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Grammar-constrained decoding
for structured information
extraction with fine-tuned
generative models applied to
clinical trial abstracts

David M. Schmidt* and Philipp Cimiano

Center for Cognitive Interaction Technology (CITEC), Technical Faculty, Bielefeld University, Bielefeld,

Germany

Background: In the field of structured information extraction, there are typically

semantic and syntactic constraints on the output of information extraction

(IE) systems. These constraints, however, can typically not be guaranteed

using standard (fine-tuned) encoder-decoder architectures. This has led to the

development of constrained decoding approaches which allow, e.g., to specify

constraints in form of context-free grammars. An open question is in how far an

IE system can be e�ectively guided by a domain-specific grammar to ensure that

the output structures follow the requirements of a certain domain data model.

Methods: In this work we experimentally investigate the influence of grammar-

constrained decoding as well as pointer generators on the performance

of a domain-specific information extraction system. For this, we consider

fine-tuned encoder-decoder models, Longformer and Flan-T5 in particular,

and experimentally investigate whether the addition of grammar-constrained

decoding and pointer generators improve information extraction results. Toward

this goal, we consider the task of inducing structured representations from

abstracts describing clinical trials, relying on the C-TrO ontology to semantically

describe the clinical trials and their results. We frame the task as a slot filling

problem where certain slots of templates need to be filled with token sequences

occurring in the input text. We use a dataset comprising 211 annotated clinical

trial abstracts about type 2 diabetes and glaucoma for training and evaluation.

Our focus is on settings in which the available training data is in the order of a

few hundred training examples, which we consider as a low-resource setting.

Results: In all our experiments we could demonstrate the positive impact

of grammar-constrained decoding, with an increase in F1 score of pp 0.351

(absolute score 0.413) and pp 0.425 (absolute score 0.47) for the best-performing

models on type 2 diabetes and glaucoma datasets, respectively. The addition of

the pointer generators had a detrimental impact on the results, decreasing F1
scores by pp 0.15 (absolute score 0.263) and pp 0.198 (absolute score 0.272) for

the best-performing pointer generator models on type 2 diabetes and glaucoma

datasets, respectively.

Conclusion: The experimental results indicate that encoder-decoder

models used for structure prediction for information extraction tasks in

low-resource settings clearly benefit from grammar-constrained decoding

guiding the output generation. In contrast, the evaluated pointer generator

models decreased the performance drastically in some cases. Moreover,

the performance of the pointer models appears to depend both on
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the used base model as well as the function used for aggregating the attention

values. How the size of large language models a�ects the performance benefit

of grammar-constrained decoding remains to be more structurally investigated

in future work.

KEYWORDS

grammar-constrained decoding, structured information extraction, clinical trials, deep

learning, generative large language models, PICO, evidence-based medicine

1 Introduction

The increasing success of large languagemodels on a wide range

of tasks together with their wide availability has inspired a number

of approaches in structured information extraction as well as other

tasks requiring a structured prediction, e.g., event extraction (Lu

et al., 2021), syntactic and semantic parsing (Roy et al., 2024),

symbolic expression generation like SMT formulas (Pan et al., 2023;

Sun et al., 2023) or SQL query generation from text (Scholak et al.,

2021; Lin et al., 2020).

With structured output, we refer to output structures that go

beyond a linear sequence, that is, representing a tree, graph or

some other kind of nested structure as output. Many application

areas have strict requirements on the structure of the corresponding

output and it is key to ensure that the output is valid w.r.t. some pre-

defined data model. However, the validity w.r.t. those constraints

on the output sequence typically cannot be guaranteed using vanilla

generative large language models (Sun et al., 2023; Roy et al., 2024).

This is the case because the validity of tokens w.r.t. those constraints

is not reflected in the standard unconstrained greedy or beam

search decoding approaches. Typically, the output is determined

by how likely the model considers specific tokens to be in specific

positions. However, these predictions can be sometimes wrong or

violate output constraints, in the worst case rendering the entire

output to be invalid. This is especially relevant when the output

needs to be parsed or executed, like when generating code or

formulas, e.g., SMT formulas (Pan et al., 2023; Sun et al., 2023) or

SQL queries (Scholak et al., 2021; Lin et al., 2020). In those domains,

“almost correct” is usually equivalent to invalid and wrong, as

those outputs are then commonly simply rejected by the parsers

or execution engines after generation. Related work like Sun et al.

(2023); Roy et al. (2024) also shows that this is an actual problem

and that validity rates even of the most recent language models are

far from perfect for applications where it is important to strictly

follow a certain grammar.

It is thus an important goal to ensure that the output of a model

follows a certain semantic and syntactic structure. As one solution

we can consider grammar-constrained decoding approaches that

ensure that the decoded structure follows the (production)

rules of a given (semantic) grammar. In this paper, we thus

Abbreviations: C-TrO, clinical trial ontology; CFG, context-free grammar;

EBM, evidence-based medicine; GT, ground truth; IE, information extraction;

LED, longformer-encoder-decoder; MAD, mean absolute deviation; PICO,

patient, intervention, comparison, outcomes; RCT, randomized controlled

trial; SQL, structured query language; T5, text-to-text transfer transformer.

experimentally investigate the impact of a grammar-constrained

decoding approach on the well-formedness and correctness of the

output of structured information extractionmodels. We investigate

this impact in the context of fine-tuned large language models

that rely on a supervised setting to adapt the model parameters

by optimizing parameters on the basis of a given labeled dataset.

Further, our focus is on what we call low-resource settings by which

we denote settings in which at most 500 training examples are

available (compare Roy et al., 2024) and where the number of

model parameters is less than 500 million parameters. The first

restriction matches typical information extraction settings which

rely on human-labeled text examples that are costly to obtain.

The second restriction corresponds to situations where models are

trained on standard hardware.

The low-resource setting we consider in this paper is of practical

relevance. First, the training of large models requires substantial

energy resources and generates a corresponding carbon footprint

(Strubell et al., 2019; George et al., 2023), such that reducing energy

consumption by models with a smaller footprint is an important

goal. Second, in many settings, pre-trainedmodels are used in zero-

shot or few-shot settings, but they are not fine-tuned to a specific

problem due to the large costs and resources needed for that.

Nevertheless, in order to produce domain-adapted performance, it

is important to optimize models on the actual target task, so fine-

tuning is still an important paradigm. Yet, when fine-tuningmodels

on a particular task, it remains a larger challenge to manually

annotate thousands of examples. In many cases, resources available

for annotating data for research tasks are limited. Especially in

the biomedical domain as we consider in this paper, requiring

scarcely available domain expertise for the annotation of texts,

it is rare to find datasets with several thousands of annotated

documents. For instance, the well-known Genia corpus (Kim et al.,

2003) features 1, 999 annotated abstracts. Biomedical named-entity

recognition and entity linking corpora like MedMentions (Mohan

and Li, 2019) contain around 4, 000 abstracts, and biomedical

text summarization datasets like MeQSum (Abacha and Demner-

Fushman, 2019) comprise 1, 000 summarized health questions.

