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Introduction: In the evolving landscape of healthcare andmedicine, themerging

of extensive medical datasets with the powerful capabilities of machine learning

(ML) models presents a significant opportunity for transforming diagnostics,

treatments, and patient care.

Methods: This research paper delves into the realm of data-driven healthcare,

placing a special focus on identifying the most e�ective ML models for diabetes

prediction and uncovering the critical features that aid in this prediction. The

prediction performance is analyzed using a variety of ML models, such as

Random Forest (RF), XG Boost (XGB), Linear Regression (LR), Gradient Boosting

(GB), and Support VectorMachine (SVM), across numerousmedical datasets. The

study of feature importance is conducted using methods including Filter-based,

Wrapper-based techniques, and Explainable Artificial Intelligence (Explainable

AI). By utilizing Explainable AI techniques, specifically Local Interpretable Model-

agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), the

decision-making process of the models is ensured to be transparent, thereby

bolstering trust in AI-driven decisions.

Results: Features identified by RF in Wrapper-based techniques and the Chi-

square in Filter-based techniques have been shown to enhance prediction

performance. A notable precision and recall values, reaching up to 0.9 is achieved

in predicting diabetes.

Discussion: Both approaches are found to assign considerable importance

to features like age, family history of diabetes, polyuria, polydipsia, and high

blood pressure, which are strongly associated with diabetes. In this age of data-

driven healthcare, the research presented here aspires to substantially improve

healthcare outcomes.

KEYWORDS

machine learning, diabetes prediction, explainable AI, filter-based feature selection,

wrapper-based feature selection

1 Introduction

Diabetes Mellitus, commonly referred to as diabetes, is a widespread global health

concern. Historically, it has been prevalent primarily among middle-aged and elderly

individuals. However, recent developments, such as technological advancements and the

increasing availability of fast food, have contributed to its rising incidence in younger

populations. The primary etiology of diabetes is characterized by elevated blood sugar
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levels due to inefficient insulin utilization within the human

body. There are two primary types of diabetes: Type 1, which

is characterized by an absolute insulin deficiency with an

autoimmune basis, and Type 2, attributed to insulin resistance

(Alam et al., 2014). The diagnostic symptoms of diabetes are

identified by a plasma glucose concentration exceeding 11.1

mmol/L, accompanied by excessive thirst (polydipsia), unexplained

weight loss, and excessive urination (polyuria) (Deshmukh et al.,

2015). Diabetes is associated with substantial long-term health

risks, including stroke, cardiovascular disease, heart attack, kidney

failure, and peripheral arterial disease, as well as complications

in blood vessels and nerves (Nathan, 1993; Krasteva et al., 2014).

The global population affected by diabetes is projected to more

than double by 2030, even under the unlikely scenario that obesity

rates remain constant. This anticipated increase is attributed to

the effects of urbanization and aging populations. This trend raises

significant concern due to the escalating obesity rates worldwide

and the substantial role that obesity plays as a risk factor for

diabetes (Setacci et al., 2009). Preventative measures for diabetes

include the promotion of increased physical activity, adherence

to a balanced diet, maintenance of a healthy body mass index,

and the cessation of deleterious health behaviors, such as smoking

(Suryasa et al., 2021). Individuals with insulin-dependent diabetes

and those in the early stages of proliferative retinopathy are

two groups that benefit significantly from early detection and

prompt treatment of diabetes (Bennett and Knowler, 1984). For a

substantial proportion of patients, prompt and efficient diabetes

management is found to help prevent vascular complications and

slow the further deterioration of already impaired beta-cell function

(Ambady and Chamukuttan, 2008).

Within the healthcare industry, big data encompasses complex

electronic health datasets that traditional software tools often

struggle to manage effectively (Habchi et al., 2023). Healthcare

analysis involves the methodical utilization of these datasets to

extract valuable insights, support decision-making processes, aid

in planning, foster learning, and enable the early prediction and

detection of diseases through various models and approaches

(Asri et al., 2015; Dash et al., 2019). The continuous progression

of machine learning (ML) is an ongoing trend that is closely

monitored by the healthcare sector (Patel et al., 2023; Singh et al.,

2023). ML principles are instrumental in supporting healthcare

professionals and surgeons in saving lives, facilitating early disease

identification, improving patient management, enhancing patient

engagement in their recovery, and various other applications

(Farrelly et al., 2023). Globally, healthcare organizations are

leveraging AI-driven solutions and ML models to enhance the

delivery of medical services, ultimately facilitating the development

of treatments for severe diseases with greater efficiency (Javaid et al.,

2022; Dixit et al., 2023).

The proposed contributions of this study include:

• The novelty in this work is the selection of best features from

filter and wrapper-based approaches for these four datasets.

• To the best of our knowledge, this is the first time the feature

importance study has been applied to these four datasets.

• The comparison between the performance of feature selection

and ensemble learning approaches for diabetes prediction is

done.

• Explainable techniques SHAP and LIME plots help the

clinicians to clearly understand the decision of the ML

algorithm and identify the relationships between patient

characteristics and diabetes risk.

2 Literature survey

2.1 Feature extraction-based diabetes
prediction

Feature extraction is performed using principal component

analysis, followed by the application of resampling filters. Three

classifier methods are employed: K-Nearest Neighbors (KNN),

Naive Bayes, and Decision Tree. The highest accuracy achieved,

94.4%, is obtained with the Decision Tree classifier (Saru and

Subashree, 2019). Building on this approach, Sisodhia also included

preprocessing in their analysis, employing classifiers like Naive

Bayes, SVM, and Decision Tree. It is found that Naive Bayes

exhibits the highest accuracy among the three classifiers (Sisodia

and Sisodia, 2018). Extending the use of ML for health diagnostics,

Sarwar et al. (2018) developed a model for the early detection of

diabetes. This model utilizes a dataset that includes critical features

such as the diabetes pedigree function and BodyMass Index (BMI).

Several ML algorithms were tested, with SVM and KNN achieving

the highest accuracy scores, demonstrating the potential of these

techniques in clinical applications.

Similarly, Sharma et al. (2021) selected the Pima Indian

Diabetic dataset and applied four ML models for analysis. Among

these models, the highest accuracy, recorded at 80.43%, was

achieved by the Logistic Regression algorithm, illustrating the

effectiveness of this particular model for this dataset. In a

targeted effort to reduce diagnostic errors, Mujumdar and Vaidehi

(2019) focuses on mitigating false negatives, false positives, and

unclassified errors using a structured five-module approach. These

modules include data collection, preprocessing, clustering, model

development, and evaluation. K-means clustering demonstrated a

significant correlation between the “Glucose” and “Age” attributes.

