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Introduction: Hemorrhage remains a leading cause of death in civilian and 
military trauma. Hemorrhages also extend to military working dogs, who 
can experience injuries similar to those of the humans they work alongside. 
Unfortunately, current physiological monitoring is often inadequate for early 
detection of hemorrhage. Here, we evaluate if features extracted from the 
arterial waveform can allow for early hemorrhage prediction and improved 
intervention in canines.

Methods: In this effort, we  extracted more than 1,900 features from an 
arterial waveform in canine hemorrhage datasets prior to hemorrhage, 
during hemorrhage, and during a shock hold period. Different features were 
used as input to decision tree machine learning (ML) model architectures to 
track three model predictors—total blood loss volume, estimated percent 
blood loss, and area under the time versus hemorrhaged blood volume 
curve.

Results: ML models were successfully developed for total and estimated percent 
blood loss, with the total blood loss having a higher correlation coefficient. The 
area predictors were unsuccessful at being directly predicted by decision tree 
ML models but could be calculated indirectly from the ML prediction models 
for blood loss. Overall, the area under the hemorrhage curve had the highest 
sensitivity for detecting hemorrhage at approximately 4  min after hemorrhage 
onset, compared to more than 45  min before detection based on mean arterial 
pressure.

Conclusion: ML methods successfully tracked hemorrhage and provided 
earlier prediction in canines, potentially improving hemorrhage detection 
and objectifying triage for veterinary medicine. Further, its use can potentially 
be extended to human use with proper training datasets.
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Introduction

Physiological sensors being used to monitor vital signs during 
hemorrhagic shock are critical for patient care. Compensatory 
mechanisms of an individual mask a patient’s actual clinical 
status, often resulting in inadequate or delayed treatments, 
exacerbated by remote settings frequently faced in military 
medicine. Blood pressure is a commonly used clinical 
measurement to assess a patient’s hemodynamic status, but it fails 
to respond quickly to ongoing hemorrhage as well as fails to 
provide a status of tissue oxygenation due to loss of blood 
(Convertino et al., 2021). Predicting an individual’s oncoming 
decompensation due to hemorrhage continues to be a challenge. 
There is still an unmet medical need for the development of 
prediction metrics that can detect hemorrhage early for better 
resuscitation, as well as assess hemorrhaged volume-
duration magnitude.

Due to limitations on data generation to develop hemorrhage 
prediction metrics for humans, studies will often be  done in 
animals. The focus of this study was canines experiencing 
controlled hemorrhages. Datasets obtained in canines can 
provide proof that the methodology of extracting features from 
the arterial waveform for creating prediction metrics for an 
earlier indication of oncoming decompensation is feasible. This 
will provide a roadmap for applying similar processes on other 
animal datasets such as swine which share related anatomic and 
physiologic characteristics to humans (Swindle et al., 2012). In 
addition, military working dogs (MWDs) in combat zones are 
susceptible to similar injuries as service members, such as 
ballistics, blunt trauma, and explosive injuries (Baker et  al., 
2009). Human health care providers (HCP) are often the only 
medical assets near a MWD at the point of injury. Initial care at 
the point of injury is usually rendered by HCPs and continues to 
be provided through different levels of care until the MWD can 
reach veterinary providers (Giles, 2016; Edwards et al., 2021). 
Therefore, developing a metric to further assist non-specialized 
HCPs and veterinary teams in determining when a canine may 
be losing blood will increase the treatment quality and decrease 
MWD mortality.

Toward this, classical ML paired with feature extraction 
approaches can provide an explainable methodology for 
developing physiologic prediction models. ML models such as 
this require a feed of available physiological data and can operate 
at a low-cost computation setup compared to larger deep-learning 
neural network model types (Jordan and Mitchell, 2015). ML 
model explainability and computational efficiency are helped by 
using feature extraction, which uses a variety of calculations to 
measure durations, magnitude difference, variability, etc., 
between waveform features to reduce high frequency, 
computational intensive waveforms to only a few features per 
wavelength (Guyon and Elisseeff, 2006). When paired with ML 
models, these extracted features have been previously used as 
inputs predictors for calculating a desired physiological metric 
response (Hatib et al., 2018). We hypothesize that robust features 
can be extracted from canine arterial blood pressure datasets and 
used to calculate prediction metrics that can predict oncoming 
decompensation prior to the blood pressure metric, the current 
gold standard.