Additionally, the BLUE benchmark (Peng et al., 2019) contains

corpora with different sizes, ranging from 64 to 11, 232 examples.

However, the second largest dataset with 5, 203 already contains

considerably fewer examples. All in all, biomedical datasets in

general and more specialized clinical datasets in particular tend to

be comparably small.

Taken together, the considered low-resource setting assuming

models to be in the order of hundreds of millions of parameters and

hundreds of training examples is of practical value and relevance.
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In this setting, we empirically investigate the impact of a domain-

specific grammar that is used at decoding time to ensure that output

structures meet well-formedness criteria.

In the slot-filling information extraction paradigm we consider,

where a template structure must be filled with slots extracted from

the text, an important constraint is that the elements of the slots

actually come from the original text. In fact, when using generative

models, there is the risk that themodel “hallucinates” slot fillers that

were never mentioned in the text. Thus, in addition to considering

decoding following a domain-specific grammar, we also consider

the impact of pointer generators that additionally use the attention

to the input tokens at each output step and thus allow a model to

“copy” from the input more directly.

Given this motivation, in this article, we pose three research

questions:

RQ1. Impact of grammar-constrained decoding: How does

grammar-constrained decoding (GCD) affect the

performance of fine-tuned large language models in

low-resource settings compared to greedy decoding

(noGCD) w.r.t. structured information extraction tasks?

RQ2. Combining grammar-constrained decoding with pointer

generators: Does the combination of grammar-constrained

decoding with pointer generators improve results?

RQ3. Performance of different attention aggregation strategies:

Which attention aggregation method (ptr-sum/ptr-

max) works best for pointer generators combined with

grammar-constrained decoding?

The specific application domain we consider in our paper is

structured information extraction in the clinical trial domain. In

particular, we focus on the extraction of PICO-related information

from abstracts describing the results of randomized clinical trials

(RCTs). Hereby, PICO refers to Patient, Intervention, Comparison

andOutcomes, representing the key concepts relevant in describing

the results of a randomized clinical trial (Schardt et al., 2007;

Richardson et al., 1995).

Taken together, to the best of our knowledge, our work

contributes novel insights w.r.t. the benefits and drawbacks of using

grammar-constrained decoding and pointer generators with fine-

tuned generative large language models in low-resource settings.

Our paper features the following contributions:

• We show the positive impact of grammar-constrained

decoding on generative LLMs fine-tuned for structured

information extraction in a low-resource setting, improving

F1 scores from 0.062 to 0.413 and from 0.102 to 0.47 for type 2

diabetes and glaucoma datasets, respectively.

• We show that adding pointer generators on top of grammar-

constrained decoding has a negative impact on the

performance, decreasing F1 scores from 0.413 to 0.263

and from 0.47 to 0.292 for type 2 diabetes and glaucoma

datasets, respectively.

• We investigate the influence of different attention aggregation

strategies (determining what to do with the attention values if

a token occursmultiple times in the input) on the performance

of pointer generators, considering the sum and the maximum

function in particular. We show that the choice depends on

the basemodel, as themaximum function generates the overall

best results in this category, but only if paired with the led-

base-16384model, whereas it yields the worst results when

used together with the flan-t5-base. In contrast, the sum

function achieves comparable although not the best scores for

both tested base models.

• An ablation experiment with a larger model analyzes the

influence of model size on the benefits reached via grammar-

constrained decoding, showing that the performance

improvements persist or even increase when using larger

models, suggesting that the model size alone does not solve

the problem of LLMs not always sticking to the desired output

specification.

In the following, we first discuss how this paper is embedded

into related work (Section 2) before discussing the methods

presented in this paper and modifications applied to the base

models (Section 3). Afterwards, the conducted experiments and

used datasets are described in detail in Section 4. The results of

those experiments are then reported in Section 5 and discussed

w.r.t. the research questions in the following Section 6. Finally, we

conclude our findings with a conclusion (Section 7).

2 Related work

Many natural language processing tasks require structured

output, including event extraction (Lu et al., 2021), syntactic and

semantic parsing (Roy et al., 2024), symbolic expression generation

like SMT formulas (Pan et al., 2023; Sun et al., 2023) or generating

SQL queries (Scholak et al., 2021; Lin et al., 2020), which have a

clearly defined syntax. Additionally, except for Lin et al. (2020),

pointer generators are rarely evaluated in related work whereas this

is a main focus of our work.

Because of the typically strict constraints on the output

structure, various types of constrained decoding algorithms have

evolved over the years, e.g., by pruning invalid tokens in beam

search algorithms (Anderson et al., 2017), incremental parsing

techniques (Scholak et al., 2021) or trie-based constraints (Cao

et al., 2021; Lu et al., 2021). These kinds of constraints, however, are

different in multiple ways from the flexible generalized grammar-

based approach that is pursued in this paper. For example, the

trie-based constrained decoding for event extraction proposed by

Lu et al. (2021) is used to generate trie-like structures to capture

event structures present in a given text with generative models.

The structural properties are, however, not generalized to the

level where constraints of the desired structure can be flexibly

formulated as grammar rules. Nevertheless, the approach and

the trie-like structure closely resemble parse trees, such that the

approach is a specific instance of themore general approach that we

examine in this paper, relying on context-free grammars to guide

decoding.

Along these lines, recent work by Geng et al. (2023) has

examined the impact of using a context-free grammar and

Grammatical Framework (Ranta, 2019) for constrained decoding,

aiming to provide a unified approach to address various kinds

of structures required in different domains and tasks. While they
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have focused on pre-trained models, our work specifically focuses

on investigating the impact of grammar-constrained decoding in

fine-tuning settings.

The effect of constrained decoding has been evaluated with

respect to fine-tuned models on tasks other than information

extraction, that is on the task of generating SQL queries (Scholak

et al., 2021). Stengel-Eskin et al. (2024) have presented an approach

to convert ambiguous natural language descriptions into logic

formulas and code, but considering zero- and few-shot settings

instead of fine-tuning settings as considered in our work.

While Pan et al. (2023) do not use constrained decoding, they

instead explore the effect of self-refinement in case of symbolic

reasoner parsing errors on the validity of the generated logic

formulas. Roy et al. (2024) propose a benchmark consisting of

syntactic and semantic parsing tasks and evaluate it on a range of

models, both fine-tuned and non-fine-tuned models as well as with

and without grammar constraints. Compared to this work, neither

the clinical domain nor structured information extraction are in the

focus of their evaluations nor are pointer generators considered as

a supporting mechanism in detail.

In conclusion, our work follows the lines of Geng et al. (2023),

Lu et al. (2021), and Roy et al. (2024) by testing the benefit of

grammar-constrained decoding in NLP settings. In contrast to

previous work, we investigate the impact of grammar-constrained

decoding in a fine-tuning setting and in particular on the task

of structured information extraction, focusing on low-resource

settings. The impact of grammar-constrained decoding has not

been investigated in low-resource settings before.

