
TYPE Original Research

PUBLISHED 19 June 2024

DOI 10.3389/frai.2024.1414707

OPEN ACCESS

EDITED BY

Valentino Santucci,

University for Foreigners Perugia, Italy

REVIEWED BY

Wei Wang,

Xi’an Jiaotong University, China

Wenyu Yang,

Huazhong Agricultural University, China

*CORRESPONDENCE

Alice Bizzarri

alice.bizzarri@unife.it

RECEIVED 09 April 2024

ACCEPTED 28 May 2024

PUBLISHED 19 June 2024

CITATION

Bizzarri A, Fraccaroli M, Lamma E and

Riguzzi F (2024) Integration between

constrained optimization and deep networks:

a survey. Front. Artif. Intell. 7:1414707.

doi: 10.3389/frai.2024.1414707

COPYRIGHT

© 2024 Bizzarri, Fraccaroli, Lamma and

Riguzzi. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Integration between constrained
optimization and deep networks:
a survey

Alice Bizzarri1*, Michele Fraccaroli1, Evelina Lamma1 and

Fabrizio Riguzzi2

1Department of Engineering, University of Ferrara, Ferrara, Italy, 2Department of Mathematics and

Computer Science, University of Ferrara, Ferrara, Italy

Integration between constrained optimization and deep networks has garnered

significant interest from both research and industrial laboratories. Optimization

techniques can be employed to optimize the choice of network structure based

not only on loss and accuracy but also on physical constraints. Additionally,

constraints can be imposed during training to enhance the performance of

networks in specific contexts. This study surveys the literature on the integration

of constrained optimization with deep networks. Specifically, we examine

the integration of hyper-parameter tuning with physical constraints, such as

the number of FLOPS (FLoating point Operations Per Second), a measure of

computational capacity, latency, and other factors. This study also considers the

use of context-specific knowledge constraints to improve network performance.

We discuss the integration of constraints in neural architecture search (NAS),

considering the problem as both amulti-objective optimization (MOO) challenge

and through the imposition of penalties in the loss function. Furthermore, we

explore various approaches that integrate logic with deep neural networks

(DNNs). In particular, we examine logic-neural integration through constrained

optimization applied during the training of NNs and the use of semantic loss,

which employs the probabilistic output of the networks to enforce constraints

on the output.

KEYWORDS

deep learning, symbolic artificial intelligence, constrained training, constrained neural

architecture search, neural-symbolic integration

1 Introduction

Artificial intelligence (AI) has long been characterized by two primary paradigms:

symbolic and neural approaches. The field of AI has witnessed notable advancements since

its inception in the 1950s. Seminal works by McCulloch and Pitts (McCulloch and Pitts,

1943) laid the groundwork for neural networks, while Turing’s seminal contributions in

the 1950s introduced the concept of machine intelligence (Turing, 2009). Symbolic AI

dominated the landscape until the 1980s, after which neural AI began to grow and attract

considerable attention. The ongoing debate about these two approaches remains extensive.

However, in recent years, the convergence of symbolic and neural AI methodologies

has gained traction. In addition to fundamental symbolic or neural techniques, hybrid

applications incorporating both symbolic and neural features have emerged.

The main differences between the neural and symbolic fields of AI are as follows:

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1414707
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1414707&domain=pdf&date_stamp=2024-06-19
mailto:alice.bizzarri@unife.it
https://doi.org/10.3389/frai.2024.1414707
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1414707/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

1. Neural approaches provide associative results, while symbolic

approaches produce logical conclusions

2. Neural methods learn and adapt to the data provided, whereas

human intervention is common in symbolic methods

3. Neural methods, such as deep learning (DL) that use multiple

layers to progressively extract higher-level features from the raw

input Deng et al. (2014), can handle large and noisy datasets,

while symbolic methods perform better when dealing with

relatively small and precise data.

The popularity of machine learning (ML) in recent years has

raised questions about which tasks are suitable for deep learning,

which ones require model-based symbolic reasoning, and what

advantages an integration between the two approaches might bring.

Several algorithms that bridge symbolic and neural

methodologies have been developed, including knowledge-

based neural networks (KBNN or KBANN) (Agre and

Koprinska, 1996), graph neural networks (GNNs) (Lamb

et al., 2020), connectionist logic programming and inductive

learning (C-IL2P) (Avila Garcez and Zaverucha, 1999),

connectionist knowledge time logic (CTLK) (Garcez et al.,

2019), the hybrid expert system (HES) (Sahin et al., 2012),

and the tensor product representation (Smolensky, 1990),

which features a neural network core coupled with a symbolic

problem solver.

This study aims to analyze the integration of constraints

in a neural context from two perspectives, which, although

seemingly different, share common features: constrained neural

architecture search (NAS) and the integration of constraints

in neural networks. Both paradigms focus on incorporating

restrictions and prior knowledge into the process of building and

training neural networks to improve efficiency, interpretability,

and compliance with specific application requirements. Both

require the incorporation of knowledge and the use of constrained

optimization, although for different purposes. In constrained NAS,

constraints are applied during the architecture search phase to

create neural networks optimized for specific contexts, generally

within the realm of TinyML, which involves physical constraints

such as computational limitations. In the second case, constraints

are applied during the training of the network itself to achieve

networks that perform better in specific contexts, such as handling

imbalanced data, or to enhance network performance by injecting

domain knowledge.

In this study, after providing necessary background

information, we delve into the state-of-the-art integration

of NAS with constraints dictated by the physical limitations

inherent in embedded systems, a domain commonly referred

to as Tiny Machine Learning (TinyML). NAS methodologies

have gained increasing popularity (Benmeziane et al., 2021)

and have become indispensable for expediting and automating

the arduous and error-prone process of synthesizing novel DL

architectures. While NAS has been extensively researched in

recent years and has exhibited remarkable success, its practical

applicability to real-world challenges still poses significant

hurdles. Notably, the complexity of convolutional neural network

architectures makes them unsuitable for deployment on resource-

constrained platforms typical of TinyML, such as mobile and

embedded systems.

Within this survey, we illustrate various solutions from the

literature aimed at adapting NAS systems for TinyML. Specifically,

we examine several NAS frameworks (Dong et al., 2018; Zhou

et al., 2018; Jin et al., 2019; Tan et al., 2019; Fraccaroli et al., 2021,

2022; Liberis et al., 2021) and explore potential methodologies for

incorporating physical constraints into synthesized networks.

In the second part of the survey, we scrutinize works where

contextually inferred constraints are leveraged to enhance neural

network performance. We present examples of constrained neural

networks (NNs) employing penalty methods, such as the work

by Sangalli et al. (2021), where a deep neural network (DNN)

is formulated for binary classification under class imbalance

conditions as a constrained optimization problem, alongside

novel frameworks for out-of-distribution (OOD) detection (Katz-

Samuels et al., 2022). Then, we exemplify probabilistic integration

with the study conducted by Xu et al. (2018), where a novel

methodology is proposed for integrating symbolic knowledge into

deep learning. They derive a semantic loss function that establishes

a connection between neural output vectors and logical constraints,

taking into account the extent to which the neural network adheres

to the constraints imposed on its output.

This study is structured as follows: Section 2 offers an overview

of fundamental concepts encompassing deep neural networks

(DNN), automated machine learning (AutoML), optimization,

and constraints. Section 3 delves into different approaches to

NAS, multi-objective optimization (MMO), and their integration.

Section 4 explores the integration of logic and deep learning

through the Lagrange Multiplier Method and probabilistic

interpretation, along with their practical applications. Finally, in

Section 5, we draw conclusions based on the findings presented.

2 Main concepts

This section provides an overview of the basic components

of the most popular DNNs. Then, it presents the main research

concepts of autoML, optimization, and constraints, to provide a

general overview of the topics covered in the following sections.

