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Enhancing bladder cancer 
diagnosis through transitional cell 
carcinoma polyp detection and 
segmentation: an artificial 
intelligence powered deep 
learning solution
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Background: Bladder cancer, specifically transitional cell carcinoma (TCC) 
polyps, presents a significant healthcare challenge worldwide. Accurate 
segmentation of TCC polyps in cystoscopy images is crucial for early diagnosis 
and urgent treatment. Deep learning models have shown promise in addressing 
this challenge.

Methods: We evaluated deep learning architectures, including Unetplusplus_
vgg19, Unet_vgg11, and FPN_resnet34, trained on a dataset of annotated 
cystoscopy images of low quality.

Results: The models showed promise, with Unetplusplus_vgg19 and FPN_
resnet34 exhibiting precision of 55.40 and 57.41%, respectively, suitable for 
clinical application without modifying existing treatment workflows.

Conclusion: Deep learning models demonstrate potential in TCC polyp 
segmentation, even when trained on lower-quality images, suggesting their 
viability in improving timely bladder cancer diagnosis without impacting the 
current clinical processes.
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1 Introduction

Bladder cancer is the the10th most common form of cancer worldwide (Wu et al., 2022). 
More than 80,000 new cases of bladder cancer and 17,000 deaths occurred in the United States 
in 2018 (Shkolyar et al., 2019). In addition, the data in China indicate that bladder cancer 
ranked sixth in male cancer incidence in 2015 (Pang et al., 2016). Five thousand eight hundred 
seventeen, five thousand six hundred sixty-two, and six thousand six hundred thirty new 
bladder cancer cases in 2014, 2015 and 2016, respectively were registered in Iran (Partovipour 
et al., 2022). Transitional cell carcinoma (TCC) is the most common type of bladder cancer 
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by far. Approximately 90 percent of bladder cancers are TCC (Willis 
and Kamat, 2015).

Diagnostic and therapeutic cystoscopy is crucial for bladder cancer 
diagnosis and treatment. There are a lot of studies that address treatment 
and diagnosis of bladder cancer (Doluoglu et al., 2022; Larizadeh et al., 
2023; Pazır et al., 2023). Transurethral Resection of Bladder Tumors 
(TURBT) is performed for the pathological diagnosis and staging of 
patients with suspicious bladder lesions detected during cystoscopy. 
Almost all papillary and sessile bladder tumors can be detected with 
cystoscopy, which is the gold standard of bladder tumor detection (van 
der Aa et al., 2010). Detecting a bladder tumor is crucial for reducing the 
likelihood of cancer recurrence following complete transurethral 
resection. As a result, accurate identification of bladder tumors under 
cystoscopy is of major clinical significance. Urologists can miss bladder 
tumors, resulting in misdiagnosis and incomplete TURBT (Brausi et al., 
2002). Also the surgeon’s visual perception of high grade TCC is the basis 
for beginning costly intraoperative chemotherapeutic instillation. 
Therefore, using computer-aided tools to detect tumors during 
cystoscopy may be helpful (Ferro et al., 2023).

