4). In the deep ML category, ResNet152V2 had the

best accuracy of 99.42%. The RF algorithm had the best accuracy of 95.63% in

the shallow ML category when trained with a combination of MFCC+chroma

and after feature selection. In descending order of importance, the top 6

ranked features in the RF algorithm were, namely humidity, temperature,

C#, mfcc11, mfcc10, and D. From the selected features, it is notable that

temperature and humidity are necessary for growth and metabolic activities

in insects. Moreover, the songs produced by certain cricket species naturally

align to musical tones such as C# and D as ranked by the algorithm. Using

this knowledge, a decision support system was built to guide farmers about

the optimal temperature and humidity ranges and interpret the songs (calling,

aggression, and courtship) in relation to weather variables. With this information,

farmers can put in place suitable measures such as temperature regulation,

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1403593
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1403593&domain=pdf&date_stamp=2024-05-14
mailto:ksenagi@icipe.org
https://doi.org/10.3389/frai.2024.1403593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1403593/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kyalo et al. 10.3389/frai.2024.1403593

humidity control, addressing aggressors, and other relevant interventions to

minimize or eliminate losses and enhance cricket production.

KEYWORDS

insects, sound classification, transfer learning,machine learning, deep learning, decision

support system

1 Introduction

In recent years, edible insects have gained global attention as an
under utilized source of food with great potential to contribute to
future food and feed needs. It is also noted that insect farming has
minimal damage to the earth due to low greenhouse gas emissions
(Lange and Nakamura, 2021). Some of the edible insects which
can be farmed for food are the crickets. The nutritional content of
edible crickets, including vitamins, minerals, proteins, fats, essential
amino acids, and flavonoids, is comparable or even superior to that
of common animal protein sources like fish, poultry, and cowmeat.
Owing to their nutritional value and contribution to the livelihoods
of many communities globally, over 2,000 species of insects are
consumed by hundreds of millions of humans for millennia in
more than 110 countries worldwide (van Huis, 2013; Kelemu et al.,
2015; Verner et al., 2021). Unfortunately, most edible insects are
currently harvested seasonally from the wild, and the harvests
are declining due to the degradation of their breeding habitats.
Farming of edible insects is in its infancy due to several reasons
including limited/unavailable rearing protocols and poor adoption
of technology among the farmers. Generally, the production of
edible insects as a source of food and feed is low compared to the
market needs (van Huis, 2013; Kelemu et al., 2015; Magara et al.,
2021; Tanga et al., 2021; Verner et al., 2021).

Manual identification and understanding of insects is tedious,
time-consuming, and subject to human error (Alonso et al., 2017;
Potamitis et al., 2017; Kawakita and Ichikawa, 2019; Noda et al.,
2019; Zhang et al., 2021). Automatic sound/audio signal processing
can be improved using machine learning (Noda et al., 2016,
2019; Phung et al., 2017; Kawakita and Ichikawa, 2019). Machine
learning has successfully been deployed in the identification and
classification of insects based on their species (Phung et al.,
2017; Zamanian and Pourghassem, 2017), acoustics (Amlathe,
2018; Kiskin et al., 2020; Zhang et al., 2021), wingbeats (Arpitha
et al., 2021; Kim et al., 2021), etc. For instance, Kawakita
and Ichikawa (2019) explored the classification of bees and
hornets based on their flight sounds using the support vector
machine (SVM) algorithm combined with Mel-frequency cepstral
coefficient (MFCC) features. The model achieved significant recall
and precision metric scores but faced challenges in classifying
species with subtle differences in sound features. Zamanian and
Pourghassem (2017) used multi-layered perceptron (MLP) and
genetic algorithms to classify cicada species based on their sounds.
Dong et al. (2018) employed convolutional neural networks
(CNN) with enhanced spectrograms for insect recognition, while
Tey et al. (2022) used spectrogram images and deep learning
algorithms for cicada species recognition. These approaches
achieved accuracy rates ranging from 77.78% to 99.13%. Kim et al.

(2021) and Zhang et al. (2021) used CNN models with MFCC
to classify insect sounds, achieving accuracy rates of 92.56% and
85.72% respectively.

Generally, crickets have certain characteristics/behaviors which
when learned/known, can be key in informing the farmer what
to leverage to improve the health of the insects to increase
production. Such characteristics include the sound that informs
the behavior/health of the crickets. For instance, crickets produce
sounds to signify/mean certain behavior/activities (e.g., courtship,
calling, aggression, etc.) (Alexander, 1961; Miyashita et al., 2016;
Lin and Hedwig, 2021). The loud calling songs are meant to
attract distant females, soft courtship songs initiate sexual behavior
with nearby females, and aggression songs are produced when
fighting for mates and territories. Keeping other factors (e.g.,
feeding rate, etc.) constant, these activities are mainly influenced
by the temperature and humidity (Ulagaraj, 1976; Srygley, 2014;
Niemelä et al., 2019). Therefore, using state-of-the-art machine
learning algorithms, this study developed a novel insect sound
synthesis decision support system to enable farmers to understand
the health/status of their cricket farms and make meaningful
decisions as they farm edible crickets as an alternative source of
proteins and food. The novel approach can assist farmers improve
the production of edible crickets as a sustainable source of food
for humans compared to livestock farming and contribute to
alleviating food insecurity and malnutrition challenges.

The following are the key contributions of the work reported in
this paper:

• We studied the performance of shallow machine learning
algorithms with numerical features and added weather
variables features extracted from cricket songs. Moreover,
the different numerical features were combined, trained on
the shallow learning algorithms and their performances were
evaluated.

• We investigated the important features of the extracted
chroma frequencies and corresponding weather variables.
Thereafter, the important chroma features were validated
and mapped on the chromatic scale. The important weather
variables were also discussed.

• We extracted image (i.e., spectrograms) features and trained
several deep-learning CNN architectures . Weather variables
were injected into the respective CNN architectures and
merged with the image features in the deep learning
architecture.

• We selected the best-performing machine learning model and
deployed its pre-trained model on a decision support system
(with a dashboard and notification system integrated) that can
help farmers manage cricket farms.
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FIGURE 1

This illustration depicts the experimental setup used to study cricket

(1) behavior and song production under varying temperature and

relative humidity conditions. Temperature sensors or data loggers

(2) were placed within the setup to continuously monitor and record

temperature changes throughout the study, helping to understand

the impact of temperature on cricket behavior and song production.

Additionally, the video and sound recorder (3) continuously

recorded audio and video data, allowing for observation and

documentation of the crickets’ songs and behavior throughout the

experiment and the data was transferred to a hard disk. All data

collected during the experiment were transferred to cloud for

storage and analysis.