With respect to the biomedical and clinical domain, various

approaches have been proposed for tasks like relation extraction

(Jiang and Kavuluru, 2023; Kim and Meystre, 2020), question

answering (Wang et al., 2020), named entity recognition (Stylianou

et al., 2021) or event extraction (Wang et al., 2020; Ramponi

et al., 2020; Zhu and Zheng, 2020; Huang et al., 2020; Trieu et al.,

2020). Some approaches and models even aim to detect and extract

information from (randomized) clinical trial abstracts, e.g., slot

fillers (Papanikolaou et al., 2022) or clinical trial outcomes (Abaho

et al., 2022b,a, 2021; Ganguly et al., 2021). Taken together, all of

the listed examples either deal with a different task, do not work

in a sequence-to-sequence manner as our approach does, or lack

the nested structure and dependencies of Patient, Intervention,

Comparison, Outcomes (PICO) templates and slots that are dealt

with in this paper.

Considering the latter, this work represents randomized

controlled trials (RCTs) in a structured way using the already

mentioned Patient, Intervention, Comparison, Outcomes (PICO)

framework (Schardt et al., 2007; Richardson et al., 1995). This

framework consists of templates with corresponding slots, which

can be filled with either textual data or again with template

instances. In contrast to our approach, most related work like

Schmidt et al. (2020) and Zhang et al. (2020) treats PICO

elements as flat classes, i.e., parts of sentences which are just

labeled, e.g., P or I. In contrast, our approach treats PICO

elements as nested structures in order to do justice to the complex

information that is presented in those elements. In particular, we

structure the information by means of templates with slots that

have to be filled with some portion of text or other template

instances, thus creating a nested structured representation of the

PICO information. Furthermore, there are also some approaches

(Whitton and Hunter, 2023; Dhrangadhariya et al., 2021) which

aim to generate more structured representations of the PICO

information in RCT abstracts, but differ in terms of architecture

and decoding approaches additionally to the structures generated

still being less complex than the recursive template structure we use

in this paper.

3 Methods

In this section, we describe how we approach the structured

information extraction task and describe two aspects that we

add to the “raw” sequence-to-sequence model, namely grammar-

constrained decoding and pointer generator-like behavior. This is

also illustrated in Figure 1.

3.1 Task

In this paper, we tackle the task of structured information

extraction from RCT abstracts. We do this in a sequence-to-

sequence manner by providing an abstract as input and expecting

structured results in terms of the C-TrO ontology (Sanchez-Graillet

et al., 2019) as an output. The information extraction task is framed

as a slot-filling approach in this paper. In such a task, the templates,

i.e., collections of slots, which are defined by the C-TrO ontology,

need to be filled using text from an RCT abstract. A slot can be

filled with one of two types of slot-fillers, with the type depending

on which slot of a template is filled: text from the RCT abstract

or a (nested) instance of another template. The grammar used to

represent and linearize the different parts of the C-TrO ontology

is the one from (Witte et al., 2024). An example is illustrated in

Figure 2.

3.2 Baseline

As a baseline, the dataset comprising pairs of an abstract and

the corresponding linearized C-TrO ontology representation is

used to fine-tune a sequence-to-sequence model for the specific

task. For this purpose, a encoder-decoder model is fine-tuned “as-

is” without any of the modifications presented in the remainder

of this section. The baseline will also be called basic in

the following.

In order to formally define the decoding methods as well as the

pointer generator-like behavior later, we first have to define some

general notation for vectors and matrices and how to access their

values. This notation is inspired by the way NumPy (Harris et al.,

2020) arrays are accessed.

Let Ev ∈ R
d be a d-dimensional vector the elements of which

are accessed using square brackets, i.e., Ev[i] with 0 ≤ i ∈ N < d

to retrieve the i-th element of Ev. Similarly, let M ∈ R
d1×···×dn be

an n-dimensional matrix with di ∈ N values in each dimension

1 ≤ i ∈ N ≤ n. In order to access a single element of the matrix, an

index for every dimension ofM has to be given via bracket notation:

M[j0, . . . , jn] with 0 ≤ jk ∈ N < dk for every 1 ≤ k ∈ N ≤ n. To

access larger parts of a matrix, : can be used instead of an index
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FIGURE 1

Illustration of the baseline model as well as the two adjustments added to that baseline, grammar-constrained decoding and pointer generator-like

behavior. Words in boxes represent single tokens, numbers below those boxes symbolize outputs from the decoder, where higher values stand for a

higher probability that this is the best next token as estimated by the model. For greedy decoding, the token with the highest value is chosen. For

GCD, a filter is applied before, visualized as gray, crossed-out boxes for tokens that are filtered out. Red boxes show the selected token. (A) Greedy

decoding (baseline, basic). (B) Grammar-constrained decoding (GCD). (C) Pointer generators + grammar-constrained decoding (ptr).

A B

FIGURE 2

Illustration of a linearized intervention template instance (Witte et al., 2024). The nested template instance as shown in (A) is linearized to a flat string

as shown in (B), adding start and end tokens for both textual and complex, nested slots.

to indicate that all values in that dimension are selected instead of

just a single element of it. With this notation in mind, we can now

define the used decoding algorithms in the following.

For the baseline, we use an unconstrained greedy decoding,

called noGCD, which always chooses the token with the highest

corresponding value from the final distribution regardless of any
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constraints. Let dist be the final token distribution created by the

model, then this means:

nextToken = argmax
i

dist[i] (1)

3.3 Grammar-constrained decoding

In the grammar-constrained decoding approach we rely on

a decoding approach that ensures that the production rules of a

given context-free grammar are enforced. For decoding, we thus

use a grammar-constrained decoding algorithm, denoted as GCD,

whichmasks the vocabulary in every step based on the possible next

tokens determined by the given context-free grammar.

Concretely, this means the following: Let accepted be the set of

tokens which are valid according to the context-free grammar used

by the decoding algorithm and represented by their token id, i.e.,

their index in the tokenizer vocabulary V. Then the vocabulary or

distribution mask is defined as follows:

mask ∈ (R ∪ {−∞})|V| mask[i] =

{

0 if i ∈ accepted

−∞ otherwise
(2)

The next token is then determined using the masked token

distribution:

nextToken = argmax
i

(

dist[i]+mask[i]
)

(3)

In practice, this is implemented using the Lark parsing toolkit

(Shinan, 2024) together with the core grammar which can be

found in Supplementary material. The decoding phase consists of

two parts. First, the model output sequence is generated using

grammar-constrained decoding as described above. As a second

step, the generated output sequence is parsed, returning a parse tree

which is then further processed to build template instances from

that parse tree, which can then be evaluated.