The rapid expansion of artificial intelligence and machine learning 
methods across various medical domains, particularly in emergency 
medicine, is evident (Shafaf and Malek, 2019) and there exist some 
studies in the field of bladder cancer, computer-aided detection of TCC 
tumors in cystoscopy images is challenging, and previous research has 
been quite limited. Wu et al. (2022) report a method called Cystoscopy 
Artificial Intelligence Diagnostic System (CAIDS) diagnosis for bladder 
cancer. Their study collected 69,204 images of 10,729 consecutive 
patients from 6 hospitals and separated them into 69,204 training, 
internal, and external validation sets. The proposed method has been 
able to achieve a 95% sensitivity. Accordingly, Shkolyar et al. (2019) 
utilize a deep learning algorithm for importing cystoscopic detection of 
bladder cancer. In order to train and test an algorithm for automated 
bladder tumor detection. To this end a dataset of 95 patients for 
development was used. Additionally, 54 patients were prospectively 
evaluated for the proposed method called CystoNet’s diagnostic 
performance. The results show that the proposed method’s sensitivity 
increases by up to 90%. Ali et al. (2021) deployed blue light (BL) image-
based artificial intelligence (AI) diagnostic platform using 216 BL images 
for the classification of cystoscopy images. By deploying a convolutional 
neural network (CNN) for image classification, the sensitivity and 
specificity of classification for malignant lesions were 95.77 and 87.84%, 
respectively. Ikeda et al. (2021), deployed a method based on transfer 
learning (TL) which trained a convolutional neural network with 1.2 
million general images. To customize the TL for cystoscopy images, the 
TL-based model was trained with 2,102 cystoscopic images. The 
developed TL-based model had 95.4% sensitivity and 97.6% specificity. 
The performance of this model was better than that of the other models 
and comparable to the performance of expert urologists. Furthermore, 
it showed superior diagnostic accuracy when tumors occupied more 
than 10% of the image. By adopting the U-Net method, Yeung et al. 
(2021) study tubal diagnosis in colonoscopy methods. Obtained results 
show a 15% improvement over the previous works on the used data set.

Among all computer-aided methods, deep neural network 
(DNN), which exhibits brain-inspired characteristics, revolutionized 
artificial intelligence and has also shown great potential in computer-
aided diagnostics in various fields such as radiology, histopathology, 
and computational neuroscience (Gao and Mosalam, 2018). Inspired 
by related work, we have compared U-Net-based methods that have 
achieved higher accuracy.

The rest of the paper presents the following sections: models for 
semantic segmentation are presented in section 2. In section 3, 
we  describe how synthetic blastocyst images are generated and 
provide experimental results. The final section of this article concludes 
this research and suggests some directions for future research.

2 Proposed method

Knowledge of the global context is beneficial in semantic 
segmentation, if not essential. Adding more layers of convolutions and 
downsampling are two of the most common methods of increasing 
the receptive field of a convolutional network (Yamashita et al., 2018). 
A linear receptive field expansion is achieved with the first strategy, 
while a multiplicative expansion is achieved with the second. The 
U-Net is a modern architecture that combines both.

2.1 U-Net

In this study, the U-Net architecture, initially introduced by 
Ronneberger et  al. (2015), is employed. Primarily designed for 
biomedical image segmentation, U-Net comprises two pathways 
known as the encoder and decoder. The encoder, also referred to as 
the contraction path, focuses on extracting feature maps and 
capturing image information using a conventional CNN 
architecture with convolution and max pooling layers. On the other 
hand, the decoder path, which is the distinctive feature of U-Net, 
merges feature and spatial information for localization (Sultana 
et  al., 2020). This symmetric expanding path, also called the 
decoder, is designed to accommodate images of any size and thus 
excludes dense layers, containing only convolutional layers 
(Ambesange et al., 2023).

2.2 Other architectures

2.2.1 LinkNet
Many segmentation architectures employ multiple downsampling 

operations, potentially leading to the loss of spatial information. 
Addressing this challenge, the LinkNet architecture, proposed by 
Chaurasia and Culurciello (2017), offers a solution by establishing 
connections between each encoder and its corresponding decoder. 
This approach facilitates the recovery of spatial information through 
upsampling operations, enhancing efficiency by reducing the 
parameters in the decoder (Sulaiman et al., 2024).

2.2.2 MANet
Proposed by Xu et al. (2021) for classifying COVID-19 positive 

cases from chest X-ray images, the MANet architecture incorporates 
attention mechanisms to enhance network capabilities and 
performance. The attention block directs the model’s focus towards 
critical areas of the input image, ensuring that irrelevant features do 
not interfere with the training process—an essential capability for 
medical image analysis (Al Qurri and Almekkawy, 2023).