2.1 DNNs

Recently, DNNs are one of the hottest areas of ML. Their

application spans across diverse domains, including Computer

Vision (CV), Natural Language Processing (NLP), and robotics.

DNNs, or neural networks with multiple hidden layers, possess

the capability to automatically extract features from extensive

unstructured datasets, such as text, images, and audio, or from

large tabular data (e.g., clinical data). Through their multi-layered

architecture, DNNs can iteratively learn themapping between input

features and predicted classes, achieving high levels of accuracy.

Given their versatility, DNNs find extensive applications in

various domains. Notably, in CV, convolutional neural networks

(CNNs) emerge as the primary tool, leveraging convolutions to

extract crucial feature vectors from input images. Prominent

examples include AlexNet (Krizhevsky et al., 2017), VGG

(Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al.,

2015), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017).

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

In the realm of CV, networks are typically classified into three main

categories based on the task they perform: image classification (He

et al., 2016; Howard et al., 2017; Tan and Le, 2019; Dai et al., 2021),

object detection (Redmon et al., 2016; Lin et al., 2017), and semantic

segmentation (Badrinarayanan et al., 2017; He et al., 2017).

Another significant application domain is NLP, renowned for

its complexity owing to the inherent ambiguity characteristic of

human language. In this study, recurrent neural networks (RNNs)

such as Long Short-Term Memory (LSTM) (Staudemeyer and

Morris, 2019) and Gated Recurrent Unit (GRU) (Cho et al., 2014),

alongside NNs with memory, are employed to learn context and

word connections. In recent years, the rise of transformers (Tenney

et al., 2019; Lin et al., 2021) has revolutionized NLP, with their

self-attention mechanism enabling the capture of relationships

among words in a sentence. Notably, transformers have also found

application in CV, demonstrating state-of-the-art performance (Dai

et al., 2021).

2.2 AutoML

There are many different ML algorithms, each characterized

by a distinct set of hyperparameters, resulting in an overwhelming

array of potential alternatives. Consequently, their application

typically entails a complex endeavor necessitating experience, time,

and labor. AutoML (He et al., 2021), an emerging scientific

discipline, addresses this challenge by exploring methodologies for

the efficient, objective, and data-driven construction of MLmodels.

In recent years, many approaches have been proposed for both

the construction and optimization of model learning pipelines and

the development of DNNs. AutoML methods can be categorized

on the basis of various criteria, including the optimization method

employed (e.g., Bayesian optimization, genetic programming, and

random search), the structure of the generated pipelines (e.g., with

or without fixed structure), and the utilization of meta-learning

for leveraging insights from prior datasets or post-processing tasks

such as ensemble construction (Gijsbers et al., 2019). Noteworthy

examples of AutoML frameworks include Auto-WEKA (Thornton

et al., 2013), auto-sklearn (Feurer et al., 2015), and AutoKeras (Jin

et al., 2019).

The following section provides a succinct overview of the

foundational principles underlying all AutoML systems.

2.2.1 Automated HPO
Automated hyperparameter optimization (HPO) is a crucial

task within AutoML systems, particularly for optimizing the

hyperparameters (HPs) of ML algorithms, including DNNs, that

are particularly sensitive to the choice of hyperparameters, making

automated HPO essential for achieving optimal performance. The

significance of automated HPO is underscored by its multifaceted

utility:

• Reduction of human effort: Automated HPO alleviates the

burden on human practitioners by automating the tedious and

time-consuming process of manually tuning hyperparameters

for ML applications.

• Performance enhancement: Through automated

optimization, ML algorithms can achieve improved

performance, leading to new state-of-the-art results across

various machine learning tasks (Snoek et al., 2012; Melis et al.,

2017).

• Enhanced reproducibility and fairness: Automated

HPO facilitates fair comparisons between different ML

methods by ensuring that they are all evaluated under the

same hyperparameter configurations. This enhances the

reproducibility and fairness of scientific studies (Bergstra

et al., 2013).

However, HPO presents several challenges that make it a

difficult problem. The main challenges includes: the cost of

evaluating functions for large models, complex machine learning

pipelines, or large datasets; the complexity and high density

of the configuration space (encompassing a mix of continuous,

categorical, and conditional hyperparameters); the lack of access

to the gradient of the loss function with respect to HPs; and the

inability to directly optimize generalization performance due to the

limited size of the training datasets (Feurer and Hutter, 2019).

The Automated HPO problem can be formally defined as

follows:

Let A denote a machine learning algorithm with N HPs.

We denote the domain of the n-th HP by 3n and the overall

HP configuration space as 3 = 31 × 32 × · · · × 3n. A

vector of hyperparameters is denoted by λ ∈ 3, and A with its

hyperparameters instantiated to λ is denoted byAλ. Given a dataset

D, our goal is to find:

λ∗ = argmin
λ∈3

E(Dtrain ,Dvalid)∼D
V (L,Aλ,Dtrain,Dvalid), (1)

where V (L,Aλ,Dtrain,Dvalid) measures the loss of a model

generated by algorithmA with hyperparameters λ on training data

Dtrain and evaluated on validation data Dvalid. In real applications,

we have access to a limited number of D ∼ D data; therefore, it is

necessary to approximate the expectation in Equation (1).

Popular choices for the validation protocol V(·, ·, ·, ·) are

holdout error and cross-validation for a user-given loss function

(such as the misclassification rate). Several strategies have been

proposed to reduce evaluation time: it is possible to test ML

algorithms only on a subset of the folds (Thornton et al., 2013),

a subset of data (Swersky et al., 2013; Klein et al., 2017), or for a

limited number of iterations.

2.2.2 Meta-learning
Meta-learning, or learning to learn, is the science of

systematically studying how different ML systems perform on a

wide range of tasks to learn from this experience (meta-data) and

perform a new task as quickly as possible. This not only allows the

user to improve the performance of the ML design but also replaces

hand-tuned algorithms with new algorithms learned in a data-

driven way (Vanschoren, 2019). First, it is necessary to record the

exact algorithm configurations used for training the models (e.g.

HPs, pipelines, network architectures, and training time), that is,

themeta-data describing previous training activities. Then, we have

to learn from these meta-data to extract and transfer knowledge to

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

new tasks. The term meta-learning refers to any type of learning

based on previous experiences with other tasks. The more similar

the previous tasks are, the more types of meta-data we can exploit.

When a new task represents completely unrelated phenomena,

exploiting previous experiences will not be effective.

2.2.3 NAS framework
In recent years, NAS frameworks have become fundamental for

optimizing neural networkHP. NAS, a subfield of AutoML, exhibits

significant overlap with HPO and meta-learning methodologies.

NAS aims at discovering the best neural network architecture

for specific requirements. It encompasses a suite of tools and

methodologies that systematically explore and evaluate many

architectures within a predefined search space, employing various

search strategies such as random search, grid search, genetic

algorithms, or Bayesian search (Elsken et al., 2019; Liashchynskyi

and Liashchynskyi, 2019) to select the most promising candidate.

A NAS framework can be divided into three components. The

first component is the search space that defines which architectures

are allowed; it can be reduced by incorporating prior knowledge

about the properties that architectures must have to be suitable

for a task. Second, the search strategy indicates how the NAS

algorithm explores the search space to find optimal or near-optimal

architectures. Finally, the performance estimation strategy refers

to the process of estimating the performance of the generated

networks: the simplest option is to perform training and validation

of the architecture on the data.

NAS generally aims to achieve the best test accuracy without

considering the computational cost of inference thus, the generated

networks might not be suitable for embedded systems.

In Talbi (2021), the authors propose a unified method for

describing various optimization algorithms that focus on the

common and important search components of optimization

algorithms. They also extend this unified methodology to advanced

optimization approaches, such as surrogate, multi-objective, and

parallel optimization. The authors propose several constraint

management strategies distinguishing them into categories as

follows:

1. Rejection: only feasible solutions are retained during the

optimization process, and infeasible solutions are automatically

discarded (Dong et al., 2018; Hsu et al., 2018; Liberis et al., 2021).