Subsequently, Logistic Regression was identified as the most

effective model with an accuracy of 96%. Additionally, when

pipeline techniques were applied, the AdaBoost classifier achieved

an accuracy of 98%, showing the benefits of advanced preprocessing

and ensemble methods. Addressing class imbalance, Tasin et al.

(2023) centers on predicting insulin characteristics using a semi-

supervised model with high gradient boosting. Techniques such

as the Synthetic Minority Over-sampling Technique (SMOTE)

and Adaptive Synthetic (ADASYN) sampling are utilized. This

approach led to an XGBoost classifier reaching the highest accuracy

of 81%, an AUC of 0.84, and an F1 score of 0.81, which

highlights the utility of gradient boosting in managing skewed

data distributions.

Continuing the focus on Type 1 diabetes, Xue et al. (2020)

emphasizes the importance of early identification due to the

potential long-term damage to vital organs. The study finds SVM

to perform best in recognizing early diabetes symptoms, stressing

the need for efficient and accurate classifiers inmedical prognostics.

Further exploring ensemble methods, Vijayan and Anjali (2015)

proposes a decision support system using the AdaBoost algorithm
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with a Decision Stump as the base classifier. When the Decision

Tree is employed as the base classifier, AdaBoost achieves an

accuracy of 80.72%, showcasing the effectiveness of combining

multiple learning algorithms to improve prediction accuracy. On

the performance analysis front, Lyngdoh et al. (2021) conducted

studies on five supervised ML algorithms to predict diabetes

risk. The consistent inclusion of all existing risk variables led to

an increase in accuracy, with the KNN classifier achieving up

to 76% accuracy. This finding underscores the significance of

comprehensive feature selection in developing predictive models

(Lyngdoh et al., 2021).

Tripathi and Kumar (2020) contributes to the personalization

of patient diagnostics, aligning results closely with clinical

outcomes. Utilizing four ML methods, RF was found to surpass

other classification algorithms with the highest accuracy of 87.66%,

demonstrating its robustness in handling diverse clinical data.

In a related study, Shafi and Ansari (2021) investigates the

performance of Fasting Plasma Glucose (FPG) and Hemoglobin

A1c (HbA1c) as predictive features for diabetes. Multiple ML

classifiers and feature elimination techniques were used to achieve

favorable results, further emphasizing the role of feature selection

in enhancing classification performance. Lastly, Sisodia and Sisodia

(2018) and Ahmad et al. (2021) both focus on enhancing the

precision in predicting diabetes likelihood. Ahmad et al. (2021)

study, using three ML classification methods, found Naive Bayes

to be particularly effective with an accuracy of 76.30%. Meanwhile,

Sisodia and Sisodia (2018) developed a comprehensive framework

aimed at maximizing the precision of diabetes detection using

various ML techniques, utilizing the Pima Indian Diabetes dataset

from the UCI repository. Together, these studies illustrate ongoing

advancements in ML for diabetes prediction, with a focus on

accuracy and early detection.

2.2 Multi-classification frameworks for
diabetes prediction

Abnoosian et al. (2023) present a multi-classification

framework using various machine learning models (k-NN,

SVM, DT, RF, AdaBoost, and GNB) and a weighted ensemble

approach to address challenges such as limited labeled data,

frequent missing values, and dataset imbalance. The framework,

applied to the Iraqi Patient Dataset of Diabetes, achieves high

performance with an average accuracy of 98.87% and AUC of

0.999. Reza et al. (2023) propose an improved non-linear kernel for

the SVM model to enhance Type 2 diabetes classification using the

PIMA dataset. Their approach addresses missing values and class

imbalance, resulting in improved performance metrics such as an

accuracy of 85.5% and AUC of 85.5%.

2.3 Ensemble learning and hybrid models

Ganie et al. (2023) focus on using five boosting algorithms on

the Pima diabetes dataset, with Gradient Boosting achieving the

highest accuracy rate of 92.85%. They demonstrate the model’s

applicability to other diseases with similar indications. Doğru et al.

(2023) develop a super ensemble learning model with four base-

learners and a meta-learner (SVM), achieving the highest accuracy

results for early-stage diabetes risk prediction (99.6%), PIMA

(92%), and diabetes 130-US hospitals (98%) datasets. Zhou et al.

(2023) propose a diabetes prediction model using Boruta feature

selection and ensemble learning, validated on the PIMA Indian

diabetes dataset, achieving an accuracy rate of 98%.

2.4 Deep learning approaches

El-Bashbishy and El-Bakry (2024) present a deep learning-

based model using a DNN-based multi-layer perceptron (MLP)

algorithm for early diabetes prediction, achieving a high accuracy

rate of 99.8% on the Mansoura University Children’s Hospital

Diabetes (MUCHD) dataset.

2.5 Comparative evaluations and hybrid
techniques

Saxena et al. (2023) provide a comparative evaluation of

classical and ensemble machine learning models on the PIMA

Indian diabetes dataset and an early-stage diabetes risk prediction

dataset. The superlearner model provides the best accuracy of 86%

for PIMA and 97% for the early-stage diabetes risk prediction

dataset. Tasin et al. (2023) develop an automatic diabetes prediction

system using various machine learning techniques and a private

dataset of female patients in Bangladesh. The XGBoost classifier

with the ADASYN approach provides the best results with 81%

accuracy. Tripathi et al. (2023) analyze various machine learning

algorithms and classifiers on the PIMA diabetes dataset, using soft

voting ensemble techniques to achieve the highest accuracy.

2.6 Innovative and nature-inspired
algorithms

Jain and Singhal (2024) use nature-inspired metaheuristic

algorithms like the Bat Algorithm and Voting classifier with Smote

for diabetes prediction, achieving a maximum accuracy of 98%.

Alnowaiser (2024) propose an automated method for predicting

diabetes using KNN imputer and a Tri-ensemble voting classifier,

achieving an accuracy of 97.49%. Shimpi et al. (2024) present

an analytical model using optimized SVM, KNN, and Random

Forest with decision-level fusion and Particle Swarm Optimization,

achieving a prediction rate of 94.27%.

2.7 Data mining and model fusion

Rastogi and Bansal (2023) propose a diabetes prediction model

using data mining techniques and four classifiers, with Logistic

Regression achieving the highest accuracy of 82.46%. Zohair et al.

(2024) develop a hybrid model using ANN, AdaBoost, and RF

with Logistic Regression for binary and multiclass classification of

diabetes, achieving 97% accuracy for binary classification and 99%
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TABLE 1 Comparison of various studies on diabetes prediction.