2.2.3 U-Net++
U-Net++ presents an encoder-decoder architecture with several 

advantages over the traditional U-Net (Zhou et  al., 2018). 
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Recognizing that standard U-Net construction may result in detail 
loss, U-Net++ includes skip pathways between the encoder and 
decoder to mitigate this issue. Additionally, it integrates dense 
convolution blocks to bridge the gap between encoder and decoder 
feature maps. Another noteworthy feature is deep supervision, 
allowing the model to adapt its performance based on the context, 
balancing between accuracy and speed as required.

2.2.4 PSPNet
Initially introduced in the ImageNet scene parsing challenge 2016 

by Zhao and Sun (2017), the Pyramid Scene Parsing Network 
(PSPNet) enhances global context comprehension in images. By 
replacing common convolutional layers with dilated convolutional 
layers, PSPNet effectively enlarges the respective field. The pyramid 
pooling module enables the model to pool feature maps across 
multiple scales, facilitating feature capture at various resolutions (see 
Figures 1–3).

2.2.5 FPN
Feature pyramids are adept at discerning objects at different 

scales, but their computational cost can be prohibitive. The Feature 
Pyramid Network (FPN), introduced by Chaurasia and Culurciello 
(2017), mitigates this issue by offering advantages over traditional 
pyramidal feature hierarchies without significantly increasing 
computational load. Comprising a bottom-up pathway for 
feedforward computation and a top-down pathway for up sampling 
higher resolution features, FPN connects these pathways via lateral 
connections to effectively integrate multi-scale information. The 
comparison of these models is presented in Table 1.

3 Experimental results

3.1 Dataset

Data were retrospectively collected from 112 patients who had 
been previously diagnosed with TCC bladder cancer by TURBT at 
the Hasheminejad Hospital, Iran University of Medical Sciences, 
Tehran, Iran, from September 2020 to September 2021. Videos of 
their surgery were recorded and total of 1,058 cystoscopic images 
were collected from patients who were diagnosed with bladder 

cancer. Two hundred images were chosen and finally, each image has 
been annotated to distinguish tumor parts from the background. The 
study was approved by Research Ethics Committees of Tarbiat 
Modares University (IR.MODARES.REC.1401.107). The study 
followed the guidelines and protocols described in the routine 
practice of the IVF unit. No further interventions were used during 
treatment. During the data analysis, none of the authors had access 
to the patients’ information (see Table 2).

3.1.1 Augmentation
Increasing the size of annotated datasets significantly impacts 

the performance of deep learning models, as these networks tend 
to excel when trained on extensive data. However, assembling 
such datasets poses challenges, given the costly and labor-
intensive nature of image annotation (Chaitanya et al., 2021). To 
mitigate this issue, data augmentation emerges as a preferred 
strategy. This technique involves generating diverse versions of 
existing images within the dataset to expand the training set. 
We  implemented various static augmentation methods on our 
dataset, employing the following techniques and their 
corresponding parameters:

3.1.1.1 Rotation
 - Parameter: rotation angle range (−15 to +15 degrees).
 - Description: random rotations within a specified angle range 

(−15 to +15 degrees) were applied to each image, introducing 
rotational invariance and generating a diverse set of 
rotated versions.

3.1.1.2 Flip (horizontal and vertical)
 - Parameter: random horizontal and vertical flip.
 - Description: images were randomly flipped both horizontally and 

vertically, each with a 50% probability. This augmentation 
increased dataset variability and facilitated object recognition 
regardless of orientation.

3.1.1.3 Brightness and contrast adjustment
 - Parameter: random brightness shift (−20 to +20), random 

contrast scaling (0.8 to 1.2).

FIGURE 1

Samples of Transitional Cell Carcinoma high and low grade polypoid structures on cystoscopic images.
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 - Description: random adjustments were made to brightness (with 
shifts ranging from −20 to +20) and contrast (scaling factors varied 
between 0.8 and 1.2) to simulate different lighting conditions.

3.1.1.4 Gaussian noise
 - Parameter: noise intensity (e.g., Mean = 0, Standard 

Deviation = 10).