2. Penalization: all solutions are considered, but those that are not

feasible are penalized. The objective function is extended by a

penalty function. This is the most popular approach, in which

many alternatives have been used to define penalties (Veniat and

Denoyer, 2018; Zhou et al., 2018; Tan et al., 2019; Liberis et al.,

2021).

3. Repair: heuristic algorithms that transform an unfeasible

solution into a feasible solution (He and Sun, 2015; Tan and Le,

2019).

4. Preserving: strategies that incorporate problem-specific

knowledge into encoding and search operators to generate only

feasible solutions. This can reduce the size of the search space

and thus simplify the search process (Lu et al., 2018; Wang et al.,

2018).

2.3 Optimization

Optimization is a branch of applied mathematics that studies

the theory and methods for finding the maximum and minimum

points of a mathematical function within a specified domain.

A simple example of an optimization problem is maximizing or

minimizing a real function of a real variable over a given interval.

More generally, optimization involves finding a sufficiently optimal

value for some objective function in a given domain (or input).

Adding more than one objective to an optimization problem

increases its complexity. In this case, we have a multi-objective

optimization (MOO).

2.3.1 MOO
AMOO problem is defined as follows (Equation 2):

minimize
x∈X

F(x) = [f1(x), f2(x), . . . , fn(x)]
T (2)

where the integer n ≥ 2 is the number of objectives, and

X ⊆ R
n is the feasible set (Hwang and Masud, 2012).

Due to their conflicting nature, all objectives cannot be

optimized simultaneously. Consequently, most MOO approaches

aim at recovering the Pareto front, which can be defined as the set

of Pareto optimal points. A point is considered Pareto optimal if

it cannot be improved in any of the objectives without degrading

another objective.

MOOmethods can be essentially divided into two classes:

1. Methods that generate single points that are candidates to be

Pareto points;

2. Methods that generate optimal approximation of the Pareto

front,

In the first class, a reference vector zref ∈ R
n in the space

of objectives is defined, and a solution in the space of variables

is determined to minimize the distance between the vector of

objective functions and the reference (Miettinen, 1999). Typically,

one uses the ideal vector of goals Z∗ defined by its components as a

reference vector (Equation 3):

Z∗
i = min

x∈X
fi(x) (3)

Therefore, we can define the function that minimizes the

distance between the value of the multi-objective function F(x) and

the ideal vector Z∗ as the goal function (Equation 4):

min
x∈X

||F(x)− Z∗|| (4)

In the second class, a representative approach is known as the

method of weights. Consider the following problem (Equation 5):

min
x∈X

N
∑

i=1

wifi(x) (5)

where the weights wi are such that wi > 0 and
∑N

i=1 wi = 1.

As the vector of weights w varies, different Pareto points can be

obtained.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

2.4 Integration of constraints and DL

One of the main challenges of ML models is the satisfaction of

physical constraints. Without these constraints, ML models, while

optimizing the loss function, may deviate from known physical

principles. Constraints can be applied in two ways: soft constraints

and hard constraints. The latter must be satisfied by any feasible

solutionmodel. On the other hand, a soft constraint can be violated,

but violation of the constraint results in a penalty in the objective

function (often, the greater the amount by which the constraint is

violated, the greater the penalty). ML models with hard constraints

have some advantages over soft constraints, such as more robust

and accurate predictions, but are usually difficult to optimize due

to the strict adherence to constraints.

Integrating constraints with DL presents a challenge because

logic is discrete, symbolic, and semantic, while DL is continuous,

smooth, and differentiable. However, there exist different methods

for the integration, such as penalty, Lagrange multipliers, and

probabilistic interpretation.

2.4.1 Penalty
Penalty methods are algorithms for finding local minima or

maxima of a function subject to constraints. They transform

the problem with constraints into a problem or problems of

unconstrained optimization. The unconstrained problems are

formed by adding a term, the penalty function, to the objective

function that consists of a penalty factor multiplied by a measure

of violation of the constraints. The measure of violation is non-zero

when the constraints are violated and becomes zero in the region

where the constraints are not violated.

Consider the following optimization problem (Equation 6):

minimize f (θ)

subject to : c(θ) ≤ 0
(6)

where f :Rn → R is the objective function, c :Rn → R
c is

the constraints function. Penalty methods replace the problem with

one or more problems without constraint of form (Equation 7):

minimize8(x) = f (x)+ φg(c(θ)) (7)

where φ is a penalty factor and g(·) is the penalty function.

2.4.2 Lagrange multipliers
Let θ0 be an optimal solution to the following optimization

problem (Equation 8):

minimize f (θ)

subject to : c(θ) = 0
(8)

where f :Rn → R is the objective function, and c :Rn → R
c is

the constraints function, both having continuous first derivatives.

We introduce a new variable (λ) called a Lagrange multiplier and

study the Lagrange function defined by Equation (9):

L(θ , λ) = f (θ)− λc(θ) (9)

The Lagrange multipliers theorem states that if f (θ0) is a

minimum of f (θ) for the original constrained problem and

∇c(θ0) 6= 0, then there exists a λ0 such that ∇L(θ0, λ0) =

0, i.e., (θ0, λ0) is a stationary point for the Lagrange function.

Lagrange multiplier methods generate a class of algorithms for

solving constrained optimization problems [e.g., the Augmented

Lagrangian method (Bertsekas, 1997)].

2.4.3 Probabilistic interpretation
Another way to integrate constraints with DL is to use a

probabilistic interpretation. The output of a NN is a probability

distribution over the classes (in the case of classification). If we have

constraints on the output, we can measure how close the output is

to satisfying these constraints. Let the NN output be (x0, x1, x2) ∈

[0, 1] and the constraint be that exactly one of these values should

be true (i.e., one-hot encoding):

Exactly− one =



























a ∧ ¬b ∧ ¬c

∨

¬a ∧ b ∧ ¬c

∨

¬a ∧ ¬b ∧ c

(10)

where a, b, c ∈ {0, 1}. Then, the probability that the constraint

in Equation (10) is satisfied is given by Equation (11):

x0(1− x1)(1− x2)+

(1− x0)x1(1− x2)+

(1− x0)(1− x1)x2

(11)

In other words, we can measure the probability that the

constraint is satisfied given the output of the network.

3 Constrained neural architecture
search

The purpose of this section is to illustrate different NAS

approaches and their possible integration to generate NNs that

meet the physical constraints required by embedded systems

(e.g., latency, memory, and energy). Therefore, we mainly see

penalization and rejection strategies. We also consider AutoML as

a multi-objective problem in which many different and conflicting

objectives are optimized.

3.1 Approches to NAS

In Elsken et al. (2019), Elsken et al. provide an overview of

existing work in this field, classifying it along three dimensions:

search space, search strategy, and performance estimation strategy.

Morphism-based NAS systems start from a basic network and,

iteration after iteration, modify its structure, including changes in

depth, width, kernel size, and even subnetworks. In this survey, we

will focus on three types of morphism-based NAS systems, looking

at an example for each:

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

a) An AutoML system that makes several search strategies available

(Jin et al., 2019).

b) A symbolic tuner that exploits symbolic rules and Bayesian

optimization to explore the search space (Fraccaroli et al., 2021,

2022);

c) Some tuners for microcontroller systems that uses multi-

objective optimization (Dong et al., 2018; Tan et al., 2019; Liberis

et al., 2021).

AutoKeras (Jin et al., 2019), an open source system

based on Keras, is an example of the AutoML system

that offers several search strategies. The goal is to allow

domain experts who are not familiar with machine learning

technologies to easily use machine learning techniques.