This paper is organized as follows: Section 2 states
the experimental setup that includes data collection, data
preprocessing, feature extraction, andmachine learning. Sections 3,
4 outline the key findings and their interpretation respectively.
Lastly, Section 5 concludes the paper.

2 Materials and methods

2.1 Experiments setup and data collection

Video, sound, and associated weather data of the edible
crickets, Gryllus bimaculatus, were collected in a laboratory (where
environmental conditions were not controlled) as shown in
Figure 1. The video was recorded using a Nikon Z6 II camera
while temperature and humidity variables were recorded using an
Internet of Things (IoTs) sensor installed in the laboratory. The
temperature and humidity were transmitted to the International
Centre of Insect Physiology and Ecology (icipe) virtual cloud
at hourly intervals. During the data processing stage, the video
footage was utilized to label the dataset, as it provided visual cues
regarding the cricket behavior associated with the various songs
they produce.

Cricket data at the nymph stage were not recorded since they do
not chirp, i.e., their wings which enable crickets to produce sound
are not fully developed. The female cricket’s sounds were also not
recorded as they do not produce any chirps (Jonsson et al., 2021;
Lin and Hedwig, 2021). Therefore, this research processed sound

TABLE 1 A summary of data collection dates and the cricket pairing over

the period of data collection.

Date Cricket pairing

12th Jan 2023–14th Jan 2023 Male-Female

14th Jan 2023–15th Jan 2023 Male-Male

17th Jan 2023–18th Jan 2023 Male-Male

18th Jan 2023–20th Jan 2023 Male

24th Jan 2023–26th Jan 2023 Male-Female

26th Jan 2023–28th Jan 2023 Male-Male

Each cricket pairing was recorded for 2 days before a different cricket pairing was replicated.

signals in relation to the male crickets at the adult and mature
stages. Data were collected for single males, male-male, or male-
female to observe whether the crickets behave differently under
different experimental setups; the specific days when the crickets
were paired are shown in Table 1. The data was collected for over
24 hours for each pairing within the different stages for a period
of 13 days continuously. The data collected consisted of 465 video
recordings each 30 minutes long.

2.2 Data preprocessing

Figure 2 illustrates the flow of the data cleaning process. At
the end of the process, appropriate metadata were documented by
filling a comma-separated values (CSV) template with the variables
outlined in Table 2. The preprocessing steps are described below:

Step 1: Recorded videos. The 465 recorded videos were
categorized into two groups: those containing cricket sounds and
those without any cricket sounds.

Step 2: Separating videos. Information from 202 video
recordings, each spanning 30 minutes and containing cricket
sounds, was captured in a CSV metadata file. Following this, a
human expert reviewed the videos, noting the timestamps of the
start and end of each chirp. These timestamps were then appended
to the CSVmetadata file. A Python script (icipe, 2023a), integrating
the MoviePy (Zulko, 2023) library, was used to extract sounds from
the videos. The sounds were saved in the form of Waveform Audio
File Format (i.e., .wav).

Step 3: Denoising. During the video and sound recording in the
laboratory, various noises such as vehicle sounds, bird chirps, and
human activity were inadvertently captured. To address this issue,
Audacity (Audacity, 2023) software was used to denoise the .wav
sound clips.

Step 4: Extracting and annotating cricket chirps. After the 30-
min-long .wav files were extracted and denoised using a tailored
Python script (icipe, 2023a), the timestamps recorded in Step 1
(recording the start and end of chirps) were employed to extract the
cricket chirps/sounds. The denoised .wav files were subsequently
saved in a separate folder and, the metadata associated with these
files were documented in the CSV file (as shown in Figure 2, top
right). The cricket species are known to produce three types of
chirps/songs: aggression, courtship, or calling songs (Alexander,
1961; Miyashita et al., 2016; Lin and Hedwig, 2021). In this step,
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FIGURE 2

The pre-processing steps for the behavioral and weather data of the edible cricket Gryllus bimaculatus involved several stages, namely extracting

cricket sound signals from the videos, removing noise from the extracted sound signals, annotating/labeling the sound signals, splitting sound

signals, extracting features, class balancing, label encoding, and feature scaling.

TABLE 2 A description of all the variables contained in the final metadata

and used for exploratory data analysis.

Variable Description

File name File name of the recorded video

Recording start time Time video recording was started

Recording end time Time video recording was stopped

Date Date the video was recorded

Start chirp Time the cricket started to chirp

End chirp Time the cricket stopped to chirp

Specimen Whether the recorded cricket pairing
was a single male, male-male, or
male-female

Temperature Room temperature in the laboratory

Humidity Room humidity in the laboratory

Label The actual behavior of the cricket as
identified by a human expert

the extracted sound clips were annotated with the guidance of
an entomologist, the domain expert. This procedure involved
referencing the CSVmetadata file, retrieving the exact start and end
timestamps of cricket chirps, listening to the corresponding songs,
observing cricket behavior in the video footage, and labeling the

behavior (e.g., aggression, courtship, or calling) in alignment with

the corresponding record in the metadata file. In data engineering,
this process is commonly referred to as “labeling.”

Step 5: Merging cricket chirps with weather variables. The CSV
metadata, described in the top right of Figure 2 was used to merge
the annotated cricket songs and their corresponding temperature
and humidity based on the chirps timestamp and the day of data
recording.

Step 6: Sound splitting (segmentation). In their natural behavior,
cricket chirps can vary in duration, ranging from 0.4 seconds
to 3 minutes (Jones, 1966; Mhatre and Balakrishnan, 2006). The
duration for splitting sound signals has an impact on the size
of the resultant feature matrix size. For example, a longer split
duration leads to a larger feature matrix and consequently increases
the training time of the algorithm (Gold et al., 2011). Conversely,
splitting chirps into shorter lengths augments overall data volume,
resulting in ample training data for models. To strike a balance,
this study opted to divide cricket chirps into uniform 1-second
segments, resulting in a total of 83,809 records.

Step 7: Feature extraction.Numerical and/or image features can
be extracted from sound signals. The selected machine learning
algorithm (s) dictates the type of features extracted. For instance,
literature shows that shallow machine learning algorithms were
trained on numerical features (Zhang and Guo, 2010; Yazgaç et al.,
2016; Kawakita and Ichikawa, 2019; Noda et al., 2019), while deep
learning algorithms were trained on numerical or spectrogram
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image features (Dong et al., 2018; Kiskin et al., 2020; Arpitha et al.,
2021; Tey et al., 2022). Herein, we extracted numerical (chroma,
MFCC, and Linear Frequency Cepstral Coefficients (LFCC)) and
image (i.e., spectrograms) features since they were widely used
by other researchers (Noda et al., 2016, 2019; Yazgaç et al., 2016;
Zamanian and Pourghassem, 2017; Dong et al., 2018; Kawakita and
Ichikawa, 2019; Tey et al., 2022).