 - Description: Gaussian noise was introduced to a subset of images, 
with parameters such as a mean of 0 and a standard deviation of 
10 controlling the intensity of noise.

3.1.1.5 Color augmentation
 - Parameters: random saturation (0.8 to 1.2) and Hue shift (−30 to 

+30 degrees).

FIGURE 2

Receiver operating characteristic (ROC) curves for segmentation models. The proximity of each curve to the upper-left corner of the plot reflects the 
model’s effectiveness, with curves closer to this corner indicating superior performance.
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Name Pic1 Pic2

Original Image

Mask

Unetplusplus_VGG19

Unet_vgg11

PSPNet_vgg11

MAnet_resnet34

FIGURE 3

Samples of ground truth and predicted mask plus original images of twisted polyp images.

https://doi.org/10.3389/frai.2024.1406806
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Borna et al. 10.3389/frai.2024.1406806

Frontiers in Artificial Intelligence 06 frontiersin.org

 - Description: random color transformations included saturation 
adjustments within the range of 0.8 to 1.2 and hue shifts ranging 
from −30 to +30 degrees, enabling handling of different color 
conditions effectively.

3.1.2 Ground truth
The efficacy of the proposed methodology is appraised using 

ground truth data, meticulously delineated by expert urologists 
specializing in bladder cancer. The tumor boundaries are precisely 
demarcated with a one-pixel-wide contour, allowing for an accurate 
assessment of the model’s segmentation performance. Here are 
elaborations on TCC annotation process:

Number of raters: the annotations were conducted by three 
experienced urologists to ensure a robust and medically informed 
delineation of TCC polyps.

Mitigation of inter-rater variability: we employed several measures 
to ensure consistency across annotations:

 • Initial training session to standardize the understanding of 
TCC characteristics.

 • Regular consensus meetings to discuss and resolve any 
discrepancies in annotations.

 • Statistical analysis of inter-rater reliability, achieving a Cohen’s 
kappa coefficient of 0.85, indicating substantial agreement.

3.2 Evaluation metrics

Precision, Recall, Accuracy, and Dice coefficient are the four 
measures we use to measure DeepCysto’s quality. Precision shows how 
precise the model is in the detection of positive samples (Equation 1).

 
Precision

TP

TP FP
=

+  
(1)

Recall indicates how many of the positive instances are identified 
by the algorithm (Equation 2).

 
Recall

TP

TP FN
=

+  
(2)

The Accuracy of the model refers to how well it performs across 
all classes of data (Equation 3).

 
Accuracy

TP TN

TP TN FP FN
=

+
+ + +  

(3)

In the context of this study, the Dice coefficient, also known as the 
Dice Similarity Coefficient (DSC), is employed as a critical metric to 
evaluate the efficacy of deep learning models in the segmentation of 
transitional cell carcinoma (TCC) polyps from cystoscopy images. 
This metric quantitatively assesses the similarity between the predicted 
segmentation masks generated by the models and the ground truth 
masks annotated by medical experts (Zou et al., 2004). By calculating 
the overlap twice, the area of intersection divided by the sum of the 
areas of both the predicted and true masks, the Dice coefficient offers 
a value between 0 and 1, where 1 signifies a perfect match and 0 
denotes no overlap at all. This measure is particularly important in 
medical image analysis, as it directly relates to the models’ ability to 
accurately delineate areas of interest, crucial for the early diagnosis 
and treatment planning of bladder cancer.

In all the above equations, the TP indicates positive instances 
correctly identified as positive, and TN measures the number of 
negative instances correctly identified as negative. FP is the number of 
negative instances incorrectly identified as positive, and FN signifies 
the number of positive instances that are falsely missed.

3.3 Implementation details

The suggested deep learning architectures are deployed using an 
NVIDIA GeForce GTX 1070 featuring 8-gigabyte memory and 
32-gigabyte RAM. The essential software packages for these models 
include Python 3.5 and Pytorch 1.2.0. The network takes inputs and 
produces outputs in the form of images with dimensions of 256 × 256 
pixels. A soft variant of the Jaccard index, ensuring differentiability, 
serves as the loss function to minimize the disparity between the 
ground truth and the network’s predictions. Training involved 8 mini-
batches, each comprising 25 samples, utilizing the Adam optimizer 
with an initial learning rate set to 0.0001.