The first decoding phase is implemented by utilizing the Lark

interactive parser, which is available when using the LALR parsing

mode (DeRemer, 1969). The next possible tokens corresponding

to the look-ahead become accessible and can be utilized to create

the token distribution mask described above. As no backtracking

mechanism is currently implemented in the decoding algorithm,

the used grammar needs to be defined in a way which allows

to unambiguously decide for the correct token in a single

step, as reverting a previous decision based on later tokens

is currently not possible. After decoding, the regular parsing

mode can then be used to create an actual parse tree from the

generated output.

In our structured information extraction task and in order to

keep the decoding process as efficient as possible, the first decoding

phase using the interactive parser features the core grammar with

a simple definition of the free-text non-terminal POINT. This

definition only avoids matches of [start: and [end: in order

to prevent errors related to the special tokens indicating boundaries

of slots and templates in the linearization. As this decoding process

can by construction only generate valid tokens in each step, no

further validation is necessary here.

In contrast, the second phase, which can also be used

separately to parse stored linearizations in order to reconstruct the

corresponding template instances, uses a more restrictive definition

of the free text non-terminal POINT. In this phase, the definition of

POINT is constructed from the tokenizer vocabulary in such a way

that greedy matching is applied in case there are multiple possible

tokenizations for a string. Considering the typically thousands

of tokens in a tokenizer vocabulary, this increases the size of

the resulting grammar substantially, but in exchange ensures a

meaningful parse tree even for different tokenizers.

3.4 Pointer generators

The second adjustment made to the baseline method is adding

pointer generator-like behavior. Therefore, this category of models

will be called ptr in the following, or more precisely ptr-max

when using the maximum function and ptr-sum when using the

sum function for aggregation of the attention values when some

token occurs multiple times in the input. Adding pointer generator-

like behavior is intended to help the model copy tokens from the

input, which is an important part of the considered information

extraction task.

More concretely, we add a linear layer followed by a sigmoid

activation as well as a slightly different method to calculate the

final distribution over the token vocabulary. The method works

in a similar fashion to the pointer generator described by See

et al. (2017) and Deaton et al. (2019), but relying on a different

architecture described in more detail below.

For this purpose, we define the calculation of the token

distribution for ptrmodels as follows: Let l be the latest prediction

logits in a generation step (omitting the dimension for batching) of

the generative model and distgen = softmax(l) the corresponding

classical generative token distribution. Moreover, let pgen ∈ [0, 1]

be the output of an additional linear layer with sigmoid activation

applied to it afterwards. pgen is the fraction to which the classical

token distribution influences the final token distribution. The

pointer distribution will instead be multiplied with 1− pgen.

Now, let C ∈ R
heads×inputTokens be the normalized (i.e., the

sum of all values of a head is 1) values of the last cross-attention

layer of the latest generation step with heads attention heads and

inputTokens input tokens. We then first calculate the mean over all

attention heads, i.e., Ec = 1
heads

∑heads−1
i=0 C[i, :].

Ec is, however, a distribution over the input tokens and not

the tokenizer vocabulary V unlike distgen. To transform Ec into a

suitable distribution over V, on the one hand we have to decide

what happens when there are multiple attention values for a token

because it occurs multiple times and on the other hand aggregate

those values at the position of the correct token in V in some

resulting distribution.

In this work, we evaluated both the maximum (ptr-max) and

the sum operation (ptr-sum). In the case of ptr-maxwe use the

maximumoperation to determine themaximum attention value for

a given token t ∈ Ec to be used in the pointer distribution at the

corresponding position (see Equation 4). Correspondingly, in case

of ptr-sum, the sum of all attention values of a token t is used in

the pointer distribution (see Equation 5).
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The resulting pointer token distribution distptr is therefore

determined as follows:

distmax
ptr [i] : = max

0≤j<inputTokens

{

Ec [j] |
−−→
input[j] = i

}

distptr ∈ R
|V|, 0 ≤ i ∈ N < |V| (4)

distsumptr [i] : =
∑

0≤j<inputTokens

{

Ec [j] |
−−→
input[j] = i

}

distptr ∈ R
|V|, 0 ≤ i ∈ N < |V| (5)

with
−−→
input ∈ N

inputTokens being the vector of input token ids.

The final token distribution used for decoding in case of the

ptr-maxmodel is then defined as follows:

distmax
final=pgen · distgen+(1− pgen)·dist

max
ptr distmax

final ∈ R
|V| (6)

Similarly, the final token distribution for ptr-sum is:

distsumfinal = pgen · distgen + (1− pgen) · dist
sum
ptr distsumfinal ∈ R

|V| (7)

These distributions over the tokenizer vocabulary V are then

used analogously in the decoding process to generate a sequence of

output tokens.

4 Experiments

In this section, the different experiments conducted in this

paper are described, together with the dataset and other relevant

experimental settings used for training and evaluation.

4.1 Dataset

In our experiments, we reuse the dataset provided byWitte and

Cimiano (2022) and Witte et al. (2024), which consists of abstracts

of RCTs about type 2 diabetes and glaucoma and annotated

according to the C-TrO ontology (Sanchez-Graillet et al., 2019).

The dataset comprises a total of 211 documents, 104 on type 2

diabetes and 107 on glaucoma. The 104 type 2 diabetes documents

are split up into training, validation and test sets of size 68, 16,

and 20, respectively. Analogously, the 107 glaucoma documents are

split up into training, validation and test sets of size 69, 17, and 21,

respectively. Thus, we use the same dataset as well as the same fixed

train-validation-test split as Witte and Cimiano (2022) and Witte

et al. (2024) and run separate experiments for those two diseases.

The exact corresponding number of tokens certainly varies with

the used model, tokenizer and pre-processing steps. However, to

give a rough estimate, the whole dataset, including both input

and output tokens, consists of around 300K tokens in total, with

∼200K training tokens, 50K validation tokens and around 60K

test tokens. These numbers are roughly split in half by disease,

i.e., around 100K training tokens for type 2 diabetes and glaucoma

each. With these sizes, the used dataset can be considered small

when compared to typical fine-tuning tasks explored in related

work, especially considering the complexity of the task and length

of the targeted output (e.g., even datasets withmore samples are still

considered low-resource in Roy et al., 2024). In contrast, the dataset

is also much larger than the data that is provided to large language

models in zero- to few-shot prompting settings (e.g., in Stengel-

Eskin et al., 2024) and this way provides an interesting perspective

on constrained decoding used in combination with fine-tuning in

low-resource environments.

4.2 Models

In our experiments, we tested two different encoder-

decoder transformers (Vaswani et al., 2017) as base models,

namely google/flan-t5-base1 (Chung et al., 2022, 223M

parameters) and allenai/led-base-163842 (Beltagy et al.,

2020, 161M parameters). These base models were then evaluated

in four variants:

1. basic: Vanilla model without modifications, paired with

standard greedy decoding (noGCD).

2. GCD: Vanilla model without modifications, paired with

grammar-constrained decoding.

3. ptr: Model with additional layers for pointer generator-like

behavior, paired with grammar-constrained decoding, using

different attention aggregation functions for the case of multiple

occurrences of a token in the input sequence:

(a) ptr-max: Using the maximum function for aggregating

attention values of multiple token occurrences.