Materials and methods

Canine hemorrhage study

This study was approved by the Institutional Animal Care and 
Use Committee at the University of Utah (21–01012) and received 
second level approval from the Department of Defense. Six adult, 
purpose-bred male canines aged 1–3 years were acclimated in a 
laboratory animal facility for at least 1 month prior to the start of 
the experiment. The dogs were premedicated with midazolam 
(0.3 mg/kg IV) and anesthetized with a combination of fentanyl (5 
mcg/kg IV) and propofol (2–4 mg/kg IV). Dogs were maintained on 
total intravenous anesthesia consisting of propofol (1–20 mg/kg/h), 
midazolam (0.1–0.5 mg/kg/h), and fentanyl (0.05–0.3 mcg/kg/min). 
An orotracheal tube was placed and animals were ventilated, as 
needed, to maintain a pulse oximetry reading of 95–99% and an 
end-tidal carbon dioxide reading of 35–45 mmHg. A triple lumen 
catheter was placed in the jugular vein and a 5 French catheter was 
inserted under ultrasound guidance into the femoral artery.

To induce hemorrhagic shock, venous blood was removed through 
the jugular catheter over 1 h until either a mean arterial pressure of 
35–50 mmHg or 40% of the estimated total blood volume was reached, 
whichever occurred first. The dogs were maintained in a state of 
hemorrhagic shock for 45 min and then given a randomized resuscitation 
fluid strategy. After recovery from hemorrhagic shock and resuscitation, 
all canines were allowed at least 4 weeks to fully recuperate between 
studies, allowing for multiple technical replicates for each canine study 
(6 canines, each undergoing 5 rounds of hemorrhaging and 
resuscitation). The canines were adopted upon the completion of the 
study. A full description of the study protocol has recently been published 
(Ford et al., 2023). The data were captured using a data acquisition device 
at 1 kHz (PowerLabs, ADInstruments, Sydney, Australia). Notable 
timepoints such as baseline, start of hemorrhage, end of hemorrhage, 
and end of shock hold were marked and used for identifying study 
phases. The resuscitation portion of the canine data was not used for this 
ML development study. The data were downsampled to 500 Hz and then 
exported as text files for the following feature extraction process.

Feature extraction and predictor selection

Arterial waveform datasets of canine subjects were used to extract 
a multitude of different features using MATLAB (v2023a, MathWorks, 
Natick, MA, United States). Each arterial waveform was filtered using 
a finite impulse response (FIR) window lowpass filter. The pulse foot, 
systolic peak, half-rise between the pulse foot and systolic peak, first 
inflection point, and the end point of the waveform segment (pulse 
foot of the following waveform segment) were identified for each 
waveform segment of the arterial waveform (Bedolla et al., 2023). If a 
waveform segment lacked an inflection point, the half-drop between 
the systolic peak and the following pulse foot was calculated. Using 
these extracted waveform landmarks, 1901 features were calculated 
from each waveform of each canine subject based on previous research 
efforts (Hatib et  al., 2018; Gupta et  al., 2022) as well as features 
developed internally. A detailed explanation of the various feature 
types is described in Supplementary material.

Various hemorrhagic metrics were evaluated to be predicted by the 
extracted features. A blood loss volume metric (BLVM) was developed 
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for predicting impending hemorrhage on a 0–1 scale. This prediction was 
calculated as 1 minus the hemorrhage volume at a given time, t, over the 
total hemorrhage volume of the study. This was calculated across the 
baseline and hemorrhage region using Equation 1. The hold region of the 
study defaulted to BLVM being 0, as maximal hemorrhage volume was 
maintained with no active hemorrhage.