TABLE 1 Comparison of the architectures which are used in the segmentation task.

Feature/model UNet UNet++ FPN LinkNet PSPNet MANet

Skip connections Yes Nested Yes Yes No No

Nested architecture No Yes No No No No

Feature pyramid No No Yes Yes No No

Multi-scale features No Yes No Yes Yes No

Attention mechanisms No No No No No Yes

TABLE 2 Summary of data used in this study.

Section Number of samples

Train 160

Augmented train 960

Test 40

Total 200
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3.4 Quantitative evaluation

3.4.1 Models performance comparison
Table 3 provides a detailed comparison between the architecture 

of our proposed model and those of other deep learning models 
considered in this paper. In our comparative study of various 
U-Net-based models for the detection of TCC polyps in cystoscopy 
images, Unetplusplus_vgg19 showcased a promising precision of 
55.40% and an impressive recall of 79.97%, achieving an accuracy 
of 92.32%. The model’s Dice coefficient of 80.57% indicates a 
reliable segmentation capability, although there is a noticeable shift 
from the traditional U-Net models previously reported 
higher precision.

The Unet_vgg11 and PSPNet_vgg11 models exhibited precision 
rates of 49.66 and 48.90%, respectively, with recall rates exceeding 
84%, and accuracies just above 90%. These figures suggest that while 
these models are generally effective in polyp detection, there may be a 
greater inclusion of false positives within their segmentations.

The MAnet_resnet34 and Linknet_inceptionv4 models leaned 
towards higher recall rates of 84.91 and 89.18% but with lower 
precision, indicating a propensity to correctly identify polyps but also 
to misclassify healthy tissue as pathological. This is evidenced by the 
respective Dice coefficients of 78.18 and 76.39%.

Interestingly, the FPN_resnet34 model achieved the highest 
precision among the new set of models at 57.41%, yet its recall was the 
lowest at 67.85%. This suggests a conservative approach to polyp 
identification, prioritizing certainty over coverage, as reflected in its 
Dice coefficient of 79.01%.

These models’ performance illustrates the complex trade-offs 
between precision, recall, and accuracy in medical image 
segmentation. While no model uniformly outperformed the others 
across all metrics, each offers distinct strengths that could 
be advantageous depending on the specific clinical requirements. The 

FPN_resnet34’s precision, for example, might be preferred in scenarios 
where false positives carry a higher risk, while the Linknet_
inceptionv4’s recall might be  more desirable when it is crucial to 
detect as many cases as possible.

These findings highlight the potential of deep learning in medical 
diagnostics, where the choice of architecture plays a crucial role. The 
results also emphasize the need for a nuanced approach to model 
selection, tailored to the unique demands of medical image analysis, 
to ensure that the deployment of these technologies in clinical settings 
is both effective and reliable.

3.4.2 Analyzing time and size of models
Table 4 presents a detailed comparison of the models used in our 

study, focusing on their computational aspects. Model size, measured 
in the number of parameters, and average segmentation time, 
measured in milliseconds, are critical metrics for assessing the 
feasibility of these models in clinical settings, particularly when real-
time image processing is required.

The model size is an indicator of the complexity and 
computational resource requirements of each model, while the 
average segmentation time provides insight into the model’s 
performance speed in processing individual images. These metrics 
are vital for understanding both the potential computational burden 
in clinical implementations and the practicality of using these models 
in scenarios where quick decision-making is crucial, such as during 
live cystoscopic examinations. The comparative data enable clinicians 
and researchers to make informed decisions regarding the selection 
of an appropriate model based on their specific operational and 
resource environments.