AutoKeras provides several tools to define and explore the

search space through different algorithms (e.g., Bayesian

optimization, random search, and grid search) and strategies

(e.g., rejection and penalization). Symbolic DNN-Tuner

(Fraccaroli et al., 2021) uses Bayesian optimization (BO)

that is the state-of-the-art HPO algorithm for DL. BO

keeps track of past results and uses them to build a

probabilistic model, constructing a probability density of

the HP space. Symbolic DNN-Tuner (Fraccaroli et al.,

2021) aims to improve BO applied to DNNs through an

analysis of network results on training and validation sets.

The system applies symbolic tuning rules, implemented in

probabilistic logic programming (PLP) (Riguzzi, 2022). The

results obtained from the training and validation phases are

logically evaluated, and by applying symbolic tuning rules,

the network architecture and its HPs are corrected, leading to

improved performance.

Figure 1 shows the architecture of Symbolic DNN-Tuner

where the neural block returns values from the trained network

that are passed both to the Improvement Checker (2), which

checks the improvement of the network, and to the symbolic

program (1) consisting of three parts: facts, which store the data

obtained from the neural block; diagnosis, which analyzes the

behavioral problems of DNNs; and tuning, which is composed

of the Symbolic Tuning Rules. Using ProbLog (De Raedt et al.,

2007) inference, it is possible to query this program and obtain

the tuning actions (TAs) (3). The TAs are then passed to the

neural block and applied to the DNN structure or HP search

space (4).

Finally, µNAS (Liberis et al., 2021) is an example of a

NAS for microcontrollers. This system focuses on using deep

learning to add computational intelligence to small personal IoT

devices. This would allow computations to be performed locally,

ensuring that the user’s data remains on the device. As a result,

it achieves a greater degree of privacy and autonomy. IoT devices

are powered by microcontroller units (MCUs). MCUs are ultra-

small computers with very limited resources contained in a single

chip. This allows MCUs to be cheaper and more energy-efficient

than desktop devices or cell phones. However, these advantages

lead to drastically reduced computing power. In Liberis et al.

(2021), the authors propose the use of a reduced search space

that adheres to the constraints on the limited resources and

a multi-objective function to explore the search spaces. The

MOO aims to find the optimal parameters α∗ defined as follows

(Equation 12):

α∗ = argmin
α∈S

L(α)

= argmin
α∈S

(

1.0− ValAccuracy(α),

ModelSize(α),

PeakMemUsage(α),

Latency(α)
)

(12)

where ValAccuracy is a measure of the quality of the network,

ModelSize is the size of the network, PeakMemUsage is the

maximum number of parameters stored at a time, and Latency is

the time it takes to perform a single inference. The Liberis and

Lane (2019) algorithm was used to compute the maximum number

of stored parameters. To optimize the multiobjective function, the

authors used the method introduced by Paria et al. (2020).

In Liberis et al. (2021), the authors showed that, with proper

design of the search space and explicit identification of physical

constraints, it is possible to create a NAS system that discovers

resource-efficient models for a variety of image classification tasks.

Table 1 shows the main results of the µNAS compared with

other constrained NAS. They use multiply accumulate operations

(MACs) as a measure to quantify the latency time as a function of

the model size.

Other examples of physically constrained NAS using MOO can

be found in the literature. For example, in Dong et al. (2018),

the authors propose Device-aware Progressive Search for Pareto-

optimal Neural Architectures (DPP-Net), which optimizes device-

related and device-independent targets by applying multi-objective

optimization. DPP-Net employs a compact search space inspired

by state-of-the-art mobile CNNs and further improves the search

efficiency by adopting progressive search (Liu et al., 2017). The

authors test their system on CIFAR-10 and they compere it with

the state-of-the-art (Huang et al., 2017, 2018; Zoph et al., 2018).

We show these results in Table 2.

In Tan et al. (2019), the authors proposed an automated

mobile neural architecture search (MNAS) approach that explicitly

incorporates model latency into the main objective so that the

search can identify a model that achieves an optimal trade-off

between accuracy and latency. The authors define the objective

function as follows:

Given a model m, let ACC(m) denote its accuracy on the target

task, LAT(m) the inference latency on the target mobile platform,

and T the target latency. A common method is to treat T as a

hard constraint and maximize the accuracy under this constraint

(Equation 13):

maximize
m

ACC(m)

subject to LAT(m) ≤ T
(13)

Tan et al. (2019) use a custom weighted product method

to approximate Pareto optimal solutions, with an optimization

objective defined as Equation (14):

maximize
m

ACC(m)×

[

LAT(m)

T

]w

(14)

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

FIGURE 1

Symbolic DNN-tuner architecture [reprinted with permission from Fraccaroli et al. (2021)].

TABLE 1 Pareto-optimal architectures discovered by µNAS vs. other Resource—Constrained NAS.

Dataset Model Acc. (%) Model size MACs

MNIST SpArSe (Fedorov et al., 2019) 98.64 2770 -

BonsaiOpt (Kumar et al., 2017) 94.38 490 -

ProtoNN (Gupta et al., 2017) 95.88 63′900 -

µNAS(1174 steps, 1 GPU-day) 99.19 480 28.6 K

CIFAR-10 LEMONADE (Elsken et al., 2018) ≈ 91.77 10K -

µNAS(4205 steps, 23 GPU-days) 86.49 11.4 K 384 K

Speech RENA (Zhou et al., 2018) 94.04 47 K ≈ 700M

Commands DS-CNN (Zhang et al., 2017) 94.45 < 38.6 K ≈ 2.7M

MCUNet (Lin et al., 2020) 91.20 < 1 M -

µNAS(1960 steps, 39 GPU-days) 95.36 37 K 1.1 M

where w is an application-specific constant. The authors test

their system on ImageNet classification and compare their model

with both manually designed mobile models and other automated

approaches. The results are shown in Table 3.

Zhou et al. (2018) developed the Resource-Efficient Neural

Architect (RENA), a resource-limited efficient NAS that uses

reinforcement learning with network embeddings. The framework

consists of a network of policies to generate actions that define

the architecture of the neural network. The environment provides

the performance of the trained neural network and its resource

utilization. RENA uses a policy gradient with accumulated rewards

to train the policy network. To find neural architectures that

satisfy multiple resource constraints, a reward based on the model

performance should be penalized according to the amount of

constraint violation. A hard penalty may be effective for some

constraints, but it would be difficult for the controller to learn from

very sparse rewards under tight resource constraints. Therefore,

RENA uses a soft continuous penalty method to find architectures

with high performance while meeting all resource constraints. The

results obtained with this framework are shown in Table 4.

A popular case study is the application of machine learning

models for the predictive maintenance of IoT edge devices in a

factory. Since these devices have limited memory and computing

resources, we need to design optimized neural architectures for

them, striking a balance between model accuracy and resource

efficiency. Using RENA, we are able to develop models that

can effectively predict device failures while operating within the

constraints of edge devices. The implementation of RENA therefore

enables the company to use machine learning for the predictive

maintenance of its IoT edge devices efficiently.

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

TABLE 2 DPP-Net main result on CIFAR-10.

Model Type Error rate Params FLOPs

DenseNet-BC (k = 12) (Huang et al., 2017) Manual 4.51 0.8M -

CondenseNet-86 (Huang et al., 2018) Manual 5.0 0.52M 65.8M

NASNet-B (Zoph et al., 2018) Auto 3.73 2.6M -

DPP-Net (Dong et al., 2018) Auto 4.36∼ 5.84 11.39M∼ 0.45M 1364M∼ 59.27M

TABLE 3 MNAS main result on ImageNet classification.