(b) ptr-sum: Using the sum function for aggregating attention

values of multiple token occurrences.

Therefore, when adding pointer generator-like behavior,

exclusively grammar-constrained decoding is considered. The

used decoding approach itself is then identical to the grammar-

constrained decoding described in Section 3.3. However, in this

case distmax
final and distsumfinal are used for ptr-max and ptr-sum,

respectively, as token distributions over the respective vocabulary

instead of the classical distribution dist.

4.3 Experimental setup

For the consideredmodels and diseases, we ran hyperparameter

optimizations using Optuna (Akiba et al., 2019) with 30 trials each

and measuring performance with grammar-constrained decoding

using validation F1 scores, calculated as described in Section

4.4. The noGCD values are not calculated on models that were

trained separately, but instead the already trained models are

additionally evaluated with a different decoding technique. The

training procedure itself is the same and GCD behaves just

like standard greedy decoding when valid output sequences

are generated, so that the difference should not be relevant.

However, there could be other training parameters which are

more beneficial for noGCD than for GCD (which was used to

1 https://huggingface.co/google/flan-t5-base.

2 https://huggingface.co/allenai/led-base-16384.
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measure validation performance), but this has not been evaluated in

this work.

In each executed trial, a λ for the lambda learning rate scheduler

(between 0.9 and 1.0, using logarithmic domain, learning rate

calculated with lr(epoch) = λ
epoch) as well as a corresponding initial

learning rate (between 1e−3 and 1e−5, using logarithmic domain)

are sampled from Optuna. The chosen batch size is 1 and the

number of epochs is 50 in all experiments, each of which is then

executed on a single NVIDIA A40 GPU.

The best hyperparameters for each disease-model-setting-

combination are then used to train 10 additional models. Unless

stated differently, mean and standard deviation in tables refer to the

different results of these 10 training runs. The means and standard

deviations of the test F1 scores of these 10 trained models are listed

in Table 1 for the experimental setting of RQ1 and in Table 2 for

RQ2 and RQ3.

However, as the dataset consists of information that is stored in

a complex nested template structure, it is not immediately possible

to train a model on this data. Therefore, the structure is linearized

similarly to XML, i.e., with start [start:<slot or template

name>] and end [end:<slot or template name>] tags

for slots and templates, which allows to freely nest even templates in

other templates. For each of these tags, special tokens are added to

the vocabulary. In order to reduce the input data variance and allow

themodels to learn the relationsmore easily, an (arbitrary but fixed,

e.g., alphanumerically sorted) order is enforced when linearizing

templates and slots. An example for a linearized nested template

with both textual slots and a slot which contains a template is given

in Figure 2.

In order to answer our research questions we focus on the

following two experimental settings:

• Impact of grammar-constrained decoding (RQ1): We

compare the setting in which a grammar is used to constrain

the decoding (GCD) and the case in which it is not used

(noGCD), i.e., in which standard greedy decoding is applied.

• Impact of pointer generators and attention aggregation

methods (RQ2 and RQ3): We quantify the impact of adding

pointer generator-like behavior, comparing two different

attention aggregation methods (sum/maximum) for the GCD

case.

4.4 Evaluation

Evaluating the predicted templates against the ground truth

templates is again not a trivial task, as, in some cases, various

template instances have to be aligned to each other. This is done

by optimizing the F1 score across all possible alignments/matchings

by modeling it as a linear inequality system and maximizing for the

resulting F1 score. The F1 score for a single predicted and ground

truth template is calculated by first determining true positives, false

positives and false negatives for the textual slot fillers of the two

templates.

Two textual slot fillers are considered equal when the

concatenation of the tokens of that slot filler has a similarity of

TABLE 1 Evaluation of the impact of grammar-constrained decoding vs.

greedy decoding (RQ1).

↓Setting Dataset→ Type 2
diabetes

Glaucoma

Model Type Decoding Mean F1
(±σ )

Mean F1 (±σ )

flan-t5-base Basic GCD 0.413 (±0.13) 0.47 (±0.061)

flan-t5-base Basic noGCD 0.062 (±0.041) 0.045 (±0.043)

led-base-16384 Basic GCD 0.301 (±0.102) 0.292 (±0.12)

led-base-16384 Basic noGCD 0.016 (±0.029) 0.102 (±0.049)

Mean and standard deviation σ of test F1 scores across 10 models trained using best-

performing (F1 on validation dataset) configuration found in 30 trials of hyperparameter

optimization. Numbers rounded to three decimal places, best configuration of each disease

marked bold.

≥ 0.9 according to the following normalized Levenshtein similarity

measure:

normLevenshteinSim(s1, s2) : = 1−
levenshteinDistance(s1, s2)

max(|s1|, |s2|)
(8)

where levenshteinDistance in the above definition refers to

the Levenshtein distance proposed by Levenshtein (1966). The

concatenation and Levenshtein similarity calculation step is

necessary to avoid problems regarding the tokenization, e.g.,

situations where the generated text is equal but the tokenization is

slightly different and leading to low scores otherwise. Furthermore,

this reduces the bias toward long textual slots with many tokens

like the Title slot of a publication which is easy to predict and

typically consists of many tokens compared to, e.g., Outcome

template instances comprising primarily numbers and short units

in most cases. We consider this to be a more meaningful and fair

evaluation, albeit having the drawback of our results not being

directly comparable to those reported by Witte et al. (2024) and

Witte and Cimiano (2022).

Correspondingly, slot fillers which are equal w.r.t. the above

definition and occur in both templates are counted as a true

positive, those which only occur in the predicted template are

counted as a false positive, and those which only occur in the

ground truth template are counted as a false negative. Moreover,

identical and different template slot fillers are added to those

numbers in the same fashion, but without applying the approach

recursively, i.e., only completely identical template slot fillers are

considered equal and counted as one accordingly. From the sum of

these true positives, false positives and false negatives then the F1
score of a template is calculated.

5 Results

The results of the conducted experiments relevant for RQ1 can

be found in Table 1 and for RQ2 as well as RQ3 in Table 2. In

addition to the overall performance scores presented in Tables 1,

2, the mean scores per template are shown in Table 3 as well as

per slot in Table 4. In both cases, the values for the glaucoma
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TABLE 2 Evaluation of the impact of pointer generators and the used

attention aggregation method (RQ2 and RQ3).

↓Setting Dataset→ Type 2
diabetes

Glaucoma

Model Type Decoding Mean F1
(±σ )

Mean F1 (±σ )

flan-t5-base basic GCD 0.413 (±0.13) 0.47 (±0.061)

flan-t5-base ptr-max GCD 0.092 (±0.075) 0.091 (±0.015)

flan-t5-base ptr-sum GCD 0.16 (±0.074) 0.211(±0.084)

led-base-16384 ptr-max GCD 0.263 (±0.067) 0.272 (±0.046)

led-base-16384 ptr-sum GCD 0.236 (±0.064) 0.216 (±0.078)

Mean and standard deviation σ of test F1 scores across 10 models trained using best-

performing (F1 on validation dataset) configuration found in 30 trials of hyperparameter

optimization. Numbers rounded to three decimal places, best configuration of each disease

marked bold.