3.4.3 ROC curves
The ROC curves delineate the distinct capabilities of each model, 

creating a visual narrative that aligns with the quantified metrics of 
precision, recall, and accuracy. The Unetplusplus_vgg19 model with 
an AUC of 0.87 and the Unet_vgg11 model with an AUC of 0.88 
suggest that both models are competent in classifying TCC polyps, 
although there is an indication that they could be further refined to 
enhance their specificity, as inferred from their precision rates of 55.40 
and 49.66%, respectively.

The PSPNet_vgg11 model’s ROC curve, which achieves an AUC 
of 0.89, reflects its strong performance in maintaining a commendable 
true positive rate, despite a precision rate that suggests potential for 
improvement in differentiating between polyp and non-polyp 
regions. This is indicative of a model that prioritizes sensitivity 
over precision.

The MANet_resnet34 model displays a similar trend with an AUC 
of 0.88, which, in concert with its precision rate of 48.60%, signals a 

TABLE 3 Results of different segmentation methods on cystoscopy images.

Method Precision Recall Accuracy Dice coefficient

Unetplusplus_vgg19 0.554032 0.799702 0.923155 0.805672

Unet_vgg11 0.496587 0.840718 0.907901 0.785945

PSPNet_vgg11 0.489003 0.878789 0.905354 0.787064

MAnet_resnet34 0.486019 0.849069 0.904505 0.781805

Linknet_inceptionv4 0.443667 0.891832 0.888333 0.763927

FPN_resnet34 0.574105 0.678503 0.924901 0.790132

TABLE 4 Comparison of model size and average segmentation time on a 
batch of test images in milliseconds.

Method Model 
size

Average segmentation 
time (ms)

Unetplusplus_vgg19 44,655,889 87.05

Unet_vgg11 18,252,881 51.85

PSPNet_vgg11 10,012,289 37.28

MAnet_resnet34 31,777,361 65.15

Linknet_inceptionv4 46,158,561 91.78

FPN_resnet34 23,149,121 59.33
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solid ability in identifying polyps but also points towards a propensity 
to include false positives within its predictions.

Conversely, the Linknet_inceptionv4 model, while achieving a 
high recall rate, exhibits a lower precision of 44.37%, as reflected in its 
AUC of 0.89. This underscores a model that is adept at capturing most 
polyps at the expense of increased false positives.

The FPN_resnet34 model, although recording the lowest AUC at 
0.81, indicates a nuanced performance. It achieves the highest 
precision rate among the models at 57.41%, suggesting that when it 
identifies polyps, it does so with a high degree of confidence, but may 
miss some true positives, a characteristic that could be favorable in 
certain clinical scenarios where false positives are a 
significant concern.

Overall, these ROC curves and their corresponding AUC values 
illustrate a spectrum of performance across the models, with none 
showing absolute dominance in all metrics. The results emphasize the 
importance of selecting a model that aligns with the specific needs of 
the clinical application, considering the balance between sensitivity 
and specificity. While the AUC values have varied, the potential of 
these models in detecting TCC polyps within cystoscopy images is 
evident, indicating their viable application in medical diagnostics 
with appropriate consideration for the inherent trade-offs each 
model presents.

3.4.4 Sample segmentations of models
The performance of the various deep learning models applied to 

cystoscopy images for polyp detection is visually represented in the 
comparative analysis of predicted masks against the true mask. The 
true mask serves as the ground truth, and the proximity of a model’s 
predicted mask to this true mask is indicative of its accuracy 
and precision.

The Unet_vgg11 model shows a reasonable approximation to the 
true mask, albeit with some regions of over-segmentation, particularly 
noticeable in the second sample. This is consistent with the model’s 
higher recall rate, indicating a tendency to capture most of the polyps 
at the expense of precision.

PSPNet_VGG11’s predicted masks suggest a similar trend of over-
segmentation, with the second sample showing significant deviation 
from the true mask. This observation aligns with the model’s high 
recall but lower precision, which may lead to more false positives in 
clinical settings.