Besides the independent (chroma, MFCC, and LFCC) features,
this research combined chroma+MFCC, chroma+LFCC, and
MFCC+LFCC and trained them on various shallow machine
learning algorithms described in Section 2.3. The default
hyperparameters were applied during feature extraction. The
extracted features are described as follows:

a) Mel-Scale Frequency Cepstral Coefficients : MFCCs are
coefficients that collectively make up a Mel-Frequency Cepstrum
(MFC). An MFC is a representation of the short-term power
spectrum of a sound signal based on a linear cosine transform
of a log power spectrum on a nonlinear Mel scale of frequency
(Le-Qing, 2011). This feature extracts a default of 13 numerical
coefficients. MFCC is the commonly used feature for insects songs
processing and has been used by (Zhang and Guo, 2010; Silva et al.,
2013; Noda et al., 2016, 2019; Yazgaç et al., 2016; Phung et al.,
2017; Amlathe, 2018; Kawakita and Ichikawa, 2019). This feature
is more preferred because the frequency bands are equally spaced
on the mel scale, which approximates the human auditory system’s
response more closely than the linearly-spaced frequency bands
used in the normal spectrum. The feature was extracted using the
librosa.feature.mfcc() function in the Python-based Librosa (McFee
et al., 2023) library.

b) Chroma: Chroma features represent audio signals in 12 tonal
variations (C, C#, D, D#, E, F, F#, G, G#, A, A#, and B). The 12
pitches indicate the amount of energy in each pitch class present in
the signal. A pitch is separated into two components i.e., the tone
height and chroma. The tone height represents the octave number
and the chroma is a representation of the respective pitch spelling
attribute. Octave represents 12 pitches. Conversion of audio to
chroma can be performed using short-time Fourier transforms
(STFT) or constant-q transform (CQT) (McFee et al., 2023). In this
study, chroma STFT was used, which computes a chroma from a
power spectrogram or waveform. The feature was extracted using
the librosa.feature.chroma_stft() function in the Librosa (McFee
et al., 2023) library. The extracted chroma features can be matched
with different frequencies to determine the pitches within which the
cricket songs fall.

c) Linear-Frequency Cepstral Coefficient : LFCC is a feature
representation commonly used in audio signal processing and
speech recognition tasks. LFCC has the same working as MFCC
features and provides a linear-scale representation of the cepstral
coefficients. This feature has been used in previous experiments
by different authors (Potamitis et al., 2007; Silva et al., 2013; Noda
et al., 2016, 2019; Yazgaç et al., 2016). The features were extracted
using the Python-based spafe library. This research extracted the
LFCC feature using the spafe.features.lfcc.lfcc() function.

d) Spectrograms: Spectrogram features are represented on a 2D
image. The x-axis represents time of sequences of spectra, and color
brightness on the other axis represents the frequency of the strength
of each component at each time frame. Spectrograms show where

there is high or low energy, and how energy levels vary over time
(Ali et al., 2024). In insect song synthesis, spectrograms capture
the temporal and spectral characteristics of the insect sounds. The
features were extracted using the librosa. feature.melspectrogram ()

function in the Librosa library.
Step 8: Class balancing. In machine learning modeling

training an algorithm with imbalanced data leads to the model
learning too much of the majority features than the minority.
The dataset was explored to check for class imbalance (i.e.,
balanced labels/classes) based on the target feature. To handle the
class imbalance problem, the Synthetic Minority Oversampling
Technique (SMOTE) was used. SMOTE creates a new dataset and
oversamples by introducing some variance in the minority class. It
works by finding the nearest neighbors of the minority class and
drawing a vector of each of those points. As such, the method
increases the number of minority class instances (to a level set by
the user) in the neighborhood, thereby assisting the classifiers in
which the data will be fitted to improve their generalization capacity
(Fernández et al., 2018).

Step 9: Label encoding. Machine learning algorithms typically
work with numerical data and therefore converting categorical
labels into numerical labels enables the algorithms to capture the
ordinal or nominal relationship between categories. In this context,
the labels (calling, aggression, and courtship) were encoded using
preprocessing.LabelEncoder() function of Sklearn (Pedregosa et al.,
2011) Python library. This ensured that the predictor variables
could be correlated with the target variable for easier classification.

Step 10: Feature scaling. This technique is used to normalize
independent variables within a certain range. Feature scaling
ensures that all features contribute proportionally to the distance
calculations and features with larger scales cannot dominate
the distances, leading to biased results (Disha and Waheed,
2022). In this study, the data (MFCC, LFCC, spectrograms, and
weather numerical variable) were normalized using the min-max
(Pedregosa et al., 2011) scaler defined in Equation 1 where X is
the original value, Xmax is the maximum value and Xmin is the
minimum value. The scaler normalizes data within a range of 0 to
1. This study notes that chroma features were already within a scale
of 0 and 1, as such, not normalized.

Xnorm =
X − Xmin

Xmax − Xmin
(1)

Step 11: Machine learning ready data. After the data
normalization, the data wasmachine-learning-ready. The following
section explains machine learning modeling steps.

2.3 Machine learning modeling

Figure 3 shows the steps in machine learning modeling. They
are described in the steps below.

Step 1: Data splitting. The data (83,809 records) were split
into train and test sets in a ratio of 70:30 respectively using
the sklearn.model_selection.train_test_split function in the Sklearn
(Pedregosa et al., 2011) Python library. By dividing the available
data into separate training and testing sets, the model was trained
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FIGURE 3

A summary of machine learning steps from splitting machine learning ready data (1), training various classification algorithms (2), testing and

evaluating the model performance (3), picking the best classifier algorithm evaluated on test data (4), ranking features in order of their importance

based on the best classifier (5), selecting the number of features which best predict the cricket songs (6), re-training the model with the selected

features (7), and deploying the pre-trained model (8) as a .h5 file.

on a portion of the data and its performance was evaluated

on the unseen data. This helps in estimating how well the
model generalizes to new/unseen instances. Data splitting helps in
preventing data leakage, which occurs when information from the

test set inadvertently influences themodel training. Keeping the test

set separate ensures that the model is evaluated on unseen data,
providing a more accurate assessment of its performance (Joseph,