 
BLVM

Hemorrhaged Volume t

Total Shed Hemorrhaged Volume
� �

� �
1

 
(1)

The total blood loss and the canines’ weight were available in the 
dataset, so a prediction of percent estimated blood loss (PEBL) was 
developed. The total blood volume of the dog used to calculate PEBL 
was estimated as 80 mL/kg (Vos et al., 2016). PEBL was calculated as 
the total hemorrhage volume at time t, divided by the total estimated 
blood volume of the canine subject. PEBL is shown in Equation 2.

 

PEBL mL
kg
x canine weight kg

�
� �
� �

Hemorrhaged Volume t

 80
 

(2)

The final metric was developed to track the accumulation of 
hemorrhage over time. Two distinct methods were developed for 
integral-based hemorrhage area predictions. The first being the area 
under the hemorrhage volume (y-axis = hemorrhage volume and 
x-axis = duration) region (HemArea) as this would track the overall 
hemorrhage burden into the hold region as the volume hemorrhaged 
would stay constant. Still, the integral would increase as the canine 
hemorrhaged volume-duration increased over a period of time at that 
distinct volume. A ML model was developed to predict the 

accumulating HemArea over time directly. A separate approach was 
taken to calculate HemArea directly using BLVM model predictions, 
as this metric calculates the hemorrhage volume. The BLVM-based 
method used linear regression of the prediction outputs as BLVM is 
based on a 0 to 1 scale. BLVM is subtracted by 1 and multiplied by 
time to calculate an integral slice, then summed to calculate the total 
accumulating area. The HemArea calculation is shown in Equation 3 
and diagrammed in Figure 1.

 
HemArea � � � ��BLVM t1

 (3)

All predictions calculated in this study were smoothed using a 
moving mean average window size of 500 data points to generalize 
predictions trends. The predictions were assessed by standard linear 
regression vs. ground truth calculations, and any prediction that had 
significant outliers went through a linear regression with robust options 
to reduce sensitivity to outliers compared to standard linear regression.

Machine learning tuning

The ML models used were decided by previous work (Bedolla 
et al., 2023) in which a bagged tree ML model performed best and 
was used as the basis for developing all ML models in this study. The 
ML models were first developed with all the canine data to create 
generalized canine ML models. The features were ranked using the 
minimal-redundancy-maximum-relevancy (MRMR) ranking 
criterion in the MATLAB (v2023a, MathWorks, Natick, MA, 
United States) Regression Learner Toolbox. Once the features and 
the models were trained, they were tested using a cross-validation 

FIGURE 1

Representative plot (1—BLVM vs. time) demonstrating integral slices under the curve. The area under the curve for the HemArea prediction was 
calculated using small changes in time as an integral slice. A summation of these slices was plotted over time, and the ML model was used to predict 
this accumulation of area under the curve over time. Area slices are alternated in color for visualization purposes to distinguish between each slice.
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FIGURE 2

Model optimization results for predicting a blood loss volume metric (BLVM). BLVM ranges from 1 (no blood loss) to 0 (maximum blood loss). Decision 
tree models were trained with 4, 8, 12, and 16 minimum leaf sizes while using 5, 10, or 20 extracted arterial waveform features as model input. Average 
results are shown for each model as (A) R-squared and (B) root mean squared error values.

technique known as leave one subject out (LOSO) to account for bias 
in the testing. The LOSO process was done six times, leaving one 
blind test subject out of the training, and then the blind subject was 
used as testing data on this trained ML model. Each model was 
initially run with the top 10 features and either halved or doubled 
based on their performance. This process was repeated twice for 
three different ML models developed for each hemorrhage 
prediction metric. The maximum number of features used as an 
input to the ML model was decided when the R-squared values 
started to plateau or drop from the previous run of the same ML 
model, with only the number of features being used changing up to 
a maximum of three different setups. Each ML model was held 
constant with 1 learner. The leaf sizes used to train the bagged tree 
ML models were 4, 8, 12, and 16. Each prediction metric resulted in 
a total of 12 trained ML models (3 different number of features × 4 
leaf sizes). Each ML prediction metric model was blind-tested across 
6 LOSOs with five replicates for a single-blind subject. This resulted 
in a total of 30 blind datasets (6 LOSOs × 5 subject replicates) used 
for validation across the 12 ML cross-fold validation models for each 
prediction metric.