TABLE 3 Glaucoma test F1 scores per template.

Glaucoma F1

Template name Basic GCD ptr-max
GCD

ptr-sum
GCD

Arm 0.21 (±0.08) 0.07 (±0.06) 0.05 (±0.07)

ClinicalTrial 0.53 (±0.05) 0.3 (±0.07) 0.22 (±0.09)

DiffBetweenGroups 0.15 (±0.08) 0.07 (±0.04) 0.04 (±0.03)

Endpoint 0.33 (±0.06) 0.22 (±0.03) 0.19 (±0.07)

Intervention 0.49 (±0.1) 0.23 (±0.07) 0.21 (±0.1)

Medication 0.51 (±0.11) 0.3 (±0.06) 0.27 (±0.12)

Outcome 0.26 (±0.05) 0.1 (±0.04) 0.09 (±0.05)

Population 0.47 (±0.06) 0.25 (±0.08) 0.16 (±0.1)

Publication 0.69 (±0.06) 0.34 (±0.1) 0.0 (±0.0)

Mean and standard deviation σ per template of glaucoma test F1 scores, considering the

best-performing base model of each category. Numbers rounded to two decimal places.

dataset for the GCD models are listed there as an example. The

remaining data can be found in Supplementary material. This

section briefly mentions the most important results w.r.t. all three

research questions together with a small ablation study w.r.t. the

model size.

5.1 Impact of grammar-constrained
decoding (RQ1)

This section presents the results of Table 1, i.e., the results

w.r.t. RQ1, discussing basic models with and without grammar-

constrained decoding.

The combination of the flan-t5-base base model with

grammar-constrained decoding (GCD) yields the overall best

results, achieving an F1 score of 0.413 (±0.13) for the type

2 diabetes and 0.47 (±0.061) for the glaucoma test set. The

second best results are achieved by the combination of grammar-

constrained decoding and the led-base-16384 base model,

TABLE 4 Glaucoma test F1 scores per slot.

Glaucoma F1

Slot name Basic
GCD

ptr-max
GCD

ptr-sum
GCD

AggregationMethod 0.52 (±0.08) 0.34 (±0.07) 0.31 (±0.13)

AnalysesHealthCondition 0.87 (±0.02) 0.59 (±0.05) 0.57 (±0.1)

Author 0.61 (±0.04) 0.34 (±0.11) 0.21 (±0.12)

BaselineUnit 0.55 (±0.06) 0.38 (±0.04) 0.3 (±0.1)

BaselineValue 0.47 (±0.17) 0.18 (±0.1) 0.19 (±0.16)

CTDesign 0.63 (±0.05) 0.39 (±0.09) 0.21 (±0.13)

CTduration 0.68 (±0.09) 0.32 (±0.1) 0.25 (±0.14)

ChangeValue 0.43 (±0.07) 0.21 (±0.05) 0.21 (±0.09)

ConclusionComment 0.59 (±0.06) 0.25 (±0.1) 0.14 (±0.09)

ConfIntervalDiff 0.11 (±0.14) 0.02 (±0.06) 0.0 (±0.0)

Country 0.76 (±0.1) 0.39 (±0.12) 0.25 (±0.14)

DeliveryMethod 0.23 (±0.2) 0.05 (±0.11) 0.11 (±0.14)

DiffGroupAbsValue 0.11 (±0.13) 0.04 (±0.09) 0.02 (±0.06)

DoseUnit 0.69 (±0.13) 0.51 (±0.11) 0.45 (±0.2)

DoseValue 0.65 (±0.12) 0.36 (±0.05) 0.31 (±0.14)

Drug 0.45 (±0.07) 0.29 (±0.07) 0.23 (±0.1)

EndoPointDescription 0.21 (±0.06) 0.16 (±0.04) 0.16 (±0.06)

FinalNumPatientsArm 0.03 (±0.11) 0.0 (±0.0) 0.0 (±0.0)

FinalNumberPatientsCT 0.11 (±0.16) 0.05 (±0.11) 0.0 (±0.0)

Frequency 0.67 (±0.06) 0.4 (±0.08) 0.37 (±0.12)

Journal 0.66 (±0.07) 0.36 (±0.1) 0.24 (±0.16)

MeasurementDevice 0.06 (±0.13) 0.0 (±0.0) 0.0 (±0.0)

NumberAffected 0.37 (±0.27) 0.01 (±0.02) 0.03 (±0.06)

NumberPatientsArm 0.38 (±0.2) 0.13 (±0.13) 0.1 (±0.15)

NumberPatientsCT 0.48 (±0.07) 0.27 (±0.19) 0.23 (±0.16)

ObjectiveDescription 0.36 (±0.09) 0.24 (±0.06) 0.12 (±0.1)

ObservedResult 0.01 (±0.02) 0.02 (±0.02) 0.01 (±0.02)

PMID 0.76 (±0.07) 0.32 (±0.12) 0.21 (±0.14)

PValueChangeValue 0.01 (±0.04) 0.08 (±0.13) 0.03 (±0.07)

PercentageAffected 0.19 (±0.1) 0.06 (±0.05) 0.05 (±0.07)

Precondition 0.18 (±0.06) 0.12 (±0.06) 0.06 (±0.07)

PublicationYear 0.88 (±0.09) 0.36 (±0.12) 0.29 (±0.18)

PvalueDiff 0.24 (±0.04) 0.14 (±0.06) 0.09 (±0.05)

RelativeChangeValue 0.1 (±0.18) 0.05 (±0.08) 0.1 (±0.15)

RelativeFreqTime 0.31 (±0.17) 0.07 (±0.12) 0.05 (±0.16)

ResultMeasuredValue 0.39 (±0.11) 0.16 (±0.09) 0.11 (±0.08)

SdDevBL 0.31 (±0.14) 0.07 (±0.08) 0.07 (±0.07)

SdDevChangeValue 0.24 (±0.09) 0.08 (±0.07) 0.09 (±0.12)

SdDevResValue 0.43 (±0.12) 0.15 (±0.1) 0.14 (±0.11)

(Continued)
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TABLE 4 (Continued)

Glaucoma F1

Slot name Basic
GCD

ptr-max
GCD

ptr-sum
GCD

SdErrorChangeValue 0.11 (±0.18) 0.03 (±0.11) 0.0 (±0.0)

TimePoint 0.36 (±0.05) 0.18 (±0.1) 0.14 (±0.1)

Title 0.56 (±0.05) 0.32 (±0.1) 0.21 (±0.14)

Total Micro F1 Score 0.47 (±0.06) 0.27 (±0.05) 0.22 (±0.08)

Mean and standard deviation σ per slot of glaucoma test F1 scores, considering the best-

performing base model of each category. Numbers rounded to two decimal places. Notable

exceptions where either ptr-max outperforms basic or ptr-sum outperforms ptr-max

are marked bold.

albeit performing considerably worse with 0.301 (±0.102) for the

type 2 diabetes and 0.292 (±0.12) for the glaucoma test set.