2022; Joseph and Vakayil, 2022).
Step 2: Training machine learning algorithms. This

study implemented both shallow and CNN machine

learning algorithms. These algorithms are imported from

the Sklearn (Pedregosa et al., 2011) Python library and
executed. The single features (described in Section 2.2,

Step 7) and a combination of them were trained on SVM,
k-nearest neighbors (KNN), and RF shallow machine

learning algorithms which were configured with their default
hyperparameters. Whereas spectrogram image features

(described in Section 2.2, Step 7) were trained on CNN deep
learning algorithms. These algorithms are briefly discussed

as follows:

a) Support Vector Machine : This algorithm is used for both
regression and classification tasks. In the algorithm, each data

item is plotted as a point in n-dimensional space. The n-

dimensional space represents the number of features to be
classified in the model. Classification is done by finding an
optimal hyperplane that separates the n-classes (Suthaharan and
Suthaharan, 2016).

b) K-Nearest Neighbor : The algorithm evaluates the similarity
between the new data and available cases and puts the new case
into the category that is most similar to the available categories.
The algorithm stores all the available data and classifies a new
data point based on the similarity. When new data appears,
it is easily classified into a well suit category, using the KNN
algorithm (Kramer and Kramer, 2013).

c) Random Forest : This algorithm is mainly used for classification
and regression problems. The algorithm consists of N decision
trees trained on bootstrap random subsets of the data. RF utilizes
ensemble learning, a technique that combines many classifiers
to provide solutions to complex problems. The algorithmmakes
use of feature bagging, which has the advantage of significantly
decreasing the correlation between each decision tree and thus
increasing its predictive accuracy on average (Breiman, 2001).

d) Convolutional Neural Network : CNN is a deep neural network
designed to process grid-like data such as images, audio
spectrograms, and time-series data. The algorithm works by
assigning weights and biases to the input features based
on the importance of various objects in the input image.
CNN processes data in a 1D array and 2D array. Different
architectures (i.e., EfficientNetB4, ResNet152V2, and VGG16)
of CNN were used in this study. These algorithms are pre-
trained models built on the ImageNet dataset using the Keras
framework. The initial layers of the pre-trained models were
frozen, and the other layers of the models were fine-tuned on
the acoustic dataset. The three models had similar architecture
consisting of the average pooling 2D, the flattened layer, and
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TABLE 3 Hyperparameter settings used with the pre-trained models.

Hyperparameter Value

Resolution 224× 224

Color channels 3

Batch size 32

Transfer learning Based on Imagenet

Validation size 0.3

Optimizer Adam

Learning rate 0.001

Early stopping True

Max epochs 50

Patience 10 based on val loss

the dense layer consisting of Relu activation and 256 neurons.
This was followed by a final dense layer consisting of softmax
activation and 3 neurons (aggression, calling, and courtship)
which were the class labels to be predicted. For the loss,
categorical_crossentropy was used since we only wanted to
predict one class at a time. To prevent overfitting of the model,
the early stopping methods with the patience of 10 and 50
epochs each with 58 steps were implemented. Table 3 contains
optimization settings that were used across the pre-trained
models. The pre-trained models took images (i.e., spectrogram
features) as inputs. Numerical data (i.e., temperature, and
humidity) were important variables in understanding the songs
produced by the crickets and equally affected their growth.
Therefore, the numerical data was injected and merged in the
deep learning model architectures as shown in Figure 4.

Step 3: Testing and evaluating the machine learning algorithms.

There are different evaluation metrics for classification problems
such as accuracy, F1-score, confusion matrix, precision, and recall
(Vujović et al., 2021). The choice of an evaluation metric depends
on the problem one is investigating and the type of data one
is dealing with. This study employed the F1-score and accuracy
to evaluate the performance of the machine learning algorithms.
The F1 score was selected due to the context of the problem
(multi-class classification) and the nature of the data; which had
imbalanced classes. It is noted that accuracy tends to underestimate
classes with a smaller number of samples in relation to those with
a larger number (Steiniger et al., 2020). Therefore, the accuracy
score was chosen to compare its performance against the F1-score
as it was the most used evaluation metric across many insects’
song classification problems (Silva et al., 2013; Noda et al., 2016,
2019; Amlathe, 2018; Kim et al., 2021). Accuracy and F1-score
performance metrics were used to evaluate the SVM, KNN, RF, and
CNN algorithms discussed in the previous section. Based on their
performance, the best classifier was selected.

The F1-score and accuracy performance evaluation metrics are
discussed below:

a) Accuracy: It measures the number of correct predictions
expressed as a percentage of the total number of predictions.

FIGURE 4

The general architecture of the ResNet152V2, E�cientNetB4, and

VGG16 pre-trained models. The numerical data (i.e., temperature

and humidity) layer was injected and merged in the pre-trained

deep learning model.

A lower value of accuracy means the classifier predicts the
wrong label, while a value closer to 100 means the classifier
correctly classifies the labels. Accuracy can be calculated from
the confusion matrix, which is a tabular representation of the
performance of the classification model. The confusion matrix
shows the number of true positives (TP), which represent the
instances that are correctly classified positively as the target
class. True negative (TN) is the number of instances correctly
classified as the negative class. False positive (FP) is the number
of instances incorrectly classified as positive. False negative
(FN) is the number of instances incorrectly classified as the
negative class. The values of (TP, TN, FP, and FN) are plugged
in Equation 3 to calculate accuracy (Jeni et al., 2013; Han
et al., 2022). Accuracy was calculated using the accuracy_score
function in the Sklearn (Pedregosa et al., 2011) Python library.

b) F1-score: This metric measure combines both precision and
recall, achieving a balance of both. Precision measures the
proportion of true positive predictions out of all positive
predictions made by the model. Recall measures the proportion
of true positive predictions out of all actual positive instances in
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the dataset. F1-score is common in evaluating the performance
of models built from imbalanced datasets, as it is not influenced
by the majority class. There are 3 average techniques used with
F1-score: macro, micro, and weighted. The macro technique
gives equal weights to all classes making it suitable for balanced
datasets, while the micro technique works by dividing the sum
of the diagonal cells of the matrix by the sum of all cells. The
weighted technique accounts for class imbalance by computing
the average of binarymetrics weighted by the number of samples
of each class in the target (Pedregosa et al., 2011). F1-score
was calculated using Equation 2 (Han et al., 2022). F1-score was
calculated using the f1_score function in the Sklearn (Pedregosa
et al., 2011) Python library

F1− score =
2 ∗ Precision ∗ Recall

Precision+ Recall
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Step 4: Picking the best classifier. The algorithm in the shallow
and deep learning categories that gave the best performancemetrics
was selected.