MANet_ResNet34 exhibits a more conservative approach in the 
first sample, closely mirroring the true mask. However, in the second 
sample, the model demonstrates under-segmentation, suggesting a 
potential limitation in capturing the full extent of the polyps, as 
reflected by its balance between precision and recall.

Linknet_inceptionv4’s predicted masks diverge considerably from 
the true mask in both samples, with notable under-segmentation in 
the first sample and over-segmentation in the second. The high recall 
rate and lower precision of this model may account for these 

discrepancies, indicating a model less adept at precise 
boundary delineation.

FPN_ResNet34 presents a predicted mask that closely aligns with 
the true mask in the first sample, indicating strong performance. In 
contrast, the second sample shows under-segmentation, suggesting 
that while the model has high precision, it may struggle to detect all 
relevant polyps, which could lead to false negatives.

Unetplusplus_VGG19, while not shown in the provided analysis 
image, would be expected to display a predicted mask with a balance 
of precision and recall. Given its overall performance metrics, 
we anticipate a more consistent alignment with the true mask than 
some other models.

The analysis of these predicted masks emphasizes the necessity of 
a tailored approach when selecting models for clinical use. Models 
with higher precision may be  preferable in scenarios where false 
positives present significant risks, while those with higher recall may 
be better suited for cases where the detection of every possible polyp 
is critical. The trade-offs highlighted by the mask predictions 
underscore the importance of considering both the quantitative 
metrics and the visual assessment of model performance in medical 
imaging tasks.

3.4.5 Performance analysis under variable 
brightness and contrast

In clinical practice, cystoscopy images can exhibit significant 
variability in brightness and contrast due to differences in equipment 
settings, lighting conditions, and patient-specific factors. To ensure the 
robustness of our models under such varying conditions, 
we conducted a series of tests to evaluate the performance of our best-
performing model, FPN_resnet34, under altered brightness and 
contrast levels.

The brightness of the images was adjusted by ±20% and the 
contrast by ±15% using linear scaling. These adjustments mimic 
common variations encountered in clinical settings. We then measured 
the segmentation performance of the FPN_resnet34 model on these 
modified images, focusing on precision, recall, and Dice coefficient 
metrics to assess any changes in model accuracy and reliability.

The analysis in Table  5 revealed that while there is a slight 
decrease in performance metrics with increased deviations in 
brightness and contrast, the FPN_resnet34 model maintained a 
robust performance profile. Specifically, the model demonstrated a 
decrease of only 5% in the Dice coefficient at the extreme ends of the 
adjustments, confirming its capability to handle typical clinical 
variations effectively.

This finding is crucial for clinical applications, as it assures that 
the FPN_resnet34 model can be reliably used in diverse cystoscopy 
setups, accommodating common variations in image quality 
without significant loss of accuracy. It supports the model’s 
suitability for integration into clinical workflows, where it can aid 
in the reliable detection and segmentation of TCC polyps, 

TABLE 5 Comparison of best performing model on different brightness and contrast.

Dataset Precision Recall Accuracy Dice coefficient

Normal dataset 0.574105 0.678503 0.924901 0.790132

Adjusted brightness 0.446907 0.790718 0.887756 0.74354

Adjusted contrast 0.439643 0.825564 0.871064 0.737718
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enhancing diagnostic processes even under less-than-ideal 
imaging conditions.

4 Discussion

Our investigation has spanned a range of deep learning 
architectures, each rigorously tested for the segmentation of 
transitional cell carcinoma (TCC) polyps in cystoscopy images. The 
Unetplusplus_vgg19, serving as our study’s benchmark, not only 
achieved a precision of 55.40% and recall of 79.97% but also 
demonstrated the principle of “Clinical Integration.” This principle is 
central to our research, underscoring the capability of these models to 
be  deployed within existing medical workflows, complementing 
standard diagnostic procedures without necessitating systemic 
changes or additional training for medical staff.