Machine learning performance metrics

After performing the LOSO test for each trained ML model for 
each respective prediction, the R-squared and the root mean squared 
error (RMSE) were measured to determine the best-tuned ML model 
for each respective hemorrhagic prediction metric. An R-squared and 
RMSE value were gathered for each respective round and averaged 
across each respective canine. To be able to directly compare RMSE 
values of the best performing ML models developed for the various 
prediction metrics, a normalized RMSE was also calculated. The 
normalized RMSE was calculated by dividing the raw RMSE value for 
each dataset by the range of raw data experienced by the prediction 
metric of interest. This normalization calculation is shown in 
Equation 4.

 
RMSE

Data DataNormalized
Data�

�
RMSE

max min  
(4)

In addition, receiver operating characteristic (ROC) curves and 
the area under the ROC curve (AUROC) were calculated for the best 
model configurations for each ML model output based on their ability 
to distinguish baseline and hemorrhage states in the datasets 
accurately. Different determination thresholds were used to construct 
these curves. A similar methodology was then used to estimate how 
early hemorrhage was detected for each ML model predictor. Briefly, 
datasets were normalized to 100 data points for each of the baseline, 
hemorrhage, and hemorrhagic shock hold region for each canine 
dataset. Each data point was categorized as positive or negative for 
hemorrhage based on a threshold value set at the 25th percentile of 
baseline values for each hemorrhage dataset. For metrics that 
increased in value as opposed to dropping in value during hemorrhage, 
the 75th percentile of baseline values was used. Hemorrhage detection 
was determined by five consecutive predictions of hemorrhage for 
each ML metric, as well as for MAP.

Results

Optimization of machine learning models 
for each predictor

A variety of bagged tree ML models were trained and 
compared for predicting each metric. The BLVM metric was 
initially trained using 10 features, with a decision tree leaf size 
between 4 and 16. The number of features was then doubled, and 
the R-squared values were compared to the 10 feature ML models 
(Figure 2). Overall, the 10 feature ML models performed better 
than the 20 feature ML models (Average R-squared value of 0.783 
vs. 0.77), so the number of features was capped at 20. The ML 
model’s features were then halved to see if a similar performance 
could be had with fewer features. The BLVM ML models with 5 
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features performed worse than the 10-feature ML models. Thus, 
the best-performing ML model for BLVM was with 10 features 
and a minimum leaf size of 8, reaching an R-squared value of 
approximately 0.795 with the lowest RMSE at 0.157.

The PEBL bagged tree ML models also began at 10 features and were 
trained with a leaf size of 4, 8, 12, and 16 (Figure 3). The average R-squared 
value of the 10 feature ML models was 0.728, so the features were then 
doubled to see how the performance would change. The 20 feature ML 
models had an average R-squared value of 0.723, decreasing over the 10 
feature ML models. The number of features was then halved from 10 to 5 
to see if the PEBL ML models could perform similarly with fewer features. 
The 5 feature ML models performed worse with an average R-squared 
value of 0.653. The best-performing ML model for predicting PEBL was 
at 10 features, 12 leaf size at 0.739 R-squared value, followed closely by 20 
features, 16 leaf size with both ML models having an R-squared value 
of 0.736.