Step 5: Feature importance, feature selection, and re-training.

Feature importance makes us understand which features have the
most influence on the model’s prediction (Casalicchio et al., 2019).
With deep learning, the model automatically locates important
features (Liu et al., 2021), and therefore determining feature
importance is not easy. Nonetheless, some shallow machine
learning algorithms can perform feature importance, such as
random forest, and support vector machine. Therefore, in this
study, the best-performing shallow machine learning algorithm
was selected to perform feature importance and feature selection
based on the manually extracted features that were used to train
the algorithm. Feature importance was carried out using the
inbuilt feature_importances_ function in Sklearn (Pedregosa et al.,
2011) Python library. The function derives the list of important
features using Gini impurity (Disha and Waheed, 2022), defined in
Equation 4, where Pp refers to the fraction of positive samples and
Pn refers to the fraction of negative samples of the total number of
samples.

Gini Impurity = 1− P2p − P2n (4)

Feature selection involves selecting the model inputs that
best inform the model’s prediction. Selecting the most relevant
features helps improve model performance by reducing overfitting.
Irrelevant or noisy features introduce unnecessary complexity
to the model, leading to a poor generalization of unseen data.
Therefore, feature selection enables the model to focus on the
most informative features, resulting in better performance, lower
variance, and improved predictive performance. It also reduces the
computational cost of training and making predictions because of
the fewer features. This study employed feature selection to identify
a set of features out of those that were ranked (using important
features) . The algorithm was retrained with the selected features.

2.4 Deployment: the decision support
system

For the farmer to interact with the system, and get insights
(i.e., aggression, courtship, or calling) that inform the health status
and activities of the insects under production, it was necessary to
build and deploy the intelligent system (with the best shallow/deep
machine learning pre-trained model at the back-end) on the web
for universal access. The web application was developed on Django
(Django, 2023) and deployed on a virtual machine instance in icipe’s
virtual private network on the cloud.

3 Results

3.1 Class labels

The three call types (i.e., aggression, calling, and courtship) of
theGryllus bimaculatus cricket species were observed (based on the
video recordings noted in Section 2.2, Step 1).

3.2 Behavior of crickets and time

Figure 5 shows the singing behavior of crickets observed in
24 hours over the period of data collection. Calling songs were
distributed across the hours of the day and on all the days.
Generally, courtship and aggression songs were observed to occur
on specific days.

3.3 E�ect of temperature and humidity on
cricket songs

The lowest and highest temperatures were 20.2 and 25.5◦C
while the lowest and highest humidity recorded was 28.3 and
59.4% RH respectively throughout data collection under natural
conditions. Figure 6, shows how the different cricket songs change
under the recorded temperature conditions. It is observed that
the songs were recorded at temperatures above 22.5◦C to
the maximum recorded temperatures, i.e., 25.5◦C (as shown in
Table 3); a range of approximately 2◦C. Moreover, Figure 6, shows
that most courtship and calling songs were recorded between a
humidity of 35 and 55% RH. Most aggression songs were recorded
between 30 and 55% RH and were generally evenly distributed.
Generally, songs concentrated on the range of approximately 45%
RH.

3.4 Training and evaluating machine
learning algorithms

The results of training RF, SVM, and KNNwith both single and
combined features as well as CNN architectures with spectrogram
features are reported below:
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FIGURE 5

Di�erent behavior recorded over 24 h in 13 days. A courtship song is produced by male crickets toward female crickets to initiate mating. A calling

song is produced by male crickets to attract the attention of female crickets. Aggression song is produced by male crickets to male crickets in the

fight for territory or females.

FIGURE 6

An illustration of how the cricket songs vary with di�erent temperature and humidity values recorded.

3.4.1 Single features in shallow learning
algorithms

Table 4 summarizes the performance (accuracy and F1-score)
results of the features trained on SVM, KNN, and RF machine
learning algorithms trained with single features and fused with
temperature and humidity variables. The best classifier was RF with
an accuracy of 0.9277 and F1-score of 0.9394 when trained on
chroma features.

3.4.2 Combined features in shallow learning
algorithms

The merged chroma+MFCC (25 features), chroma+LFCC
(25 features), and MFCC+LFCC (26 features) and fused with
temperature and humidity variables were trained on SVM, KNN,
and RFmachine learning algorithms and the results are recorded in
Table 4. The best classifier was RF when trained on chroma+MFCC
with accuracy and F1-score of 0.9441 and 0.9463 respectively.

3.4.3 Spectrograms in deep learning algorithms
The extracted spectrograms and the weather data were injected

and concatenated into the pre-trained models, and the results were

recorded in Table 5. The best pre-trained model was ResNet152V2,
with accuracy and F1-score of 0.9942 and 0.9854 respectively.

3.5 Selecting the best classifier, feature
importance and feature selection

The results of training SVM, KNN, RF, and pre-trained models
with single and combined features and spectrograms that were
fused with weather variables (temperature and humidity) are
documented in Sections 3.4.1, 3.4.2, and 3.4.3. From the results,
deep learning pre-trained models have a better performance than
shallowmachine learningmodels. ResNet152V2was the best model
among all the models trained, with a classification F1-score and
accuracy of 0.9854 and 0.9942 respectively. With shallow machine
learning algorithms, the RF algorithm was the best classifier when
trained with chroma+MFCC, temperature, and humidity features.
Figure 7 illustrates the features in their order of importance
obtained from RF as the best classifier. In that order, starting
from the 6th feature, the other variables were added incrementally,
trained with the RF algorithm, and evaluated on F1-score, and
accuracy results are summarized in Figure 8. It was observed that
the top 6 features (humidity, temperature, C#, mfcc11, mfcc10,
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TABLE 4 A summary of the performance of the single and combined

features trained on the various algorithms and evaluated on accuracy and

F1-score.

Feature Classifier Accuracy F1-score

Single features

Chroma SVM 0.7692 0.8233

KNN 0.8739 0.8928

RF 0.9277 0.9394

MFCC SVM 0.7118 0.7990

KNN 0.8651 0.8885

RF 0.9299 0.9264

LFCC SVM 0.8554 0.7887

KNN 0.7600 0.9275

RF 0.8084 0.9301

Combined features

Chroma+MFCC SVM 0.7706 0.8246

KNN 0.8816 0.8974

RF 0.9441 0.9463

Chroma+LFCC SVM 0.7699 0.8232

KNN 0.8077 0.8480

RF 0.9240 0.9288

MFCC+LFCC SVM 0.5541 0.6810

KNN 0.7971 0.8423

RF 0.9294 0.9271

TABLE 5 A summary of the performance of the CNN architectures.