Reference Model used Data types or
dataset

Application Best
performance
value

Limitation

Abnoosian et al.

(2023)

k-NN, SVM, DT, RF,

AdaBoost, GNB

Iraqi Patient

Dataset of Diabetes

Diabetes prediction in three

classes

Accuracy: 0.9887,

Precision: 0.9861,

Recall: 0.9792,

F1-score: 0.9851,

AUC: 0.999

Limited labeled data,

frequent missing values,

dataset imbalance

Reza et al. (2023) SVM with improved

non-linear kernel

PIMA dataset Type 2 diabetes classification ACC: 85.5, Recall:

87.0, Precision:

83.4, F1 score: 85.2,

AUC: 85.5

Kernel function choice

impacts performance

Ganie et al. (2023) Gradient Boosting Pima diabetes

dataset (UCI

repository)

Early diabetes prediction Accuracy: 92.85% Limited to Pima dataset,

potential overfitting

Saxena et al. (2023) Superlearner model PIMA Indian

diabetes dataset,

early-stage diabetes

risk prediction

dataset

Diabetes risk prediction Accuracy: 86%

(PIMA), 97% (risk

prediction dataset)

Performance varies with

dataset

Tasin et al. (2023) XGBoost with ADASYN Pima Indian

diabetes dataset,

private dataset of

female Bangladeshi

patients

Diabetes prediction Accuracy: 81%, F1

score: 0.81, AUC:

0.84

Dataset-specific

performance, need for

domain adaptation

Tripathi et al.

(2023)

Various ML algorithms and

classifiers

Standardized PIMA

diabetes data

Diabetes prediction Highest accuracy

achieved using soft

voting ensemble

techniques

Limited to standardized

PIMA data

Doğru et al. (2023) Super learner model (logistic

regression, DT, RF, gradient

boosting, SVM)

Early-stage diabetes

risk prediction,

PIMA, diabetes

130-US hospitals

dataset

Early diagnosis of diabetes

mellitus

Accuracy: 99.6%

(risk prediction),

92% (PIMA), 98%

(130-US hospitals)

Dataset-specific

performance, complexity

of super learner model

Rastogi and Bansal

(2023)

RF, SVM, Logistic Regression,

Naive Bayes

Kaggle dataset Diabetes prediction Accuracy: 82.46%

(Logistic

Regression)

Lower accuracy

compared to other

studies

Zhou et al. (2023) Boruta feature selection,

K-Means++, stacking

ensemble

PIMA Indian

diabetes dataset

Early detection of diabetes Accuracy: 98% Limited to PIMA dataset

El-Bashbishy and

El-Bakry (2024)

DNN-based MLP algorithm MUCHD dataset Early diabetes prediction Accuracy: 99.8% Dataset-specific

performance, potential

for overfitting

Modak and Jha

(2024)

Logistic Regression, SVM,

Näve Bayes, Random Forest,

XGBoost, LightGBM,

CatBoost, Adaboost, Bagging

Kaggle dataset Diabetes prediction Accuracy: 95.4%

(CatBoost),

AUC-ROC: 0.99

Limited to Kaggle

dataset, ensemble

methods complexity

Zambrana et al.

(2024)

Ridge Classifier, Random

Forest, Decision Tree

Two diabetes

datasets

Diabetes classification Accuracy: 95%

(Random Forest,

Decision Tree)

Limited dataset,

potential overfitting

Wee et al. (2024) Machine learning and deep

learning models

Various datasets Diabetes

identification/classification

Accuracy: 86.7%

(deep learning),

80.6% (machine

learning)

Limited dataset

availability, "black-box"

nature of deep learning

Jain and Singhal

(2024)

Ant Colony Optimization, Bat

Algorithm, Cuttlefish

Algorithm, Elephant Herd

Optimization, Artificial Bee

Algorithm

Specific dataset Diabetes prediction Accuracy: 98%

(Voting classifier

with Smote and Bat

Algorithm)

Dataset-specific

performance, complexity

of nature-inspired

algorithms

Shimpi et al. (2024) SVM, KNN, Random Forest,

Particle Swarm Optimization

(PSO)

Indian Pima

diabetes dataset

Diabetes detection Accuracy: 94.27%

(Hybrid classifiers)

Tedious

hyper-parameter tuning,

dataset-specific

performance

(Continued)
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TABLE 1 (Continued)

Reference Model used Data types or
dataset

Application Best
performance
value

Limitation

Alnowaiser (2024) KNN imputer, Tri-ensemble

voting classifier

Various datasets Diabetes prediction Accuracy: 97.49%,

Precision: 98.16%,

Recall: 99.35%, F1

score: 98.84%

Handling of missing

data, model complexity

Zohair et al. (2024) ANN, AdaBoost, RF, Logistic

Regression

Various datasets Diabetes classification Accuracy: 97%

(binary), 99%

(multiclass)

Dataset-specific

performance, complexity

of hybrid model

Talari et al. (2024) SMO, SMOTE, Bagging

Decision Trees

Pima Indian

Diabetes (PID)

dataset

Diabetes prediction Accuracy: 99.07%,

Runtime: 0.1 ms

Limited to PID dataset,

potential overfitting

for multiclass. Table 1 presents a comparison of various studies on

diabetes prediction based on ML.

3 Proposed methodology

The proposed methodology for predicting diabetes, as

illustrated in Figure 1, begins with data preprocessing, an essential

step to ensure clean and usable data. The preprocessing stage is

followed by the application of two categories of feature-importance

scoring methods: filter-based techniques and wrapper methods.

The filter-based methods implemented include Chi-square, Fisher’s

Score, analysis of missing values, and Information Gain, while the

wrapper methods incorporate models such as Random Forest (RF),

XGBoost Classifier, Gradient Boosting (GB) Classifier, Support

Vector Machine (SVM), and Logistic Regression (LR).

The best set of features resulted from the filter and wrapper

based methods is chosen. The dataset’s accuracy is evaluated by

considering both the full set of features and the subset of key

features identified through feature importance scoring. The ML

models employed for performance evaluation include XGBoost,

Gradient Boosting, SVM, and Random Forest. Next study on the

method uses an ensemble method, the stacking classifier, is utilized

to compare performance, with the aforementioned models serving

as base models and Logistic Regression as the meta-model. Finally,

to interpret and validate the results produced by theML algorithms,

explainable AI techniques such as Local Interpretable Model-

agnostic Explanations (LIME) and SHapley Additive exPlanations

(SHAP) are applied. Performance metrics such as accuracy score,

precision, recall, and F1 score are measured for both the full

feature set and the key features to comprehensively understand

their impact on diabetes prediction.