Model Type Top-1 Acc. (%) Params MACs

MobileNetV1 (Howard et al., 2017) Manual 70.6 4.2M 575M

SqueezeNext (Gholami et al., 2018) Manual 67.5 3.2M 708M

ShuffleNet (1.5x) (Zhang et al., 2018) Manual 71.5 3.4M 292M

ShuffleNetV2 (1.5x) (Ma et al., 2018) Manual 72.6 5.4M 524M

CondenseNet (G=C=4) (Huang et al., 2018) Manual 71.0 - 299M

MobileNetV2 (Sandler et al., 2018) Manual 72.0 - 597M

NASNet-A (Zoph et al., 2018) Auto 74.0 2.9M 274M

AmoebaNet-A (Zhou et al., 2018) Auto 74.5 4.8M 529M

PNASNet (Liu C. et al., 2018) Auto 74.2 3.4M 300M

DARTS (Liu H. et al., 2018) Auto 73.1 6.9M 585M

MNAS Auto 75.2∼ 76.7 3.9M∼ 5.2 312M∼ 403M

Another case study example are TinyML models designed

specifically for wearable devices with limited memory and

processing capacity. They are optimized using techniques such

as pruning and quantization to save energy and resources

while still providing accurate predictions. For example, on

environmental monitoring sensors, a system such as µNAS can

be applied to design compact neural architectures for low-

power microcontrollers, enabling real-time data analysis and

maximizing battery life. These examples highlight the effectiveness

of constrained NAS approaches, such as RENA, DNN-Tuner,

and µNAS, in designing neural architectures tailored to specific

constraints.

3.2 Integrated system

The methods outlined above shed light on the distinctions

between various NAS approaches. However, the question arises:

can MOO methods be seamlessly integrated with each other?

Moreover, is it feasible to introduce constraints without resorting

to MOO?

One prospective avenue is to introduce into the Symbolic

DNN-Tuner (Fraccaroli et al., 2021) a multi-objective function,

akin to the µNAS model, which stands as a subject for future

exploration. In such a scenario, the optimization function would

be multi-objective in nature, aiming to optimize the network while

considering physical constraints. This function could be optimized

using one of the methods delineated in Section 2.3.1. Following

this optimization, incorporating tuning ations (TAs) would enable

the system to intervene when the networks violate the constraints.

Table 5 illustrates the tuning actions employed by Symbolic DNN-

Tuner (Fraccaroli et al., 2021), alongside potential additional

rules to satisfy new constraints, presented in the lower part of

the table.

Another way to impose a constraint might be to add a penalty to

the metric used to evaluate the networks. For example, AutoKeras

adds a penalty term to the network loss. This means that the

more a constraint is violated, the greater the penalty will be. In

the previous example of physical constraints, assuming an upper

limit on FLOPS, the closer the network to the limit, the greater the

penalty. Thus, a NASwill tend to prefer smaller networks since large

networks would lead to higher loss functions.

4 Constrained networks

The widespread success of DL has led several researchers to

look for ways to improve it through constraint-based domain

knowledge. There are contexts in which purely data-driven models

are not ideal, such as when data are sparse or learning tasks are

very challenging. It is possible to achieve a significant increase in

the performance of NNs by exploiting domain knowledge, using

problem-specific information for simplifying the training process

(e.g., the shape of the output, the data generation process, the

experience of a domain expert, etc.). Therefore, it makes sense to

exploit domain information in order to not to start from scratch

when tackling difficult learning tasks for NNs.

In various fields, constraints are applied during the

training of neural networks to improve the performance

and reliability of the models. In the case of unbalanced

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

TABLE 4 RENA main result on speech commands.

Model Resource constraint Parameters Accuracy (%) FLOPs

GRU (Zhang et al., 2017) - 0.093 M 92.94 0.68 B

DS-CNN (Zhang et al., 2017) - 0.023 M 93.39 6.07 B

CRNN (Zhang et al., 2017) - 2.447 M 94.40 46.21 B

RENA - 0.143 M 95.81 3.39 B

RENA Model size < 0.05 M 0.047 M 94.04 1.40 B

RENA Model size < 0.1 M 0.067 M 94.82 6.53 B

RENA Comp. complexity < 1 GFLOPs 0.425 M 93.16 0.89 B

RENA Comp. complexity < 5 GFLOPs 0.171 M 95.02 3.30 B

Model size < 0.1 M

RENA Comp. complexity < 1 GFLOPs 0.035 M 93.07 1.0 B

datasets, penalties for misclassification errors on minority

classes are applied to address the issue (Sangalli et al., 2021).

Anomaly detection systems could use constraints to penalize

misclassification of normal cases as anomalies during the

training process. Finally, medical diagnostic systems could

incorporate medical constraints during training to ensure that

the provided diagnoses align with clinical evidence and medical

guidelines. These constraints play a crucial role in enhancing the

effectiveness and validity of the neural network models in these

respective domains.

Below, we will illustrate some applications of constrained

NNs; in particular we will see examples of constraints applied

through penalty functions, such as Lagrange multipliers (Section

4.1), applied in unbalanced data and OOD detection contexts.

Finally, we will see an example of the application of the probabilistic

interpretation (Section 4.2).

4.1 Applications

4.1.1 NNs with unbalanced data
Datasets with unbalanced data are one of the most common

problems in ML. However, it is possible to introduce constraints

given by context-knowledge so as to mitigate the effect of

unbalanced classes.

Sangalli et al. (2021) proposed to see the training of a DNN

for binary classification under conditions of class imbalance as

a constrained optimization problem. They consider the medical

imaging context where applications with data imbalance are

ubiquitous (Litjens et al., 2017) and some types of errors are

more severe than others. For example, in a diagnosis application,

discarding a cancer case as healthy (False Negative) is more costly

than classifying a healthy subject as having cancer (False Positive).

For this reason, networks working in the medical field generally

tend to have high True Positive Rates (TPRs). The authors define a

constraint, using theMann-Whitney statistics (Mann andWhitney,

1947), to maximize the AUC, but to asymmetrically favor reducing

False Positives in the presence of high TPR (or low False Negative

Rates). They then use the Augmented Lagrangian Method (ALM)

(Bertsekas, 1997).

The optimization problem they solve is defined as

Equation (15):

argmin
θ

F(θ)

subject to :

|N|
∑

k=1

max

(

0,−
(

fθ (x
p
j)− fθ (x

n
k)

)

+ δ

)

= 0, j ∈ {1, ..., |P|}

(15)

where, fθ (x) indicates output probability of DNN on input x,

and P = {x
p
1 , . . . , x

p
|P|} is the set of positive samples and N =

{xn1 , . . . , x
n
|N|} is the set negative samples.

The constraint states that the output of the NN for each sample

of the positive class should be larger than the outputs of all of

the negative samples by a margin δ. Furthermore, satisfying the

constraint would directly guarantee maximal AUC.

Figure 2 shows a toy example. The upper part shows 10 data

samples sorted with respect to the output of the classifier, i.e.,

samples on the right are assumed to produce a higher output than

those on the left. The blue area in the lower part of the figure shows

the AUC for the toy data samples. Let us consider two different

approaches to increase the AUC. Using standard optimization with

binary cross entropy as the loss function, we would add the red

box while solving the problem in Equation (15) via the method of

Lagrange multipliers results in addition to the green box to the blue

area. Both optimizations lead to the exacts same improvement in

AUC, but only the addition of the green box reduces the FPR while

maintaining the same TPR. Two possible extensions for multiclass

classification are also proposed in Sangalli et al. (2021). The authors

also perform an extensive evaluation of constraints for binary

and multiclass image classification problems on both computer

vision and medical imaging datasets by simulating different class

imbalance ratios. They obtained results showing that constraints

improve baseline performance in most cases of both binary and

multiclass classification experiments.

4.1.2 OOD detection with constrained networks
Katz-Samuels et al. (2022) proposed a framework for out-of-

distribution (OOD) detection in the wild, dubbed WOODS (Wild

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

TABLE 5 Problem, symptoms, and tuning actions.