Features Architecture Accuracy F1-score

Spectrogram +
humidity +
temperature

ResNet152V2 0.9942 0.9854

Spectrogram +
humidity +
temperature

VGG16 0.9721 0.9721

Spectrogram +
humidity +
temperature

EfficientNetB4 0.9315 0.9322

and D) had the best F1-score and accuracy of 95.63% and 95.37%
respectively, which is still outperformed by the deep learning
pre-trained models.

3.6 Deployment: the decision support
system architecture

Figure 9 gives the overall architecture of the developed decision
support system that was deployed (accessible here icipe, 2023b) on
a Kubernetes (Kubernetes, 2023) orchestration system. Generally,
the system had three main components: data collection done by the
IoTs, the back end that processes the collected data, and the front
end for visualizing the results. These components are discussed in
detail in Section 4.6.

4 Discussion

4.1 Class labels

The class labels (calling, courtship, and aggression) of cricket
songs were similar to categories of cricket songs reported by
other researchers (Alexander, 1961; Miyashita et al., 2016; Lin
and Hedwig, 2021). Based on the distribution of those classes,
Sections 2.2 (Step 8) and 3.1 identified and treated (using SMOTE)
the class imbalance problem to prevent engineering a biased
machine learning model that could understand and interpret the
majority class more than the minority one. After resolving the class
imbalance problem, we anticipate an equal/unbiased interpretation
of the classes leading to a better performance of the model (Wang
et al., 2016; Deng et al., 2022). Besides recording more calling
songs compared to courtship and aggression songs, the study by
Doherty (1985) also recorded more calling songs of the Gryllus

bimaculatus de Geer cricket species and noted that the calling songs
are more important than others since they trigger recognition and
elicit phonotaxis (movement toward males) in female crickets. This
could be a natural behavior for the survival (males calling the
females to mate) of the crickets. Generally, the courtship songs
are linked to mating. The cricket aggression songs are linked to
the fighting behavior of the crickets. The calling songs are linked
to oviposition, i.e., the males calling and the females laying eggs.
Calling songs attracted the females toward the males for mating.

4.2 Behavior of crickets and time

As noted in the previous section, crickets call to attract possible
mates. A calling song is produced in all instances of cricket pairing
highlighted in Table 1. In Section 3.2, it was stated that the calling
songs were produced throughout 24 hours. Table 1 indicates the
days the crickets were paired in the rearing area, comparing that
with the calling songs, this study notes that in all pairs, the males
produced calling songs throughout the day. This was important to
attract the females for courtship, mating, and reproduction.

In Section 3.2 it was evident that the courtship song was
produced only when the male was paired with the female cricket.
We observe that this song was produced on days 0, 1, 2, 3, 8, 9,
and 10 when the male was paired with the female as observed in
Table 1; since the song produced by males was to initiate the mating
process with the females. In the same section, we observed that
the aggression song was produced on days 3, 4, 11, and 12 when
the male was paired with the male as observed in Table 1. This
confirms that the aggression song was produced by males toward
males in-fight for dominance or territory.

4.3 E�ects of temperature and humidity on
cricket songs

As stated in Section 3.3, the distribution of courtship, calling,
and aggression songs were within a temperature range of 22.5
and 24.5◦C. This study shows that temperature and humidity
were quite influential on the type of songs produced by the
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FIGURE 7

A graphical summary of the variable’s contribution to the performance of the RF classifier in descending order. The top 6 variables were humidity,

temperature, C#, mfcc11, mfcc10, and D variables.

FIGURE 8

A graphical representation of RF classifier performance from 6 variables to 28 variables increased incrementally, and evaluated with accuracy and

F1-score.

crickets which is supported by the findings of Cheney et al.

(2018) who found out that moderate/high temperature and

humidity increased crickets’ chirping rate. This also coincides
with the findings of Doherty (1985) who found that crickets

produced more calling songs within a temperature range of
15 and 35◦C. Moreover, Niemelä et al. (2019) found that

cricket’s behavior was temperature-dependent since an increase
in temperature increased their ability to express their behavior
and vice versa. Insects’ behaviors are temperature and humidity-
dependent (Holmes, 2010; Ogah et al., 2012; Tochen et al.,
2016; Niemelä et al., 2019). This study is confident that
automatic synthesis of crickets’ songs, temperature, and humidity
using methodological (described in Section 2) machine learning
approaches can inform farmers of crickets’ health (e.g., growth
and reproduction rate Ogah et al., 2012) , and therefore increase
their production.

4.4 Training, evaluating and selecting the
best classifier

Different machine learning algorithms were trained with
single, combined, and spectrogram features. The results are
highlighted in Sections 3.4.1, 3.4.2, and 3.4.3. The results from
the combined features show that a combination of Chroma+
MFCC had the best performance when trained on RF. With
the spectrograms, ResNet152V2 was the best classifier. Generally,
image (spectrograms) features had a better performance when
trained on deep learning algorithms than numerical features
(Chroma, MFCC, LFCC, and their combinations) when trained
on shallow machine learning algorithms. This shows that deep
learning models perform better than shallow machine learning
when voluminous data is available to train the algorithms.
Therefore, this study considered ResNet152V2 as the best classifier
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FIGURE 9

Deployment of the decision support system. After every 5 min, the IoT device captures and transmits 3-second .wav files, temperature, and humidity

data to the virtual private network through a built-in WIFI module. Thereafter, after every 5 min, the system’s back end fetches the latest records (.wav

files, temperature, and humidity), preprocess them, and passes that to the pre-trained machine learning engine for prediction and the results are

rendered on the front end dashboard.

and was selected for deployment in the decision support system.
Since deep learning models do not provide a mechanism for
understanding the best variables contributing to the model
performance, we considered the best-performing shallow learning
classifier (i.e., RF) to further our understanding of feature
importance and feature selection.

4.5 Feature importance and feature
selection

In Section 3.5, it is seen that temperature and humidity had a
considerably high significance/contribution to the singing behavior
of the crickets. Temperature affects the cricket’s ability to express
its behavior (including chirping), i.e., low temperature makes
insects have few/stagnated behaviors and vice versa. The rate at
which the crickets chirp is equally influenced by moisture levels.
Higher humidity makes crickets chirp more. Overall, temperature
and humidity serve as key environmental factors that shape the
physiology, behavior, and ecological interactions of insects. In this
research, perhaps the RF machine learning algorithm deciphered
the influence of temperature and humidity on the songs produced
by the crickets and ranked them as highly significant parameters.