3.1 Feature importance selection

Feature selection, also known as variable selection, attribute

selection, or variable subset selection, is a critical phase in ML and

data analysis. From the entire set of features in the dataset, a subset

of relevant features (predictors, characteristics, or input variables)

is chosen to build a model. The objective of feature selection is

to enhance interpretability, reduce computational complexity, and

improve model performance by focusing on the most informative

and discriminative characteristics (Wei et al., 2020).

3.2 Wrapper based feature selection

Wrapper-based feature selection is a ML technique that

approaches the process of selecting subsets of features as a

search problem. This method involves training and evaluating

the effectiveness of ML models with various feature subsets to

identify the one that provides the best prediction performance.

Wrapper methods evaluate feature subsets by applying a specific

ML algorithm as a “wrapper” around the feature selection process.

3.2.1 Random forest
Random Forest is a technique where a multitude of decision

trees are constructed during training using ensemble ML, and

their predictions are then aggregated to produce a final prediction.

It is widely applied in problems involving both regression and

classification due to its accuracy and robustness.

Formula for Random Forest (feature importance using Gini

impurity):

In Random Forest, feature importance is often calculated based

on the average Gini impurity reduction attributed to each feature

over all the trees in the forest. Let imp(F) represent the importance

score for feature (F) and it is calculated using Equation 1.

imp(F) =
1

Ntrees

Ntrees
∑

i=1

imp(F, i) (1)

where:

• Ntrees is the total number of trees in the Random Forest.

• imp(F, i) is the Gini impurity reduction for feature (F) in the

ith tree.

The higher the importance score (F), the more relevant the

feature is in contributing to the predictive performance of the

Random Forest model.
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FIGURE 1

Flowchart of the proposed methodology.

3.2.2 Gradient boosting
Gradient Boosting is an ensemble method in ML that

systematically combines the predictions of several weak learners,

typically decision trees, so that each new learner addresses the

shortcomings of its predecessor. This approach involves employing

gradient descent to minimize a loss function during training,

thereby creating a powerful predictive model.

Formula for Gradient Boosting (feature importance using

gain):

In Gradient Boosting, feature importance is often computed

based on the average gain (or improvement) in the loss function

attributed to each feature over all the boosting iterations. Let

gain(F) represent the average gain for a feature (F) calculated using

Equation 2.

gain(F) =
1

M

M
∑

m=1

Nm
∑

i=1

Gain(F, i,m) (2)

where:

• M is the total number of boosting iterations.

• Nm is the number of samples at iterationm.

• Gain(F, i,m) is the gain for feature (F) at iteration m for

sample i.

The higher the average gain gain(F), the more important the

feature is in contributing to the model’s predictive performance.

3.2.3 XGBoost feature selection
Gradient boosting is executed effectively and in a scalable

manner by XGBoost, an ensemble ML technique. XGBoost

progressively constructs a series of weak learners, typically decision

trees, and employs gradient descent to minimize a loss function.

This approach contributes to the high performance and widespread

use of XGBoost in various ML tasks.

XGBoost calculates feature importance based on the average

gain (or improvement) in the loss function attributed to each

feature over all the boosting iterations. Let gain(F) represent the

average gain for feature (F) and it is calculated using Equation 3.

gain(F) =
1

M

M
∑

m=1

Gain(F,m) (3)

where:

• M is the total number of boosting iterations.

• Gain(F,m) is the gain for feature (F) at iteration (m).

The higher the average gain gain(F), the more important the

feature is in contributing to the model’s predictive performance.

3.2.4 Support vector machine
SVM is a proficient supervised ML technique used to address

regression and classification problems. They identify the optimal

decision boundary (hyperplane) to separate different classes or

predict values by optimizing the distance between data points and

the hyperplane.
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In SVM, the importance of features can be assessed using

the absolute values of the weights assigned to each feature in the

optimal hyperplane. Let wi represent the weight for feature (i),

and imp(Fi) represent the importance of feature (i) found using

Equation 4.

imp(Fi) = |wi| (4)

The higher the absolute weight |wi|, the more important the

feature is in defining the hyperplane and contributing to the SVM’s

predictive performance.

3.2.5 Linear regression
Linear regression is a basic supervised ML technique for

regression applications. It illustrates the relationship between a

dependent variable (y) and one or more independent variables (x)

by fitting a linear equation to the observed data. To minimize the

discrepancy between actual and anticipated values, the best-fitting

line (or hyperplane in higher dimensions) must be found.

In Linear Regression, feature importance can be assessed using

the absolute values of the coefficients assigned to each feature in the

linear equation. Let βi represent the coefficient for feature (i), and

imp(Fi) represent the importance of feature (i). Equation 5 shows

how imp(Fi) is determined.

imp(Fi) = |βi| (5)

The higher the absolute coefficient |βi|, the more important

the feature is in determining the outcome and contributing to the

predictive performance of the Linear Regression model.

3.3 Filter based model

Filter-based feature selection is a ML feature selection method

that evaluates the importance of each feature independently, using

statistical or mathematical measurements, without reference to any

specific ML model. In this approach, features are ranked or scored

based on their characteristics, and a subset of the most informative

features is selected for further use in model training. This process

is conducted as a preprocessing step before training a ML model,

thereby forming an integral part of the feature selection process.

3.3.1 Chi-square
The Chi-Square test, a statistical technique for feature selection,

is particularly useful for categorical data. It assesses whether there

is a dependence or relationship between a categorical feature and

the target variable by comparing the observed frequency of each

category with the expected frequency under the assumption of

independence.

For a given feature F with categories C1,C2, . . . ,Ck and target

variable (T), the Chi-Square statistic χ2 for that feature can be

calculated as given in Equation 6:

χ2 =

k
∑

i=1

(Oi − Ei)
2

Ei
(6)

where:

• Oi is the observed frequency of category Ci in the feature (F).

• Ei is the expected frequency of category Ci in the feature (F),

assuming independence between (F) and (T).

The higher the χ2 value, the more important the feature is in

relation to the target variable.

3.3.2 Fisher’s score
Fisher’s Score is recognized as a statistical technique pivotal for

feature selection within the domain of ML. This method evaluates

the discriminatory power of a feature by analyzing the ratio of the

variance within each class to the disparity in mean values across

different classes.

For a given feature (F) with (K) categories and a target variable

(T), Fisher’s Score F(F) is calculated as per the Equation 7:

F(F) =
mean difference between classes(F)

variance within classes(F)
(7)

where:

• Mean difference between classes (F) measures the difference

in means of feature (F) across different classes.

• Variance within classes (F) measures the variance of feature

(F) within each class.