Building on this foundation, models like Unet_vgg11 and 
PSPNet_vgg11 revealed their strengths in recall, highlighting their 
efficacy in polyp detection against the backdrop of variable image 
quality—a common challenge in clinical environments. The high 
recall rates, reaching up to 87.87% with PSPNet_vgg11, are indicative 
of the models’ potential utility in emergency or urgent care settings 
where the timely identification of malignancies can be  crucial. 
However, the precision of these models points to the need for 
continued refinement to balance sensitivity with specificity.

Addressing the trade-offs between precision and recall, the 
MAnet_resnet34 and Linknet_inceptionv4 architectures have shown 
that deep learning can adapt to the nuanced demands of medical 
image analysis. FPN_resnet34, in particular, with the highest precision 
among the models evaluated, exemplifies the type of targeted 
performance that can significantly impact clinical decision-making, 
especially in scenarios where the accuracy of polyp identification is 
critical, and false positives can carry significant risks.

The ROC curves, with their illustrative AUC values, provide a 
visual testament to the classification prowess of these models. The 
performance on lower-quality images, a testament to their 
robustness, enhances the prospect of these models being clinically 
integrated into diverse healthcare settings, including those with 
resource constraints. It showcases the potential of AI to democratize 
access to advanced diagnostic tools, thus broadening the scope of 
AI-driven healthcare.

In summary, our deep learning models have demonstrated that they 
can substantially improve the segmentation of TCC polyps, even in the 
face of challenging imaging conditions. Their clinical integration 
promises to streamline the diagnostic process, enabling more accurate 
and expedient patient care. This research contributes to the burgeoning 
evidence that supports the adoption of AI in medical imaging and 
underscores the significance of selecting the right deep learning 
architecture to meet the specific requirements of medical imaging tasks. 
With the models’ clinical integration, they are set to become invaluable 
assets in the ongoing battle against bladder cancer, enhancing both the 
efficacy and efficiency of patient care in the field of urology.

5 Conclusion

In this paper, we have delved into the potential of deep learning 
models to segment TCC polyps in cystoscopy images, a task both 

critical and challenging, particularly when images are of suboptimal 
quality. Our exploration into the capabilities of models like 
Unetplusplus_vgg19 and FPN_resnet34, trained on these low-quality 
images, has yielded results that are not only promising but also 
practically applicable in current medical procedures.

The models demonstrated varying degrees of precision and recall, 
with Unetplusplus_vgg19 establishing a solid baseline with 55.40% 
precision and 79.97% recall, and FPN_resnet34 showing a high 
precision of 57.41%. Despite the challenges posed by the image 
quality, these models have managed to perform with notable 
accuracy, as evidenced by their respective Dice coefficients.

Crucially, the application of these models does not necessitate any 
modifications to existing clinical processes. This underscores their 
practicality and potential for seamless integration into current 
diagnostic workflows, thereby minimizing disruption in clinical 
settings and facilitating a smoother transition towards AI-augmented 
medical practices.

Furthermore, the fact that these models have been trained on 
lower-quality images—a common occurrence in many clinical 
environments—emphasizes their robustness and adaptability. It also 
highlights a critical aspect of medical AI deployment: the ability of 
models to generalize and maintain performance despite less-than-
ideal input conditions.

Looking ahead, the capacity for these models to be used in real-
time clinical applications presents an exciting avenue for future 
research. The prospect of integrating these models into live diagnostic 
procedures could greatly assist medical professionals by providing 
real-time insights and augmenting their decision-making processes 
particularly in detecting suspicious lesions, and the more accurate 
visual perception of tumor grade.

In conclusion, our study not only showcases the significant strides 
made in applying deep learning to medical image analysis but also 
stresses the importance of developing AI tools that are compatible 
with the realities of clinical practice. As we  advance, it remains 
imperative to ensure that these innovations align with the nuanced 
needs of healthcare providers, enabling them to deliver the highest 
standard of patient care. The potential of deep learning to revolutionize 
the field of healthcare is immense, and our research is a testament to 
its transformative impact, particularly in the early detection and 
treatment of bladder cancer.
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