The 12-tonal chroma variations of the cricket songs can be
understood from the relationship between the octaves and the
frequency. Gryllus bimaculatus produces calling songs within a
frequency range of 4.7–5.7 kHz (Miyashita et al., 2016; Lankheet
et al., 2017), while the courtship song is produced within a
frequency range of 15–20 kHz (Miyashita et al., 2016). All these

frequencies can be represented in the chroma octave as is in
Table 6. Section 3.5 outlined that, C#, and D chroma tonal features
were ranked as highly significant by the RF algorithm. Looking
at the calling (4,700–5,700 Hz) and courtship (15,000–20,000 Hz)
song in the frequencies Table 6, this study notes that they are
(close to) equivalent to those of C# and D , and are indeed
part of the, target (calling, courtship, and aggression) variables
studied. Moreover, C# and D are close in the musical tonal
scale, therefore, the cricket song tones are close. Hypothetically
the lower-ranked tones, such as A# and B, are far apart in
the music tone scale compared to the favorable tones (C# and
D) and that could be the reason why they were ranked very
low as shown in Table 6. Regarding the MFCC features, this
research has not come across any study that explains how the
features are organized and gives their respective meanings of the
custom column header provided by this research. This study,
therefore, was unable to give a scientific explanation behind
the model’s selection of mfcc11 and mfcc10 variables as highly
ranked variables.

In Section 3.5, the F1-score and accuracy performance metrics
of the RF algorithm evaluated with the 6 variables improved
from 94.63% and 94.41% to 95.37% respectively, compared to
what was illustrated in Table 4. This study notes that RF had
consistent results of approximately 95% F1-score while the other
algorithms did not. Meaning RF was stable and dependable
compared to the others. Moreover, perhaps the less significant
features added to the model iteratively, continuously decreased
the performance of the RF algorithm. Therefore, 6 features gave
the best performance of the model up to 95.63% F1-score and
95.37% accuracy.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1403593
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kyalo et al. 10.3389/frai.2024.1403593

TABLE 6 The chromatic octaves 8, 9, and 10 of the 12 tonal variations in

Hz can be associated with the cricket songs tonal variations

(AudioEngineering, 2023).

Chroma tone Octave 8 Octave 9 Octave 10

C 4,186.01 8,372.02 16,744.04

C# 4,434.92 8,869.84 17,739.69

D 4,698.64 9,397.27 18,794.55

D# 4,978.03 9,956.06 19,912.13

E 5,274.04 10,548.08

F 5,587.65 11,175.30

F# 5,919.91 11,839.82

G 6,271.93 12,543.86

G# 6,684.88 13,289.75

A 7,040.00 14,080.00

A# 7,458.62 14,917.24

B 7,902.13 15,804.26

4.6 Deployment: the decision support
system

The pre-trained model discussed in the previous section
was integrated at the back end of a web-based application
as shown in Section 3.6. The main components, namely the
Internet of Things device, the front end, and the back end are
discussed below.

4.6.1 Internet of things (IoTs) device
The IoT device implemented in Section 3.6 was built on

Raspberry Pi (RaspberryPi, 2023) to capture and record sound,
temperature, and humidity using a microphone, temperature,
and humidity sensors respectively. Despite the recording of the
temperature and humidity every hour during experiments (stated
in Section 2.1), in the deployed setup, the timestamp, temperature,
humidity, and sound (in the form of a 3 seconds .wav file)
were captured after every 5 min. The timestamp, temperature,
and humidity were recorded in a CSV file stored in the virtual
machine. The name of the .wav file was appended with the
timestamp, temperature, and humidity values separated by a #
symbol. A wireless fidelity (WIFI) module was integrated into the
IoT. Through an internet connection, the files were then transferred
to a virtual machine instance in icipe’s virtual private network using
the file transfer protocol (FTP). The IoT was also designed to
store data on its local storage in cases where there is no access to
the internet but synchronize the data to the cloud servers on the
availability of the internet. Each IoT device transferred and updated
a specific folder (whose name was the unique identification number
of a farmer) in the virtual machine. Logically the folder contained
data of a specific farmer and the back and front-end web scripts
were tailored to read and process data from those folders based on
the unique identification number assigned to the farmer.

4.6.2 Back end
The pre-trained model was saved as a .h5 file and stored in

a folder. The data (.wav sound clips) stored in the folders in the
cloud servers were linked to each farmer’s account. A function
extracts the spectrogram features from the 1-second audio file and
matches that with the respective temperature and humidity in the
CSV metadata file (mentioned in Section 4.6.1). The spectrograms,
temperature, and humidity are passed to the pre-trained model
(loaded in Djangomemory) where each set of data goes through the
pre-trained model pipeline for necessary preprocessing of the data
and prediction. The predicted output is then passed to the front end
and displayed on the farmer’s dashboard; more details are discussed
in the section below.

4.6.3 Front end
The web application (icipe, 2023b) consists of the home page

that has a link to the frequently asked questions (FAQ) page and
log-in interface. Details of these pages are discussed below:

a) The Home Page: This page contains a narration of the overall
function of the system.

b) The FAQ Page: This page is intended to contain information
about frequently raised questions about the functioning system
and appropriate answers are provided.

c) Log-in Page: At the login interface, the farmer is prompted to
provide their username and password and log into the system. The
login interface also contains functionality for resetting passwords.

d) Personal Information, Dashboard, and Notification Pages: On
successful login, users are taken to the overview page where
they can (i) interpret the activities happening in their cricket
farm on a dashboard, (ii) go to the account page to edit their
personal information, and (iii) go to the notifications page and
see the raised alerts; the alerts are similar to what the farmer
receives on their registered email in real-time. To interpret the
activities happening in the cricket farm in real-time (every 5
min), the front-end system asynchronously passes (by calling an
application programming interface micro-service) the farmer’s
unique identification to the back end for processing and thereafter
waits for feedback. The feedback, i.e., the temperature, humidity,
and predicted label (calling, calling, or courtship) are displayed on
a dashboard. The dashboard’s rule-based results of temperature
and humidity were interpreted with colors. Blue means low
conditions, green means suitable conditions, and red means high
conditions. Literature provided different optimal temperature
and humidity ranges that crickets prefer. For instance, Busvine
(1955), Hanboonsong and Durst (2020), Orinda et al. (2021), and
Odhiambo et al. (2022) noted 25–35◦C, 26–34◦C, 28–32◦C, and
28–35◦C respectively as optimal temperature ranges. Whereas
Hanboonsong and Durst (2020) and Orinda et al. (2021) noted
that the optimal humidity range should be between 40–70%RH
and 60–75%RH respectively. From this information, this research
configured temperature and humidity ranges of 25–35◦C and
40–75%RH respectively in the rule-based system.