The grammar-constrained decoding approach outperforms the

greedy decoding approach on average by far, both for flan-t5-

base (0.413 vs. 0.062 for type 2 diabetes and 0.470 vs. 0.045 for

glaucoma) and for led-base-16384 (0.301 vs. 0.016 for type 2

diabetes and 0.292 vs. 0.102 for glaucoma).

In spite of achieving the best overall performance, the standard

deviation is also highest for the basic + GCD combination in

general and for the best-performing model flan-t5-base in

particular (0.13 for type 2 diabetes). However, the highest standard

deviation for the glaucoma dataset is achieved by the led-base-

16384 for basic + GCD with 0.12.

5.2 Interplay between
grammar-constrained decoding and
pointer generators (RQ2)

This section shows the results of Table 2 comparing the pointer

models as a whole with the basic baseline using grammar-

constrained decoding, i.e., GCD. For this purpose, the best basic

scores are shown at the top of Table 2 for both datasets.

In the conducted experiments, the pointer models on average

always performed worse than their basic counterparts, with a

much higher performance decrease for flan-t5-base (0.413 vs.

0.092 for type 2 diabetes and 0.47 vs. 0.091 for glaucoma) than

for led-base-16384 (0.301 vs. 0.263 for type 2 diabetes and

0.292 vs. 0.272 for glaucoma). Thus, in total, pointer models do not

outperform vanilla basic models in combination with grammar-

constrained decoding. As basic GCDmodels occupy the first and

second place in total, a pointer model can be found in the overall

third place. More precisely, this is the ptr-maxmodel using led-

base-16384 as a base model with 0.263 (±0.067) for type 2

diabetes and 0.272 (±0.046) for glaucoma.

Examining Table 3, it is also striking that the basic model

achieves better mean F1 scores than both ptr-max and ptr-sum

for every single template type. For Table 4, the results are slightly

more mixed. For the majority of slots, the performance ranking is

the same as for the template, namely basic outperforming ptr-

max and ptr-max performing slightly better than ptr-sum.

Nevertheless, there are a few exceptions which are marked bold

in Table 4. For example, for PValueChangeValue, the pointer

model ptr-max achieves a mean F1 score of 0.08 whereas the

basicmodel only reaches a score of 0.01.

However, there is no slot for which ptr-sum outperforms

basic. Additionally, these different performances occur mostly

for slots which only have comparably low F1 scores anyway

and is typically paired with a high standard deviation. This

may indicate that these exceptions are more due to noise

and random fluctuations than to actual architectural differences.

In order to further investigate this hypothesis, additional

experiments would be necessary, which remain to be done in

future work.

5.3 Performance of di�erent attention
aggregation strategies (RQ3)

This section inspects the results of Table 2 comparing the

pointer models with each other in order to determine the best

attention aggregation method, i.e., either sum (ptr-sum) or

maximum (ptr-max).

In absolute numbers, ptr-maxmodels perform slightly better

than ptr-sum models. However, the ptr-sum architecture

seems to work a lot better for flan-t5-base than ptr-max

(0.092 vs. 0.16 for type 2 diabetes and 0.091 vs. 0.211 for glaucoma)

while working reasonably well for led-base-16384, too (0.263

vs. 0.236 for type 2 diabetes and 0.272 vs. 0.216 for glaucoma).

Regarding standard deviation, both pointermodel architectures

deliver comparable values for type 2 diabetes. For glaucoma, the

standard deviation is about twice as large for ptr-sum than for

ptr-max, even for both base models (0.046 vs. 0.078 for led-

base-16384 and 0.015 vs. 0.084 for flan-t5-base).

Regarding Table 3, ptr-max outperforms ptr-sum for every

template on the glaucoma dataset. However, the standard deviation

is higher in most cases for the ptr-sum model, indicating that

the performance of ptr-sum models is more volatile but can

be better than ptr-max in extreme cases. For example, for

the Medication template, the mean score with 0.3 vs. 0.27

is comparable for ptr-max and ptr-sum but the standard

deviation for ptr-sum is twice as high with 0.06 vs. 0.12,

indicating a higher potential to achieve high scores in some

cases. Whether these high performance trials can be achieved

more consistently with different training parameters is unclear and

remains to be investigated in future work.

For Table 4, the results are slightly more mixed for the

performance of the different pointer models just as when

comparing them to the basic baseline in the previous section.

Nevertheless, ptr-max is performing slightly better than ptr-

sum usually. However, for slot DeliveryMethod, there is an

exception where ptr-sum outperforms ptr-max with a score of

0.11 vs. 0.05.

5.4 Ablation study: increasing model size

Although the influence of the model size is not systematically

evaluated in this work, we conducted a small ablation study for
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a single branch of the experiments presented above. Concretely,

we trained a basic model of the google/flan-t5-large

base model on the glaucoma dataset in the same 30 + 10 trials

fashion described above and evaluated the resulting 10 models both

with and without grammar-constrained decoding. With grammar-

constrained decoding, i.e., for GCD, the result on the glaucoma test

set is an F1 score of 0.490 (±0.053).With standard greedy decoding,

i.e., noGCD, a score of 0.044 (±0.043) is achieved.

Compared to flan-t5-base with 0.47 (±0.061)

with GCD and 0.045 (±0.043) with noGCD, this is a slight

performance improvement when using grammar-constrained

decoding and a very similar or even slightly worse result

when using standard greedy decoding. This indicates that

increasing model size alone does not solve the problems with

reliably generating syntactically correct output sequences.

However, more structured evaluations are necessary to test this

hypothesis further.

1 . . .
2 [ end : ha sEndpo in t ]
3 [start:hasObservedResult]
4 A f t e r 3 months o f t r e a tmen t . . .
5 [end:hasObservedResult]
6 [start:hasPValueChangeValue]
7 A f t e r 3 months o f t r e a tmen t . . .
8 [end:hasObservedResult]
9 [ s t a r t : hasPValueChangeValue ]
10 P=0 .01
11 [ end : hasPValueChangeValue ]
12 [ end : Outcome ]
13 [ end : hasOutcome ]
14 . . .

Listing 1. Case study of an arbitrarily chosen syntax error made by

google/flan-t5-large trained on the glaucoma dataset when

evaluated without grammar-constrained decoding, i.e., noGCD.

In Listing 1, an exemplary syntax error made by the fine-tuned

google/flan-t5-large during evaluation with the glaucoma

test set is shown. Considering the presented output snippet, it

is striking that the model generates the first part correctly,

i.e., [start:hasObservedResult]After 3 months

of treatment...[end:hasObservedResult] is

syntactically correct. But after that, some kind of mixture between

hasObservedResult and hasPValueChangeValue

seems to be generated, as the content is almost identical

to the hasObservedResult slot whereas the starting

tag, i.e., hasPValueChangeValue, is not. The similar

content might be the reason why the model confuses the end

tags and chooses hasObservedResult over the correct

hasPValueChangeValue. After this, a correct instance of

hasPValueChangeValue is then generated with different

content and no confusion of the end tag.