A higher Fisher’s Score indicates a more discriminative feature that

can be considered important for selection.

3.3.3 Missing value
Before the application of ML models, it is essential to

identify and address instances or features containing missing data.

The management of these missing values is conducted using

a filter-based method. This approach determines the strategies

for handling or imputing missing values, guided by statistical

considerations or factors specific to the dataset.

The mean imputation method mentioned in Equation 8

replaces missing values with the mean of the non-missing values

for a specific feature (F):

MeanImputation(F) =
1

N

N
∑

i=1

ValidValuesi (8)

where:

• N is the number of non-missing (valid) values for feature (F).

• ValidValuesi represents each valid value of feature (F).

The median imputation method given in Equation 9 replaces

missing values with the median of the non-missing values for a

specific feature (F):

MedianImputation(F) = Median(ValidValuesi) (9)

where:

• Median(ValidValuesi) is the median of the non-missing (valid)

values for feature (F).
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The effectiveness of handling missing values in data relies on

statistical measures derived directly from the dataset, characterizing

these imputation methods as filter-based. It is vital to acknowledge

that imputation using mean or median values can introduce biases.

Consequently, such methods must be employed with caution,

considering their impact on the integrity of the entire dataset and

implications for future research.

3.3.4 Information gain
Information Gain stands as a crucial statistical metric utilized

in the realm of ML for the purpose of feature selection.

This metric quantifies the extent of knowledge obtained about

the target variable through awareness of a feature’s value. A

higher Information Gain indicates that the feature significantly

contributes to predicting the target variable, underscoring its utility

in the model.

Information Gain IG(F) for a feature (F) is calculated using

entropy, a measure of the amount of uncertainty in a set of data as

shown in Equation 10. Let H(T) represent the entropy of the target

variable, andH(T|F) represent the conditional entropy of the target

variable given feature (F).

IG(F) = H(T)−H(T|F) (10)

The entropy of the target variable H(T) and the conditional

entropy H(T|F) are given in Equation 11 and Equation 12

H(T) = −

c
∑

i=1

pi log2(pi) (11)

H(T|F) =

k
∑

j=1

∣

∣Fj
∣

∣

|T|
H(Tj) (12)

where:

• c is the number of classes in the target variable.

• pi is the proportion of samples in class (i).

• k is the number of unique values in the feature (F).

•
∣

∣Fj
∣

∣ is the number of samples with a value (j) in feature (F).

• |T| is the total number of samples.

• H(Tj) is the entropy of the target variable for samples with a

value (j) in feature (F).

3.4 Feature selection in ML

In the context of feature selection for ML, the relevance and

utility of a feature in predicting the target variable are directly

proportional to its Information Gain. A larger Information Gain

signifies a more pertinent and beneficial feature in forecasting

outcomes.

4 Classification using ML models

Classification in ML involves training an algorithm or model,

referred to as a classifier, to categorize or label input data points

based on identifying patterns and attributes within the data. The

primary goal of a classifier is to establish a mapping from input

attributes to predetermined categories or classes, which is then

utilized to make predictions on new, unseen data points.

4.1 Random forest classifier

The Random Forest classifier, an ensemble ML technique,

leverages the collective strength of multiple decision trees to yield

more accurate predictions or classifications. Introduced by Leo

Breiman and Adele Cutler, this method has gained widespread

application in various data science and ML tasks. Notably, the

accuracy of the Random Forest approach improves with the

expansion of the dataset. Furthermore, an increase in data with

a similar proportion of cases also enhances accuracy. It has been

observed that combining the Genetic Algorithm with the Random

Forest method results in higher accuracy for diabetes mellitus

datasets compared to other variants of the Random Forest method.

The prediction formula is given in Equation 13.

P =
1

n

n
∑

i=1

Ci (13)

Where:

• n = number of trees in the random forest,

• Ci = represent the regression prediction of the i-th decision

tree.

4.1.1 Gradient boosting classifier
Gradient Boosting represents an ensemble learning approach,

wherein multiple weak learners, such as decision trees, are trained

in succession to develop an additive model. Each successive learner

is designed to rectify the errors made by its predecessors. The final

prediction formula is given in Equation 14.

F(x) =

M
∑

m=1

αmfm(x) (14)

Where:

• F(x) is the final prediction for input data x,

• M is the total number of learners in the ensemble,

• fm(x) is a prediction of them-th weak learner,

• αm is the learning rate for them-th weak learner.

4.1.2 Support vector machine
A Support Vector Machine is a MLmodel designed to optimize

the margin between distinct classes within a dataset by identifying

the optimal hyperplane as per the Equation 15. This approach is

effective for both classification and regression tasks.

f (x) = sign(w · x+ b) (15)

Where:
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• w·x is the dot product of the weight factorw and feature vector

x,

• b is the bias term,

• sign(.) is the sign function which returns +1 or -1.

4.1.3 XGBoost classifier
XGBoost, or Extreme Gradient Boosting, augments

the gradient boosting framework with techniques such as

regularization, parallel computing, and tree-pruning. The

prediction formula is given in the Equation 16.

P(x) =

M
∑

m=1

γ Fm(x) (16)

Where:

• Fm(x) represents the prediction made by the m-th decision

tree,

• γ is the learning rate.

4.2 Ensemble approach

In this study, the ensemble method employed for performance

comparison is the stacking classifier, which enhances predictive

accuracy by combining multiple ML models. The stacking

ensemble approach involves using several base models to make

individual predictions, and then a meta-model to integrate these

predictions into a final output. Specifically, the base models utilized

in this methodology are Random Forest, Gradient Boosting,

Support Vector Machine, and XGBoost. These models were

selected for their diverse algorithmic approaches and strong

performance in classification tasks. The meta-model employed is

Logistic Regression, chosen for its simplicity and effectiveness in

aggregating the outputs of the base models. By leveraging the

strengths of each base model and the meta-model, the stacking

ensemble aims to improve the overall prediction performance

compared to using a single model.

4.3 Blackbox evaluation

The advancement of ML algorithms has significantly enhanced

predictive capabilities, often at the expense of interpretability.

Modern models, while capable of making highly accurate

predictions, frequently present challenges in understanding their

decision-making processes. To mitigate this, Explainable AI

(Artificial Intelligence) has been developed to create models that

are not only high-performing but also more interpretable.

Two prominent methods employed for the evaluation and

explanation of ML model performance are LIME and SHAP:

LIME (Local Interpretable Model-Agnostic Explanations):

LIME focuses on elucidating the outputs of classifiers or regressors.