The HemArea ML models took two different approaches. The 
first being the direct prediction of the HemArea using a bagged 
tree ML model. The ML models were initially trained with 10 
features and had an average R-squared value of 0.3825 between 
the four models (4, 8, 12, 16 leaf size, Figures 4A,B). The number 
of features used to train the models was then doubled, and the 
average R-squared value of the 20 feature HemArea ML models 
was 0.3725. As that value was a drop over the 10 feature ML 
models, the cap was set at 20 features. Five feature ML models 
were then tested and had an average R-squared value of 0.2225. 
Due to the poor overall performance, we compared calculation 
of HemArea by measuring the area under the BLVM vs. time plot. 
This was performed using the optimal BLVM prediction model 
parameters of 10 input features and a leaf size of 8. The R-squared 
value was much higher at 0.988 compared to 0.398 R-squared 
value for the best performing HemArea ML model (20 input 
features, 12 leaf size, Figure 4C). RMSE for the BLVM-derived 
HemArea was reduced to 13% of the HemArea ML model 
(Figure 4D).

Comparison of model predictors

Optimal ML model parameters were selected for each predictor 
type based on R-squared values. The BLVM model with the best 
performance used 10 features and a leaf size of 8. The best-performing 
PEBL model used 20 features with a leaf size of 12. The HemArea model 
directly predicting the area under the curve as it increased had the best 
performance using 10 features and a leaf size of 4, but its performance 
remained low and was not considered further. The BLVM-derived 
HemArea was calculated with the optimal BLVM model (10 features 
and a leaf size of 8). The performance metrics of R-squared and RMSE 
values for each model are shown in Table 1. Overall, the BLVM model 
outperformed PEBL (0.795 vs. 0.739), but both fell far short compared 
to the BLVM-Derived HemArea metric (0.988) based on R-squared 
scores (Table 1). RMSE values were normalized to each metrics value 
range so that they could be compared across models. Overall,  BLVM-
derived HemArea has the strongest Normalized RMSE at 0.00326 while 
all the other models faired similarly, with values ranging from 0.162 to 
0.197 (Table 1).

The average of all canines and their different prediction metrics 
across the experimental phases are shown in Figure  5. All the 
prediction metrics were normalized into three windows due to 
varying lengths of data recordings. These regions were split into (i) 
baseline, (ii) hemorrhage, and (iii) the shock hold region. The 
prediction metrics are plotted alongside the MAP for comparison. The 
BLVM tracked the ground truth and began dropping prior to the 
MAP during the hemorrhage region. PEBL also tracked the ground 
truth and began to increase before the MAP decreases during the 
hemorrhage region. The HemArea prediction began to rise prior to 
the MAP dropping. The HemArea metric also had a unique behavior 
in the hemorrhage region and into the shock hold region. During 
baseline, the standard deviations were close to the predicted values, 
while during hemorrhage and into the shock hold region, the standard 
deviations increased noticeably. This was unique to the HemArea 
predictions and was not seen in BLVM and PEBL.

FIGURE 3

Model optimization results for predicting percent estimated blood loss (PEBL). PEBL ranges from 0 (no blood loss) to 1 (total estimated blood loss). 
Decision tree models were trained with 4, 8, 12, and 16 minimum leaf sizes while using 5, 10, or 20 extracted arterial waveform features as a model 
input. Average results are shown for each model as (A) R-squared and (B) root mean squared error values.
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Next, ROC analyses were performed to determine how well 
each metric could distinguish baseline and hemorrhage categorical 
outcomes (Figure  6A). Overall, BLVM and PEBL had similar 
performance, with each reaching approximately with 0.9 AUROC 
scores (Figure 6B). HemArea has a slightly worse performance, 
with AUROC reaching approximately 0.84. The lowest performing 
predictor was MAP, with AUROC only at 0.67. Detection of 
consistent hemorrhage identification was predicted based on five 
consecutive indications of hemorrhage by each ML model. MAP 
as a predictor required more than 45 min after hemorrhage onset 
for consistent detection on average (Figure 6C). BLVM improved 
detection performance by identifying hemorrhage after only 
23 min. The other two metrics, PEBL and HemArea, were much 
improved at hemorrhage detection, with 12.0 and 4.0 min after 
hemorrhage onset. While HemArea may have had the quickest 

response, all the prediction metrics responded to hemorrhage 
quicker than the MAP.