Problem Symptoms Tuning actions (TAs)

Overfitting Gap between accuracy or

loss in training and

validation

Regularization and Batch

Normalization

Increase dropout

Data augmentation

Underfitting High loss Decrease the learning rate

Low accuracy Increase the number of neurons

Addition of fully connected layers

Addition of convolutional blocks

Increasing

loss

Loss trend analysis Decrease the learning rate

Fluctuating

loss

Fluctuation of the loss Increase the batch size

Decrease the learning rate

Low learning

rate

Evaluation of the shape

of the loss

Increase learning rate

High

learning rate

Evaluation of the shape

of the loss

Decrease learning rate

Peak

Memory

Usage

High number of

Parameters for layer

Decrease the number of neurons

Model Size High number of total

Parameters

Decrease the number of layers or

the number of neurons

Latency High FLOPS Decrease the number of layers or

the number of neurons

OOD detection sans-Supervision). In this approach, a pre-trained

model to perform in-distribution (ID) classification is deployed in

the “wild” open world, where it will encounter large amounts of

unlabeled ID and OOD data. In WOODS, the model can be tuned

using the “wild” data to perform accurate OOD detection and ID

classification.

The authors use wild data because it can be found

in huge quantities, can be collected at low cost at

the time of implementing an ML system, and often

corresponds better to the actual distribution than data

collected offline. However, it is difficult to exploit because

it is naturally composed of examples of both ID and

OOD data.

WOODS is based on constrained optimization and solves it

through the Augmented Lagrangian method applied to deep neural

networks.

Let X = R
d denote the input space and Y = {1, ...,K} denote

the label space.We assume access to the labeled training setDtrain
in =

{(xi, yi)}
n
i=1 , drawn i.i.d. from the joint data distribution PXY . Let

Pin denote the marginal distribution on X , which is also referred

to as the ID and Pout denote different distribution on samples that

the model has not been exposed to during training, which is also

referred to as the OOD. Let fθ :X 7→ R
|Y| denote a function for the

classification task, which predicts the label of an input sample and

gω :X 7→ {in, out} as the function for OOD detection. WOODS

uses the Huber contamination model (Huber, 1992) to model the

FIGURE 2

Toy example illustrating di�erent optimizations. This Figure is a

reelaboration of a Figure from Sangalli et al. (2021).

marginal distribution of the wild data (Equation 16):

Pwild : = (1− π)Pin + πPout , with π ∈ (0, 1] (16)

The objective can be described as follows (Equation 17):

minimize
θ

Ex∼Pwild

(

1
{

gθ (x) = in
})

s.t. Ex∼Pin

(

1
{

gθ (x) = out
})

≤ α

E(x,y)∼PXY

(

1
{

fθ (x) 6= y
})

≤ τ .

(17)

where 1{·} is the indicator function, and α, τ ∈ [0, 1].

In other words, the authors aim to minimize the

number of samples that are classified as ID by applying

two constraints:

1. The error of declaring an ID data from Pin as OODmust be low;

2. The multiclass classification model must maintain the best

attainable (or nearly attainable) accuracy of a base classifier

designed without an OOD detection requirement.

4.2 Application of the probabilistic
interpretation

When the output of a model is structured, knowledge of the

structure type (one-hot encoder, ranking, path graph, etc.) can be

useful information to integrate in the training of a neural network.

In Xu et al. (2018), define a semantic loss to calculate how close the

network output is to satisfying a given constraint, thus exploiting

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

the concepts seen in Section 2.4. The idea is to penalize networks

that do not satisfy constraints on the output.

The semantic loss Ls(α, p) is a function involving the

propositional logic sentence α and a set of variables X =

{X1, . . . ,Xn}. It also incorporates a probability vector p associated

with these variables, where each element pi represents the predicted

probability for the variable Xi and corresponds to a single output

from the neural network. The semantic loss is defined by the

following equation:

Ls(α, p) ∝ −log
∑

x|Hα

∏

i : x|HXi

pi
∏

i : x|H¬Xi

(1− pj) (18)

Semantic loss is simply another regularization term that can be

directly added to an existing loss function. More specifically, given

some weight w, the new loss becomes (Equation 19):

existing loss+ w · semantic loss (19)

For example, for given the exactly-one constraint seen in

Section 2.4, the semantic loss is given by Equation (20):

Ls(exactly− one, p) ∝ −log

n
∑

i=1

pi

n
∏

j=1,j6=i

(1− pi) (20)

In general, for arbitrary constraints, computing semantic loss

using Equation (18) is computationally expensive. Therefore,

advanced automated reasoning, particularly knowledge

compilation, is required (Anderson, 1983).

The authors show that semantic loss is not effective enough

for simple supervised classification problems. However, it is useful,

provided the output domain is a sufficiently complex space. A

prime example of this is the path graph problem, where the goal

is to predict the shortest path and the constraint is for the output

to be a valid path. By testing the same network with and without

semantic loss, Xu et al. (2018) show that the accuracy is significantly

improved for consistent and constrained paths.

5 Conclusion and future work

The integration of domain knowledge, expressible in the form

of constraints, into deep neural networks has gained research

interest in recent years. In this study, we showed several AutoML

and NAS frameworks that use multi-objective optimization and

discussed how they compare with the state-of-the-art. As future

work, we proposed utilizing knowledge to integrate Symbolic

DNN-Tuner with multi-objective functions. Then, we presented

some approaches that use domain knowledge in NNs. In particular,

we showed how this integration can be done using Lagrange

multipliers, both for domain constraints and detection cases such as

OOD detection. We also discussed semantic loss, which calculates

how close the network output is to satisfying a given constraint.

In summary, by combining developments of both approaches,

AutoML and constrained neural networks, we obtain several

promising applications of constraints in neural systems, resulting

in more robust learning capabilities for neural-symbolic systems.

Author contributions

AB: Investigation, Writing – original draft, Writing – review &

editing. MF: Conceptualization, Supervision, Writing – review &

editing. EL: Methodology, Supervision, Writing – review & editing.

FR: Methodology, Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Agre, G., and Koprinska, I. (1996). “Case-based refinement of
knowledge-based neural networks,” in The International Conference"
Intelligent Systems: A Semiotic Perspective (Piscataway, NJ),
20–23.

Anderson, J. R. (1983). “Knowledge compilation,” inMachine Learning: An Artificial
Intelligence Approach (Berlin), 289.

Avila Garcez, A. S., and Zaverucha, G. (1999). The connectionist
inductive learning and logic programming system. Appl. Intellig. 11, 59–77.
doi: 10.1023/A:1008328630915

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: a deep
convolutional encoder-decoder architecture for image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 2481–2495. doi: 10.1109/TPAMI.2016.2644615

Benmeziane, H., Maghraoui, K. E., Ouarnoughi, H., Niar, S., Wistuba, M., and
Wang, N. (2021). A comprehensive survey on hardware-aware neural architecture
search. arXiv[preprint] arXiv:2101.09336. doi: 10.24963/ijcai.2021/592

Bergstra, J., Yamins, D., and Cox, D. (2013). “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures,” in
International Conference on Machine Learning (New York: PMLR), 115–123.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://doi.org/10.1023/A:1008328630915
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.24963/ijcai.2021/592
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

Bertsekas, D. P. (1997). Nonlinear programming. J. Operat. Res. Soc. 48, 334–334.
doi: 10.1057/palgrave.jors.2600425

Cho, K., Van Merriėnboer, B., Bahdanau, D., and Bengio, Y. (2014). On the
properties of neural machine translation: encoder-decoder approaches. arXiv[preprint]
arXiv:1409.1259. doi: 10.3115/v1/W14-4012

Dai, Z., Liu, H., Le, Q. V., and Tan, M. (2021). Coatnet: Marrying convolution
and attention for all data sizes. Adv. Neural Inf. Process. Syst. 34, 3965–3977.
doi: 10.48550/arXiv.2106.04803

De Raedt, L., Kimmig, A., and Toivonen, H. (2007). “Problog: A probabilistic
prolog and its application in link discovery,” in IJCAI 2007, the 20th International Joint
Conference on Artificial Intelligence (Messe Wien, Vienna: IJCAI), 2462–2467.