This is accomplished by approximating a complex model’s

behavior with a simpler, more interpretable model, enhancing

human understanding. LIME’s effectiveness lies in its ability

to offer insights into a model’s decision-making process for

specific predictions. It provides the option to choose between

two interpretable classifiers and has demonstrated considerable

generalizability in various applications.

SHAP (SHapley Additive exPlanations): SHAP extends this

explanatory capability by offering a feature importance score for

each attribute in every prediction. It quantifies the contribution of

each feature to a particular prediction, thereby allowing a deeper

insight into the model’s functionality. SHAP is distinguished by

its introduction of a new class of cumulative feature significance

indicators, which contribute to a more comprehensive assessment

of feature importance. The methodology also uncovers various

desirable attributes for explaining model predictions, adding to its

robustness.

In summary, LIME and SHAP are indispensable tools in the

realm of ML for model evaluation and interpretation. While

LIME facilitates the creation of local, interpretable models that

approximate the behavior of more complex systems, SHAP

provides detailed insights into how each feature influences

individual predictions. These approaches enhance the transparency

and trustworthiness of AI models, playing a crucial role in their

application across critical sectors such as healthcare, finance, and

autonomous systems.

4.4 Performance metrics

The binary classification of having diabetes produces four

outcomes: True Positive (TP), True Negative (TN), False Positive

(FP), and False Negative (FN).

• True Positive (TP): Correct positive prediction

• True Negative (TN): Correct negative prediction

• False Positive (FP): Incorrect positive prediction

• False Negative (FN): Incorrect negative prediction

4.4.1 Accuracy
Model prediction accuracy is defined as the ratio of correctly

identified samples to total samples by the model and it is given in

Equation 17.

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

4.4.2 Precision
The precision formula given in Equation 18 shows the ratio

of successfully classified positive values to all anticipated positive

samples serves as a proxy for the model’s accuracy.

Precision =
TP

TP + FP
(18)

4.4.3 Recall
The ratio of accurately predicted positive samples to all positive

samples is known as the recall of a model and it is given in
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Equation 19.

Recall =
TP

TP + FN
(19)

4.4.4 F1-Score
The F1 score of the model determines the harmonic mean of

Precision and Recall found using Equation 20.

F1-Score =
2 · Precision · Recall

Precision+ Recall
(20)

5 Results and discussion

5.1 Dataset description

Four diabetes datasets were used in our work and all of them

have a binary predictor variable. The dataset-1 was created in the

year 2020, it has 17 attributes. Dataset-2 includes demographic data

also, it contains 9 attributes. The Dataset-3 holds 17 attributes used

in the early diagnosis of diabetes. Dataset-4 contains 8 attributes

specific to the female. The details of the datasets are given in Table 2.

5.2 Box plot diagrams

Box plot diagrams provide a visual summary of multiple

datasets, enabling a clear comparison of distributional

characteristics across different groups or conditions. Each

box plot in the figures represents the statistical distribution of

features within the respective dataset, emphasizing the median,

quartiles, and potential outliers. Supplementary Figures 1, 2

illustrate the distribution of features within the four datsets used

in the experical evaluation. The interquartile range (IQR), which

represents the middle 50% of the data, is highlighted, alongside

any potential outliers that are marked as individual points beyond

the whiskers. These box plots are essential tools for preliminary

data analysis, providing a quick visual understanding of the data’s

structure, and highlighting differences between datasets that might

warrant further investigation.

5.3 Correlation matrix

The correlation observed in Dataset-1 and Dataset-2, as

illustrated in Figure 2, suggests a significant positive association

between regular medication, high blood pressure, and family

history of diabetes with the incidence of diabetes. Conversely, blood

pressure level and age demonstrate a notable negative correlation.

Consequently, it is inferred that these factors play a pivotal role in

predicting the likelihood of diabetes in patients.

Based on the information in Figure 3, it is possible to conclude

that BMI and glucose have a strong positive connection with

diabetes, suggesting that these variables have a major impact on

predicting a patient’s likelihood of having diabetes. On the other

hand, no feature in this dataset exhibits a negative connection with

diabetes.

5.4 Feature importance scores using
wrapper based methods

Feature importance scores are found using wrapper-based

methods with Random forest (Supplementary Figure 3),

XGBoost (Supplementary Figure 4), Gradient Boosting

(Supplementary Figure 5), SVM (Supplementary Figure 6),

and Linear regression (Supplementary Figure 7) classifiers as

wrappers.

In the analysis of Dataset 1, several wrapper-based techniques

were utilized to evaluate the feature importance scores of

various attributes. Notably, among the assessed features, regular

medication, age, and BMI are found to exhibit the highest levels of

feature importance. In contrast, attributes such as gender, smoking,

and consumption of junk food demonstrate the lowest levels of

feature importance within the dataset.

Various wrapper-based techniques were employed to assess

the significance of attributes within Dataset 2. It is observed

that HbA1c levels, blood glucose levels, and BMI emerge as the

attributes with the highest feature importance scores in this dataset.

Conversely, gender and smoking history are identified as having the

lowest levels of importance.

TABLE 2 Dataset description.

Dataset name List of features No. of
attributes

No. of train
records

No. of test
records

Dataset-1 Age, Gender, Family Diabetes, High BP, Physically Active, BMI,

Smoking, Alcohol, Sleep, Soundsleep, Regular medicine, Junk food,

Stress, Bp level, Pregnancies, Pdiabetes, Urination Freq, Diabetica

17 760 191

Dataset-2 Gender, Age, Hypertension, Heart disease, Smoking history, Bmi,

HbA1c level, Blood glucose level, Diabetesb
8 1199 300

Dataset-3 Alopecia, Delayed healing, Visual blurring, Polydipsia, Obesity, Age,

Polyphagia, Muscle stiffness, Gender, Itching, Partial paresis, Polyuria,

Sudden weight loss, Genital thrush, Irritability, Weakness, Classc

16 416 104

Dataset-4 BMI, Age, Pregnancies, Insulin, Glucose, Diabetes Pedigree Function,

Blood pressure, Skin thickness, Outcomed
8 2214 554

ahttps://www.kaggle.com/datasets/tigganeha4/diabetes-dataset-2019.
bhttps://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset.
chttps://www.kaggle.com/datasets/andrewmvd/early-diabetes-classification.
dhttps://www.kaggle.com/datasets/mathchi/diabetes-data-set.
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FIGURE 2

Correlation matrices obtained on (top) Dataset-1, and (bottom) Dataset-2.

A range of wrapper-based techniques was applied to determine

the feature importance scores of attributes within Dataset 3. It

is noteworthy that polyuria, polydipsia, and gender are identified

as the attributes with the highest levels of feature importance in

this dataset. In contrast, obesity, weakness, and genital thrush are

among the features that exhibit the lowest levels of importance.
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FIGURE 3

Correlation matrices obtained on (top) Dataset-3 and (bottom) Dataset-4.