Discussion

Since hemorrhage remains a leading cause of mortality after 
trauma, means for earlier injury detection and hemorrhage 
quantification could be life-saving for future civilian, veterinary, and 
military medicine. Many methods have been proposed for early 
hemorrhage detection, such as compensatory reserve measurement 
(CRM), an advanced monitoring algorithm for tracking compensatory 
status prior to shock (Convertino and Schiller, 2017). However, this 
algorithm was not developed for tracking compensatory status for 
canines undergoing hemorrhage. As a result, we developed a blood 

FIGURE 4

Model optimization results for predicting hemorrhage area (HemArea). Hem Area is defined as the area between no blood loss and current blood loss 
across the time axis. This results in HemArea being a factor of hemorrhage magnitude and duration and increases in value as either hemorrhage 
volume or hemorrhage time increases. (A,B) Decision tree models were trained with 4, 8, 12, and 16 minimum leaf sizes while using 5, 10, or 20 
extracted arterial waveform features as a model input for predicting HemArea. Results are shown for (A) R-squared and (B) RMSE. (C,D) The best 
performing HemArea ML model were compared to BLVM-Derived HemArea calculations for (C) R-squared and (D) RMSE values. Results are shown as 
average with error bars denoting standard deviation.

TABLE 1 Summary of model performance metrics for each trained model type.

R-Squared RMSE Normalized RMSE

BLVM 0.795 0.157 0.162

PEBL 0.739 0.0768 0.176

BLVM-derived HemArea 0.988 159,485 0.00326

R-squared and RMSE values for each top performing model averaged across the LOSO test results are shown.
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loss metric to identify an ongoing hemorrhage in a canine subject. 
Here, we  tuned BLVM as well as introduced and evaluated other 
metrics that will offer enhanced advanced monitoring strategies that 
ideally would apply to humans and other species for universal use. In 
this effort, we detailed a range of prediction and ML strategies and 
determined if any were suitable for measuring hemorrhaged volume-
duration magnitude and earlier hemorrhage prediction especially in 
trauma use case where hemorrhage status is often not known.

We previously evaluated classical ML strategies for successfully 
tracking the CRM in humans and found that a decision tree model was 
most suitable for this application (Bedolla et al., 2023). Unfortunately, 
a ML model could not be evaluated for measuring compensatory 
status as the canines were anesthetized during hemorrhage, so 
determining when the animal reached decompensation was unknown, 
unlike the human lower body negative pressure chamber datasets used 
to develop CRM where patient decompensation status was known as 
the patient was conscious and able to communicate precursor 
symptoms of decompensation. Instead, the three metrics we evaluated 
here were focused on hemorrhage quantification. BLVM and PEBL 
mirror the equations used for CRM, with each ranging from 0 to 1 or 
100% based on the extent of maximum hemorrhage or fraction of 
estimated blood volume, respectively. ML models were successfully 
developed and optimized for each approach. Additionally, the decision 

tree configuration over the range of setups we  evaluated only 
minimally altered model performance.

Conversely, we  considered an additional metric based on the 
integral of the hemorrhage volume vs. time region. This additional 
metric was considered to incorporate time into a quantification of the 
hemorrhage, which is not included in metrics such as BLVM and 
PEBL. This metric accounts for duration of shock, which may affect the 
response of the ML model’s as well as the ML model’s earlier prediction 
time. This metric was unique from the original CRM approach as this 
metric was not capped between 0 and 1. Instead, this potential integral-
based metric could allow for better patient triage as subjects in a 
hypovolemic state for 5 min will score much lower than someone in 
this state for an hour, which would not be distinguished by BLVM or 
PEBL. However, additional research will be needed to show how a 
duration and magnitude triage metric such as this would trend with 
clinical trauma cases. ML models for this approach did not result in 
strong correlations, and we instead calculated hemorrhage area from 
BLVM. This approach resulted in strong prediction, but more robust 
model formats or deep learning approaches may allow for directly 
predicting the area metric. With models for each output prediction, 
we  evaluated which models were optimal for early hemorrhage 
prediction. BLVM allowed for approximately 50% quicker hemorrhage 
prediction compared to MAP. PEBL and HemArea further improved 