These findings offer initial insights, prompting farmers to
adjust temperature and humidity through measures such as
cooling/heating or de/humidifying the rearing area. Conversely,
the machine learning insights delve deeper. For instance,
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negative alerts, such as aggression, prompt the farmer to
immediately check the cricket-rearing area, and actions like
chasing aggressors can be taken. Positive alerts like calling
and courtship indicate good cricket health and growth. With
this information, farmers can enhance cricket production as a
viable human food source, thereby contributing to alleviating
food insecurity.

5 Conclusion

An experimental setup was created to collect the humidity,
temperature, video, and sound signals of the edible cricket,
Gryllus bimaculatus. Chroma, Mel Frequency Cepstral Coefficient
(MFCC), Linear Frequency Cepstral Coefficients (LFCC),
chroma+MFCC, chroma+LFCC, MFCC+LFCC, and spectrograms
were extracted from the sound signals. The numerical features
were fused with the weather (temperature and humidity) variables
and trained on the support vector machine, random forest, and k-
nearest neighbors machine learning algorithms. The spectrogram
features fused with temperature and humidity were trained on
CNN (EfficientNetB4, VGG16, and ResNet152V2) deep-learning
pre-trained models. Using machine learning, this study affirms
that temperature and humidity highly influence the behavior
(chirping) of crickets. Moreover, the frequencies associated with
the ranked C# and D chroma features during calling and courtship
were also identified. This shows that machine learning was able
to identify natural processes associated with insect behavior.
Furthermore, we deployed the deep-learning ResNet152V2 pre-
trained model at the back end of a web-based decision support
system. The system collected data in real-time (every 5 min) and
farmers were informed of the predicted (calling, aggression, or
courtship) output on the dashboard and notified appropriately.
Thereafter, a farmer can put in place appropriate measures (such
as cooling, humidifying, getting rid of aggressors, etc.) to avoid
the loss of the crickets and improve production. This decision
support system can be fine-tuned (by considering more cricket
phenomena labels, and wide temperature and humidity ranges)
further and adopted by cricket farmers to improve the production
of cricket as food for humans and contribute to alleviating food
insecurity.
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Vujović, Ž. et al. (2021). Classification model evaluation metrics. Int. J. Adv.
Comput. Sci. Applic. 12, 599–606. doi: 10.14569/IJACSA.2021.0120670

Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., and Kennedy, P. J. (2016). “Training
deep neural networks on imbalanced data sets,” in 2016 International Joint Conference
on Neural Networks (IJCNN) (IEEE), 4368–4374. doi: 10.1109/IJCNN.2016.77
27770

Yazgaç, B. G., Kırcı, M., and Kıvan, M. (2016). “Detection of sunn
pests using sound signal processing methods,” in 2016 Fifth International
Conference on Agro-Geoinformatics (Agro-Geoinformatics) (IEEE), 1–6.
doi: 10.1109/Agro-Geoinformatics.2016.7577694

Zamanian, H., and Pourghassem, H. (2017). “Insect identification
based on bioacoustic signal using spectral and temporal features,” in 2017
Iranian Conference on Electrical Engineering (ICEE) (IEEE), 1785–1790.
doi: 10.1109/IranianCEE.2017.7985340

Zhang, M., Yan, L., Luo, G., Li, G., Liu, W., and Zhang, L. (2021). “A novel insect
sound recognition algorithm based on MFCC and CNN,” in 2021 6th International
Conference on Communication, Image and Signal Processing (CCISP) (IEEE), 289–294.
doi: 10.1109/CCISP52774.2021.9639350

Zhang, N., and Guo, M. (2010). “Recognition of fruit fly wings vibration
sound based on HMM,” in 2010 2nd International Conference on Information
Engineering and Computer Science (IEEE), 1–4. doi: 10.1109/ICIECS.2010.567
8369

Zulko (2023). Video, Editing, Audio, Compositing, Ffmpeg. Available online at:
https://pypi.org/project/moviepy/ (accessed May 22, 2023).

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2024.1403593
https://doi.org/10.1016/j.anbehav.2006.02.022
https://doi.org/10.1371/journal.pone.0146999
https://doi.org/10.1007/s00265-019-2689-5
https://doi.org/10.1109/SPIN.2016.7566778
https://doi.org/10.3390/app9194097
https://doi.org/10.37284/eajab.5.1.834
https://doi.org/10.14738/eb.86.2020
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1007/s40857-017-0095-6
https://doi.org/10.3390/robotics6030019
https://doi.org/10.1109/ISSPA.2007.4555462
https://www.raspberrypi.com/
https://doi.org/10.1109/ICMLA.2013.24
https://doi.org/10.1016/j.jinsphys.2014.05.005
https://doi.org/10.1109/IEEECONF38699.2020.9389373
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1016/j.cois.2021.09.007
https://doi.org/10.3390/a15100358
https://doi.org/10.1111/jen.12247
https://doi.org/10.1093/aesa/69.2.299
https://doi.org/10.1146/annurev-ento-120811-153704
https://doi.org/10.1596/978-1-4648-1766-3
https://doi.org/10.14569/IJACSA.2021.0120670
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/Agro-Geoinformatics.2016.7577694
https://doi.org/10.1109/IranianCEE.2017.7985340
https://doi.org/10.1109/CCISP52774.2021.9639350
https://doi.org/10.1109/ICIECS.2010.5678369
https://pypi.org/project/moviepy/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	A convolutional neural network with image and numerical data to improve farming of edible crickets as a source of food—A decision support system
	1 Introduction
	2 Materials and methods
	2.1 Experiments setup and data collection
	2.2 Data preprocessing
	2.3 Machine learning modeling
	2.4 Deployment: the decision support system

	3 Results
	3.1 Class labels
	3.2 Behavior of crickets and time
	3.3 Effect of temperature and humidity on cricket songs
	3.4 Training and evaluating machine learning algorithms
	3.4.1 Single features in shallow learning algorithms
	3.4.2 Combined features in shallow learning algorithms
	3.4.3 Spectrograms in deep learning algorithms

	3.5 Selecting the best classifier, feature importance and feature selection
	3.6 Deployment: the decision support system architecture

	4 Discussion
	4.1 Class labels
	4.2 Behavior of crickets and time
	4.3 Effects of temperature and humidity on cricket songs
	4.4 Training, evaluating and selecting the best classifier
	4.5 Feature importance and feature selection
	4.6 Deployment: the decision support system
	4.6.1 Internet of things (IoTs) device
	4.6.2 Back end
	4.6.3 Front end


	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