Several wrapper-based techniques were utilized to evaluate

the feature importance scores of attributes within Dataset

4. It is observed that glucose, BMI, and the Diabetes

Pedigree Function are the attributes with the highest

levels of feature importance in this dataset. Conversely,

attributes such as pregnancies, blood pressure, skin thickness,

insulin, and age are found to exhibit the lowest levels

of importance.
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5.5 Important features using filter based
methods

Filter-based methods were utilized to determine the most

significant features in Dataset 1. As per the results documented in

Table 3, age, family history of diabetes, and high blood pressure are

identified as pivotal factors within the dataset according to these

filter-based methods.

Filter-based methods were utilized to identify the most

important features in Dataset 2. The findings, detailed in

Table 4, indicate that while most features exhibit similar levels

of importance, age, hypertension, and BMI are distinguished

as notably pivotal factors in the dataset, as per these filter-

based methods.

The principal elements in Dataset 3 were identified using

filter-based techniques. According to the results detailed in

Table 5, the significant factors within the dataset, as determined

by these filter-based approaches, are gender, polyuria, and

polydipsia.

The primary elements in Dataset-4 were discerned

through the application of filter-based techniques. As

indicated by the results in Table 6, the significant factors

within this dataset, as identified by these filter-based

approaches, include pregnancies, glucose, and skin

thickness.

The next step involves identifying the best features

recommended by filter and wrapper approaches that are common

to each dataset. Table 7 presents the best sets of features selected

for the four datasets.

5.6 Metrics before feature selection

The accuracy, precision, recall, and F1-score for different

classifiers applied to the four datasets are documented in

Table 8. These results reveal that the Random Forest classifier

surpasses others on Dataset-1, exhibiting the highest values in

accuracy, recall, and F1-score. Following the Random Forest, the

XGBClassifier demonstrates marginally lower performance, while

the Gradient Boosting Classifier ranks third in terms of accuracy.

Regarding Datset-2, the Gradient Boosting classifier achieves

the highest accuracy, precision, recall, and F1-score, followed by

the Random Forest classifier, XGB classifier, and SVM. Besides,

the Random Forest classifier outperforms others on the Datset-3,

achieving the highest values in terms of accuracy, recall, and F1-

score. Furthermore, the Gradient Boosting Classifier and the XGB

Classifier demonstrate comparable performance. Additionally,

both the Random Forest classifier and XGB Classifier surpass the

other classifiers on Dataset-4, exhibiting almost equal and the

highest values in terms of accuracy, recall, and F1-score. In contrast,

the Gradient Boosting Classifier and the SVM have the lowest

values in terms of these metrics.

5.7 Performance evaluation after feature
selection

The performance evaluation results after using feature selection

are depicted in Table 9. For instance, regarding Dataset-1, the

selected features included Regular Medicine, Age, BMI, Sound

TABLE 3 Dataset-1 top 7 features using filter based methods.

Methods Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7

Chi-Square Age Family_Diabetes HighBP BMI Regular medicine BPLevel Pdiabetes

Fisher’s score Age Family_Diabetes HighBP BMI Regular medicine Stress BPLevel

Missing value Age Family_Diabetes HighBP Regular medicine Stress BPLevel Pdiabetes

Information gain Regular medicine Age BPLevel HighBP BMI Stress Pregnancies

TABLE 4 Dataset-2 top 5 features using filter based methods.

Methods Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Chi-Square Age Hypertension BMI HbA1c_level blood_glucose_level

Fisher’s score Age Hypertension BMI HbA1c_level blood_glucose_level

Missing value Age Hypertension BMI HbA1c_level blood_glucose_level

Information gain BMI HbA1c_level blood_glucose_level Age Hypertension

TABLE 5 Dataset-3 top 7 features using filter based methods.

Methods Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7

Chi-Square Age Gender Polyuria Polydipsia Sudden weight loss Irritability Partial paresis

Fisher’s score Gender Polyuria Polydipsia Sudden weight loss polyphagia Irritability Partial paresis

Missing value Gender Polyuria Polydipsia Sudden weight loss Irritability Partial paresis Alopecia

Information gain Polyuria Polydipsia Age Gender Sudden weight loss Partial paresis Polyphagia
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TABLE 6 Dataset-4 top 5 features using filter-based methods.

Methods Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Chi-Square Pregnancies Glucose Skin Thickness Insulin BMI

Fischer’s score Pregnancies Glucose Blood pressure Insulin BMI

Missing value Pregnancies Glucose Skin thickness BMI Diabetes pedigree function

Information gain Diabetes pedigree function BMI Glucose Insulin Age

TABLE 7 Best set of features given by filter and wrapper-based

approaches.

Dataset Best set of features

1 Regular medicine, Age, BMI, Sound

sleep, BP level, Stress, and Physical

activity

2 Age, Hypertension, HbA1c, Blood

glucose level, and BMI

3 Polyuria, Polydipsia, Gender, Age,

Partial paresis, Irritability, and Genital

thrush

4 Glucose, Insulin, BMI, Age, and

Pregnancies

Sleep, BP Level, Stress, and physical activity. Through various

classification algorithms, it was determined that the highest

accuracy was achieved using both the random forest classifier

and the XGBoost classifier. However, it is noteworthy that the

overall accuracy, when utilizing important features, is notably

lower compared to the accuracy of classifiers that do not utilize

these crucial features. Moving forward, for Dataset-2, the features

selected for analysis were age, hypertension, HbA1c, blood glucose

level, and BMI. The random forest classifier demonstrated the

highest accuracy among the tested algorithms. Moreover, the

accuracy of the model after feature selection was greater than

the accuracy achieved prior to feature selection. Additionally,

on Dataset-3. Typically, the selected features included Polyuria,

Polydipsia, Gender, Age, partial paresis, Irritability, and Genital

thrush. The highest accuracy was achieved using the XGBoost

classifier. It was also noted that while the highest accuracy after

feature selection remained the same as before feature selection,

some models exhibited increased accuracy following feature

selection. Lastly, based on the performance obtained on Dataset-4,

the features selected for this dataset are glucose, insulin, BMI, age,

and pregnancies. The random forest classifier achieved the highest

accuracy among the models tested. Furthermore, the highest

accuracy after feature selection was greater than the accuracy before

feature selection.

5.7.1 Performance enhancement
While feature selection did not universally enhance

performance in this study, it still holds potential benefits for

reducing model complexity and improving interpretability. By

exploring alternative methods, fine-tuning hyperparameters, and

incorporating domain knowledge, it is possible to achieve better

performance and more efficient models.