FIGURE 5

Predictions across the animal model experimental phases for each model. The time axis is normalized so that the first third of the plot is baseline 
results, the second third is during hemorrhage, and the final third is the shock hold region. Teal values indicate predictions and pink values represent 
ground truth across all subjects for (A) BLVM, (B) PEBL, and (C) BLVM-derived HemArea. (n  =  5 technical replicates, n  =  6 subjects). Error bars denote 
the standard deviation of time-aligned data for the predictions. Mean arterial pressure is shown on the secondary axis in black for comparison.

FIGURE 6

Characterization of each predictor for detecting hemorrhage. (A) ROC curves for each ML predictor and MAP. (B) Areas under the ROC curve were 
quantified for each ML predictor and MAP. (C) Quantified time for detecting hemorrhage for MAP, HemArea, PEBL, and BLVM, based on consistent 
categorical hemorrhage classification.
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prediction time at approximately 75% quicker and 90%, respectively. 
HemArea has the widest operating range of values and potentially has 
the highest sensitivity to changes, resulting in the earliest 
prediction time.

For BLVM, it is relative to the maximum hemorrhage used in 
this study, which is an arbitrary point when translating these 
metrics beyond this study. Instead, PEBL allows for a number 
relative to estimated blood volume based on animal weight, 
which more easily translates outside this study. However, PEBL 
and BLVM suffer in terms of triage as they do not provide a 
means of distinguishing casualties with regard to time in 
hypovolemia. As the HemArea metric can be  derived from 
BLVM, both predictors could be used in unison: PEBL or BLVM 
for quick hemorrhage detection and HemArea for distinguishing 
hemorrhaged volume-duration magnitude when needing to 
triage injury levels when resources are limited, such as in combat 
casualty care.

There are some limitations with the current study design that can 
be improved. The canines in this study were anesthetized and only had 
a single trauma/injury. The addition of more injuries or different 
anesthetic approaches can alter the underlying physiology and likely the 
outcomes of the ML models. Thus, additional data is required to create 
more generalized ML models for a more robust trauma use case. The 
canine datasets are also limited in size and scope. We performed LOSO 
cross-validation approaches to extend the data as best possible. Still, only 
6 subjects of data may not result in robust enough models for real-time 
implementation at this time. Further, all animals were undergoing a 
controlled hemorrhage to a set percent volume or target MAP, so 
additional data is needed to expand the model training to include 
different injury severities and types, such as uncontrolled hemorrhage. 
Second, the methodology currently relies on an arterial waveform for 
making ML predictions. Arterial lines are not placed early in many 
trauma patients, so the availability of an arterial line will limit the utility 
of these metrics for triage and hemorrhage prediction. Future endeavors 
will expand this work toward non-invasive waveforms that could be used 
as inputs for the ML models. Third, the dicrotic notch is a key landmark 
used during feature extraction methods, but it sometimes cannot 
be identified resulting in estimating its location currently. More work is 
needed to determine how that estimate should be  considered – 
mid-point between the systole and diastole or skewed more in either 
direction. This can be used as a hyperparamter during optimization 
studies to more effectively identify its placement. Lastly, these metrics 
have only been evaluated for this canine use-case. Future work will assess 
if these metrics can be developed for use in swine. Additional work will 
also look at how features used to feed the ML model’s correlate to 
physiological processes in the vascular system to improve on the clinical 
basis for the ML models.

Conclusion

ML algorithm models can be developed and tuned to accurately 
predict blood loss in canine. Models for BLVM, PEBL, and HemArea 
after optimization across the number of input features and leaf sizes 
resulted in high R-squared values and low RMSE. These models can 
assist healthcare providers in MWD treatments at point-of-injury 
locations and may improve MWDs’ successful resuscitation rates. The 
ML feature extraction and model development success in the canine 

model can pave the way to similar developments in swine models, 
which are physiologically and anatomically similar to humans. This is a 
critical next step in model clinical translation.
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