Deng, L., and Yu, D. (2014). Deep learning: methods and applications. Foundat.
Trends Signal Proc. 7, 197–387. doi: 10.1561/2000000039

Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., and Sun, M. (2018). “DPP-
Net: Device-aware progressive search for pareto-optimal neural architectures,” in The
European Conference on Computer Vision (ECCV), 517–531.

Elsken, T., Metzen, J. H., and Hutter, F. (2018). Efficient multi-objective neural
architecture search via lamarckian evolution.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: a survey.
J. Mach. Learn. Res. 20, 1997–2017. doi: 10.1007/978-3-030-05318-5_3

Fedorov, I., Adams, R. P., Mattina, M., and Whatmough, P. (2019). Sparse: Sparse
architecture search for CNNs on resource-constrained microcontrollers. Adv. Neural
Inf. Process. Syst. 32, 4977–4989. doi: 10.48550/arXiv.1905.12107

Feurer, M., and Hutter, F. (2019). “Hyperparameter optimization,” in Automated
Machine Learning (Cham, Berlin: Springer), 3–33.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter,
F. (2015). “Efficient and robust automated machine learning,” in Advances in Neural
Information Processing Systems 28 (NIPS 2015) (Montreal, QC: NIPS 2015), 28.

Fraccaroli, M., Lamma, E., and Riguzzi, F. (2021). Symbolic DNN-tuner. Mach.
Learn. 111, 625–650. doi: 10.1007/s10994-021-06097-1

Fraccaroli, M., Lamma, E., and Riguzzi, F. (2022). Symbolic dnn-tuner: a python
and problog-based system for optimizing deep neural networks hyperparameters.
SoftwareX 17:100957. doi: 10.1016/j.softx.2021.100957

Garcez, A., d., Gori, M., Lamb, L. C., Serafini, L., Spranger, M., et al. (2019). Neural-
symbolic computing: An effective methodology for principled integration of machine
learning and reasoning. doi: 10.48550/arXiv.1905.06088

Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., et al. (2018). “Squeezenext:
Hardware-aware neural network design,” in The IEEE Conference on Computer Vision
and Pattern Recognition Workshops (Seattle: IEEE), 1638–1647.

Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., and Vanschoren,
J. (2019). An open source AutoML benchmark. arXiv[preprint] arXiv:1907.00909.
doi: 10.48550/arXiv.1907.00909

Gupta, C., Suggala, A. S., Goyal, A., Simhadri, H. V., Paranjape, B., Kumar,
A., et al. (2017). “Protonn: Compressed and accurate knn for resource-scarce
devices,” in International Conference on Machine Learning (New York: PMLR),
1331–1340.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask R-CNN,” in The IEEE
International Conference on Computer Vision (Paris: IEEE), 2961–2969.

He, K., and Sun, J. (2015). “Convolutional neural networks at constrained time cost,”
in The IEEE Conference on Computer Vision and Pattern Recognition (Seattle: IEEE),
5353–5360.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in The IEEE Conference on Computer Vision and Pattern Recognition
(Seattle: IEEE), 770–778.

He, X., Zhao, K., and Chu, X. (2021). Automl: A survey of the state-of-the-art.
Knowl.-Based Syst. 212:106622. doi: 10.1016/j.knosys.2020.106622

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
et al. (2017). Mobilenets: efficient convolutional neural networks for mobile vision
applications. arXiv[preprint] arXiv:1704.04861. doi: 10.48550/arXiv.1704.04861

Hsu, C.-H., Chang, S.-H., Liang, J.-H., Chou, H.-P., Liu, C.-H., Chang, S.-C.,
et al. (2018). Monas: multi-objective neural architecture search using reinforcement
learning. arXiv[preprint] arXiv:1806.10332. doi: 10.48550/arXiv.1806.10332

Huang, G., Liu, S., Van derMaaten, L., andWeinberger, K. Q. (2018). “Condensenet:
an efficient densenet using learned group convolutions,” in The IEEE Conference on
Computer Vision and Pattern Recognition (Seattle: IEEE), 2752–2761.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in The IEEE Conference on Computer Vision and
Pattern Recognition (Seattle: IEEE), 4700–4708.

Huber, P. J. (1992). “Robust estimation of a location parameter,” in Breakthroughs in
Statistics (Berlin: Springer), 492–518.

Hwang, C.-L., and Masud, A. S. M. (2012). Multiple Objective Decision Making–
Methods and Applications: a State-of-the-Art Survey, Volume 164. Berlin: Springer
Science & Business Media.

Jin, H., Song, Q., and Hu, X. (2019). “Auto-Keras: An efficient neural architecture
search system,” in 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (New York, NY), 1946–1956.

Katz-Samuels, J., Nakhleh, J. B., Nowak, R., and Li, Y. (2022). “Training OOD
detectors in their natural habitats,” in International Conference on Machine Learning
(New York: PMLR), 10848–10865.

Klein, A., Falkner, S., Mansur, N., and Hutter, F. (2017). “Robo: A flexible and robust
bayesian optimization framework in python,” in NIPS 2017 Bayesian Optimization
Workshop (Cambridge, MA: MIT Press), 4–9.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/3065386

Kumar, A., Goyal, S., and Varma, M. (2017). “Resource-efficient machine learning
in 2 kb ram for the internet of things,” in International Conference onMachine Learning
(New York: PMLR), 1935–1944.

Lamb, L. C., Garcez, A., Gori, M., Prates, M., Avelar, P., and Vardi, M. (2020).
Graph neural networks meet neural-symbolic computing: a survey and perspective.
arXiv[preprint] arXiv:2003.00330. doi: 10.24963/ijcai.2020/679

Liashchynskyi, P., and Liashchynskyi, P. (2019). Grid search, random search,
genetic algorithm: a big comparison for nas. arXiv[preprint] arXiv:1912.06059.
doi: 10.48550/arXiv.1912.06059

Liberis, E., Dudziak, Ł., and Lane, N. D. (2021). “µNAS: constrained neural
architecture search for microcontrollers,” in The 1st Workshop on Machine Learning
and Systems (Edinburgh: EuroMLSys’21), 70–79.

Liberis, E., and Lane, N. D. (2019). Neural networks on microcontrollers: saving
memory at inference via operator reordering. arXiv[preprint] arXiv:1910.05110.
doi: 10.48550/arXiv.1910.05110

Lin, J., Chen, W.-M., Lin, Y., Gan, C., Han, S., et al. (2020). Mcunet: Tiny
deep learning on iot devices. Adv. Neural Inf. Process. Syst. 33, 11711–11722.
doi: 10.48550/arXiv.2007.10319

Lin, T., Wang, Y., Liu, X., and Qiu, X. (2021). A survey of transformers.
arXiv[preprint] arXiv:2106.04554. doi: 10.48550/arXiv.2106.04554

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). “Focal loss for dense
object detection,” in The IEEE International Conference on Computer Vision (Paris:
IEEE), 2980–2988. doi: 10.48550/arXiv.1708.02002

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et
al. (2017). A survey on deep learning in medical image analysis. Med. Image Anal. 42,
60–88. doi: 10.1016/j.media.2017.07.005

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., et al. (2018).
“Progressive neural architecture search,” in The European Conference on Computer
Vision (ECCV) (Tel Aviv: IEEE), 19–34.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. (2017).
Hierarchical representations for efficient architecture search.

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: differentiable architecture search.
arXiv[preprint] arXiv:1806.09055.

Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., et al. (2018).Nsga-
net: A Multi-Objective Genetic Algorithm for Neural Architecture Search. New York,
NY.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). “Shufflenet v2: practical
guidelines for efficient cnn architecture design,” in The European Conference on
Computer Vision (ECCV) (Tel Aviv: ECCV), 116–131.

Mann, H. B., and Whitney, D. R. (1947). On a test of whether one of two random
variables is stochastically larger than the other. Ann. Mathem. Statist. 18, 50–60.
doi: 10.1214/aoms/1177730491

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys. 5, 115–133. doi: 10.1007/BF02478259

Melis, G., Dyer, C., and Blunsom, P. (2017). On the state of the art
of evaluation in neural language models. arXiv[preprint] arXiv:1707.05589.
doi: 10.48550/arXiv.1707.05589

Miettinen, K. (1999). Nonlinear Multiobjective Optimization, Volume 12. Berlin:
Springer Science & Business Media.

Paria, B., Kandasamy, K., and Póczos, B. (2020). “A flexible framework for
multi-objective bayesian optimization using random scalarizations,” in Uncertainty in
Artificial Intelligence (New York: PMLR), 766–776.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
Unified, real-time object detection,” in The IEEE Conference on Computer Vision and
Pattern Recognition (Las Vegas: IEEE), 779–788.

Riguzzi, F. (2022). Foundations of Probabilistic Logic Programming: Languages,
Semantics, Inference and Learning. Denmark: River Publishers.

Sahin, S., Tolun, M. R., and Hassanpour, R. (2012). Hybrid expert systems: a
survey of current approaches and applications. Expert Syst. Appl. 39, 4609–4617.
doi: 10.1016/j.eswa.2011.08.130

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C.
(2018). “Mobilenetv2: Inverted residuals and linear bottlenecks,” in The

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://doi.org/10.1057/palgrave.jors.2600425
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.48550/arXiv.2106.04803
https://doi.org/10.1561/2000000039
https://doi.org/10.1007/978-3-030-05318-5_3
https://doi.org/10.48550/arXiv.1905.12107
https://doi.org/10.1007/s10994-021-06097-1
https://doi.org/10.1016/j.softx.2021.100957
https://doi.org/10.48550/arXiv.1905.06088
https://doi.org/10.48550/arXiv.1907.00909
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1806.10332
https://doi.org/10.1145/3065386
https://doi.org/10.24963/ijcai.2020/679
https://doi.org/10.48550/arXiv.1912.06059
https://doi.org/10.48550/arXiv.1910.05110
https://doi.org/10.48550/arXiv.2007.10319
https://doi.org/10.48550/arXiv.2106.04554
https://doi.org/10.48550/arXiv.1708.02002
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1007/BF02478259
https://doi.org/10.48550/arXiv.1707.05589
https://doi.org/10.1016/j.eswa.2011.08.130
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Bizzarri et al. 10.3389/frai.2024.1414707

IEEE Conference on Computer Vision and Pattern Recognition (Seattle: IEEE),
4510–4520.

Sangalli, S., Erdil, E., Hötker, A., Donati, O., and Konukoglu, E. (2021).
“Constrained optimization to train neural networks on critical and under-represented
classes,” in Advances in Neural Information Processing Systems (Cambridge, MA: MIT
Press), 34.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv[preprint] arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Smolensky, P. (1990). Tensor product variable binding and the representation
of symbolic structures in connectionist systems. Artif. Intell. 46, 159–216.
doi: 10.1016/0004-3702(90)90007-M

Snoek, J., Larochelle, H., and Adams, R. P. (2012). “Practical bayesian optimization
of machine learning algorithms,” in Advances in Neural Information Processing Systems
(Cambridge, MA: MIT Press), 25.

Staudemeyer, R. C., and Morris, E. R. (2019). Understanding LSTM-a tutorial into
long short-termmemory recurrent neural networks. arXiv[preprint] arXiv:1909.09586.
doi: 10.48550/arXiv.1909.09586

Swersky, K., Snoek, J., and Adams, R. P. (2013). “Multi-task bayesian optimization,”
in Advances in Neural Information Processing Systems, 26.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in The IEEE Conference on Computer Vision and
Pattern Recognition (Seattle: IEEE), 1–9.

Talbi, E.-G. (2021). Automated design of deep neural networks: a survey and unified
taxonomy. ACM Comp. Surv. (CSUR) 54, 1–37. doi: 10.1145/3439730

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al. (2019).
“MNASNET: Platform-aware neural architecture search for mobile,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Seattle: IEEE), 2820–2828.

Tan, M., and Le, Q. (2019). “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International Conference onMachine Learning (New
York: PMLR), 6105–6114.

Tenney, I., Das, D., and Pavlick, E. (2019). BERT rediscovers the classical NLP
pipeline. arXiv. arXiv:1905.05950. doi: 10.18653/v1/P19-1452

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). “Auto-WEKA:
Combined selection and hyperparameter optimization of classification algorithms,” in
19th ACM SIGKDD International Conference on Knowledge Discovery and DataMining
(New York, NY), 847–855.

Turing, A. M. (2009). Computing Machinery and Intelligence. Berlin: Springer.

Vanschoren, J. (2019). “Meta-learning,” in Automated Machine Learning (Berlin:
Springer), 35–61.

Veniat, T., and Denoyer, L. (2018). “Learning time/memory-efficient deep
architectures with budgeted super networks,” in IEEE Conference on Computer Vision
and Pattern Recognition (Seattle: IEEE), 3492–3500.

Wang, B., Sun, Y., Xue, B., and Zhang, M. (2018). “Evolving deep convolutional
neural networks by variable-length particle swarm optimization for image
classification,” in 2018 IEEE Congress on Evolutionary Computation (CEC) (Rio
de Janeiro: IEEE), 1–8.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den Broeck, G. (2018).
“A semantic loss function for deep learning with symbolic knowledge,”
in International Conference on Machine Learning (New York: PMLR),
5502–5511.

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). “Shufflenet: an extremely efficient
convolutional neural network for mobile devices,” in IEEE Conference on Computer
Vision and Pattern Recognition (Piscataway, NJ: IEEE), 6848–6856.

Zhang, Y., Suda, N., Lai, L., and Chandra, V. (2017). Hello edge:
keyword spotting on microcontrollers. arXiv[preprint] arXiv:1711.07128.
doi: 10.48550/arXiv.1711.07128

Zhou, Y., Ebrahimi, S., Arık, S., Ȯ., Yu, H., Liu, H., et al. (2018). Resource-efficient
neural architect. in arXiv[preprint] arXiv:1806.07912. doi: 10.48550/arXiv.1806.07912

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). “Learning transferable
architectures for scalable image recognition,” in IEEE Conference on Computer Vision
and Pattern Recognition (Salt Lake City: IEEE), 8697–8710.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1414707
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1016/0004-3702(90)90007-M
https://doi.org/10.48550/arXiv.1909.09586
https://doi.org/10.1145/3439730
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.48550/arXiv.1711.07128
https://doi.org/10.48550/arXiv.1806.07912
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Integration between constrained optimization and deep networks: a survey
	1 Introduction
	2 Main concepts
	2.1 DNNs
	2.2 AutoML
	2.2.1 Automated HPO
	2.2.2 Meta-learning
	2.2.3 NAS framework

	2.3 Optimization
	2.3.1 MOO

	2.4 Integration of constraints and DL
	2.4.1 Penalty
	2.4.2 Lagrange multipliers
	2.4.3 Probabilistic interpretation

	3 Constrained neural architecture search
	3.1 Approches to NAS
	3.2 Integrated system

	4 Constrained networks
	4.1 Applications
	4.1.1 NNs with unbalanced data
	4.1.2 OOD detection with constrained networks

	4.2 Application of the probabilistic interpretation

	5 Conclusion and future work
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