Although the type of syntax errors were not systematically

evaluated in this work, the presented example appears to be

prototypical for the category of errors that is common when

looking at unconstrained output. Despite large parts of the

generated output being correct and meaningful, there is often

just a small error which causes the whole output to end up

invalid due to the strict requirements imposed by the context-

free grammar. At the same time, this kind of errors can easily

be circumvented with grammar-constrained decoding, preserving

the validity of the otherwise in large parts useful and correct

output. A more structured evaluation of these kinds of mistakes

unconstrained models do would be an interesting path for

future work.

6 Discussion

In this section, we discuss the results presented in the previous

section w.r.t. the research questions of this paper and connect our

findings to some related work.

Considering the bad performance of almost all noGCD

configurations with an absolute performance increase for GCD

between 0.425 (glaucoma dataset, flan-t5-base + basic) and

0.091 (glaucoma dataset, flan-t5-base + ptr), this suggests

w.r.t. RQ1 that grammar-constrained decoding helps the models

substantially to generate better results and eliminates the burden

of having to learn the structure of the data from examples. Thus,

grammar-constrained decoding positively affects the performance

for the considered structured information extraction task.

This is in line with the results of Geng et al. (2023).

However, they have only shown the positive impact of grammar-

constrained decoding on pre-trained models. In contrast, we

have focused on fine-tuned models and shown that also in

this setting grammar-constrained decoding has a very positive

impact, in particular in what we have called low-resource settings.

Considering the higher amount of data given to the models

compared to few-shot prompting, one could have expected the

benefit of grammar-constrained decoding to decrease. Instead,

our experiments indicate that grammar-constrained decoding can

still be useful in fine-tuning settings, at least for the comparably

small models that have been tested and the resulting performance

increase is similar, if not larger, to the results obtained by Geng

et al. (2023). The poor performance without grammar-constrained

decoding may also be caused by the usage of special tokens for the

start and end tags, which were not part of the pre-training process.

Thus, the available training data might have been too small for

learning the meaning and structure of these tokens. Whether not

using special tokens and instead relying on the existing vocabulary

for the structure generation would improve the performance is

unclear and remains to be investigated in future work. However,

some preliminary experiments indicate that the task is actually

easier to learn for the models with special tokens compared to

tokenizing the slot start and end tags like regular text.

At the same time, this shows that learning a complex output

structure reliably from relatively few examples is still not a trivial

task for large language models of the considered size (e.g., ca.

220 million parameters for flan-t5-base and ca. 160 million

parameters for led-base-16384). How the size of the used

large language model affects this part of the performance remains

to be investigated in future work in a more structured way.

Our ablation study with flan-t5-large presented in the

previous section suggests that the benefit of using grammar-

constrained decoding is similarly large even when the model

size is increased. However, Geng et al. (2023) use much larger

models and appear to get very promising results such that the

benefit of grammar-constrained decodingmight be smaller for fine-

tuning on larger models. These results are also in agreement with

Sun et al. (2023), although they primarily explored the validity

of SMT solver formulas when varying the model temperature,

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1406857
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Schmidt and Cimiano 10.3389/frai.2024.1406857

whereas this work evaluated a domain-specific grammar and varied

different architectural properties, yielding a much larger validity

difference between constrained and unconstrained decoding. In

summary, this illustrates that large language models actually

struggle with sticking to strictly-constrained output structures in

practice such that having guarantees as provided by grammar-

constrained decoding is useful, especially for smaller models or rare

output structures but also for larger models.

All in all, this emphasizes that grammar-constrained decoding

appears to be beneficial when fine-tuning in low-resource settings

for structured information extraction tasks.

Regarding RQ2, the presented results suggest that pointer

generators are not beneficial for structured information extraction

tasks in low-resource environments when combined with

grammar-constrained decoding. They therefore seem not to be

a promising path of future research, at least with the considered

models, dataset size, output syntax and overall architecture. In

contrast, Lin et al. (2020) successfully generated SQL statements

from text using a BERT model in combination with pointer

generators, which indicates that pointer generators can be useful

in the context of structure generation nevertheless. However, it

is not clear which aspect made the pointer generator approach

fail in our case, whether it was the dataset size, choice of models,

the (compared to SQL) rare output structure or something else.

Therefore, a deeper analysis of the errors made by the pointer

models and where the differences to the successes of Lin et al.

(2020) are is open to be explored in future work.

All in all, this indicates that pointer generator-like behavior

seems to hurt performance in structured information extraction

tasks in low-resource settings combined with grammar-constrained

decoding instead of improving it.

Considering RQ3, i.e., the two attention aggregation methods,

the pointer generator-like behavior with maximum used for

attention aggregation ptr-max works better for the (otherwise

worse-performing) led-base-16384 base model than for

flan-t5-base. However, the pointer generator models

with summing as an aggregation function ptr-sum perform

comparably well in combination with both base models, although

slightly worse in absolute numbers. It is not clear which properties

of the architecture cause this difference, both between the pointer

models and the basic model as well as between the pointer

models ptr-max and ptr-sum, such that this remains to be

investigated in future work.

All in all, this means there is no clear winner comparing the

maximum and sum function as attention aggregation methods for

pointer generator-like models and the choice appears to depend on

the used base model as well. Overall, the maximum aggregation

function achieved the best scores for both datasets.

7 Conclusion

In this work, we have presented a grammar-constrained

decoding approach for structured information extraction with fine-

tuned generative large language models. Our sequence-to-sequence

models predict complex output structures, consisting of nested

templates with both textual slots as well as slots again containing

templates. The chosen base models google/flan-t5-base

and allenai/led-base-16384 have been evaluated in

multiple configurations, i.e., with and without support by

grammar-constrained decoding as well as with two kinds of

supporting pointer generator-like behavior.

We have instantiated the model specifically for PICO element

extraction from randomized controlled trials in combination with

a domain-specific grammar for that purpose and evaluated all

different model configurations w.r.t. two diseases, namely type 2

diabetes and glaucoma.

In summary, our results indicate that grammar-constrained

decoding can substantially increase the model performance in

low-resource settings for structured information extraction tasks

(RQ1) and that pointer generator-like behavior appears not to

be beneficial in the considered settings, with varying intensities

of performance degradation depending on the model and the

chosen attention aggregation function (RQ2). Furthermore, the

used attention aggregation method appears to depend on the used

model and, in total, the maximum function achieves the best results

for both datasets (RQ3).

Evaluating in a structured way how the large language models

size affects the performance benefit of grammar-constrained

decoding as well as investigating the reasons for the generally

bad performance of both pointer generator models ptr-max and

ptr-sum are just a few aspects besides many others that still

pose interesting open questions which remain to be investigated in

future work.
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