• It is observed that the feature selection process did not

consistently enhance the model’s performance across all

datasets. This outcome can be attributed to various factors,

such as the intrinsic characteristics of the datasets and the

specific feature selection methods employed.

• Feature selection is generally expected to improve model

performance by eliminating irrelevant or redundant features.

However, in some cases, it might lead to the loss of valuable

information, which could negatively impact the model’s

accuracy.

5.7.2 Model complexity
Although the feature selection process did not universally

improve performance, it is crucial to acknowledge its potential

impact on model complexity. By reducing the number of features,

the complexity of the model can be decreased, which may result

in:

• Faster training and prediction times.

• Reduced risk of overfitting, particularly in cases where the

dataset is small or the number of features is large.

• Simplified interpretation of the model, making it easier for

domain experts to understand the contributing factors to the

model’s predictions.

5.7.3 Suggestions for improvement
• Alternative feature selection methods: It may be beneficial

to explore different feature selection techniques, such as

Recursive Feature Elimination (RFE), Principal Component

Analysis (PCA), or other dimensionality reduction methods.

These approaches could potentially yield a more optimal

set of features, enhancing model performance and reducing

complexity.

• Ensemble methods: Employing ensemble methods that

combine multiple feature selection techniques could lead to a

more robust feature set. This approach may help in retaining

important features while eliminating redundant ones.

• Hyperparameter tuning: Fine-tuning the hyperparameters

of the feature selection algorithms and the classifiers

could improve the overall performance. Grid search or

random search methods can be utilized to identify the best

hyperparameter settings.
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TABLE 8 Classification metrics without feature selection for datasets 1-4.

Dataset Models Accuracy Precision Recall F1-Score

Dataset-1 XGBClassifier 0.937 0.937 0.937 0.952

RandomForestClassifier 0.942 0.942 0.942 0.956

GradientBoostingClassifier 0.932 0.932 0.932 0.948

Support Vector Machine 0.832 0.830 0.832 0.874

Dataset-2 XGBClassifier 0.923 0.921 0.923 0.768

RandomForestClassifier 0.933 0.936 0.933 0.778

GradientBoostingClassifier 0.937 0.937 0.937 0.796

Support Vector Machine 0.910 0.907 0.910 0.703

Dataset-3 XGBClassifier 0.971 0.974 0.971 0.978

RandomForestClassifier 0.990 0.991 0.990 0.993

GradientBoostingClassifier 0.971 0.974 0.971 0.978

Support Vector Machine 0.894 0.895 0.894 0.922

Dataset-4 XGBClassifier 0.982 0.982 0.982 0.973

RandomForestClassifier 0.982 0.982 0.982 0.973

GradientBoostingClassifier 0.881 0.880 0.881 0.813

Support Vector Machine 0.780 0.775 0.780 0.623

TABLE 9 Performance obtained on Datasets 1-4 after feature selection.

Dataset Models Accuracy Precision Recall F1-Score

Dataset-1 XGBClassifier 0.937 0.937 0.937 0.952

RandomForestClassifier 0.937 0.937 0.937 0.952

GradientBoostingClassifier 0.932 0.932 0.932 0.948

Support Vector Machine 0.801 0.811 0.801 0.840

Dataset-2 XGBClassifier 0.933 0.933 0.933 0.787

RandomForestClassifier 0.940 0.942 0.940 0.804

GradientBoostingClassifier 0.937 0.937 0.937 0.796

Support Vector Machine 0.913 0.912 0.913 0.711

Dataset-3 XGBClassifier 0.990 0.991 0.990 0.993

RandomForestClassifier 0.990 0.991 0.990 0.993

GradientBoostingClassifier 0.981 0.982 0.981 0.986

Support Vector Machine 0.923 0.924 0.923 0.945

Dataset-4 XGBClassifier 0.982 0.982 0.982 0.973

RandomForestClassifier 0.986 0.986 0.986 0.978

GradientBoostingClassifier 0.847 0.845 0.847 0.762

Support Vector Machine 0.767 0.760 0.767 0.610

• Cross-validation: Implementing cross-validation techniques

can provide a more reliable assessment of the model’s

performance and generalizability. This approach helps in

ensuring that the results are not biased due to a particular

train-test split.

• Domain knowledge: Incorporating domain knowledge into

the feature selection process can be valuable. Consulting with

domain experts to identify the most relevant features based

on their expertise can enhance the model’s performance and

interpretability.

5.8 Ensemble approach

The stacking ensemble approach, utilizing four base models

and a Logistic Regression meta-model, is applied to four datasets,
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with the results systematically tabulated in Table 10. The findings

indicate that the performance of the stacking ensemble approach

exceeds the conventional metrics for each dataset. However, its

performance is inferior to that achieved using the feature selection

method.

5.9 Explainable AI

Figure 4 indicates that the thirteenth record in the dataset

has been predicted to have diabetes with a 74% confidence level.

This prediction is primarily influenced by factors such as regular

medication, family history of diabetes, and physical activity, which

collectively contribute to the high confidence in the diabetes

diagnosis. Contrastingly, the same record has been predicted to not

have diabetes, albeit with a lower confidence of 26%. This opposing

prediction is influenced by the values of BP level (blood pressure

level) and age, which seem to indicate a lower risk of diabetes. In

summary, the prediction for the thirteenth record tends toward

a diabetes diagnosis due to certain features, while other features

suggest the absence of diabetes, leading to a confidence level of 74%

for diabetes and 26% for non-diabetes.

The SHAPmethod was employed to analyze Dataset 1, with the

results presented in the form of a figure. In Figure 5, class 1 denotes

non-diabetic patients, while class 2 represents diabetic patients. It is

evident thatmost features exhibit equal importance for both classes,

indicating a balanced impact on the classification of both diabetes

and non-diabetes.

However, a detailed analysis reveals that two factors, regular

medication and age, play a significant role in the classification

process. These features are crucial in determining the diabetic

or non-diabetic status of a patient. Conversely, features such

as prediabetes and smoking have minimal influence on the

classification, suggesting they contribute less to the differentiation

between the two groups.

Analyzing Figure 6, it is observed that individuals who adhere

to a high regimen of regular medication tend to be non-diabetic.

This suggests an association between the use of regular medication

and a reduced risk of diabetes. Additionally, diabetes is more

prevalent among elderly individuals as compared to younger ones,

indicating that age is a significant factor in predicting diabetes,

with older individuals being more susceptible. The widespread

use of regular medication, combined with the influence of age,

underscores the importance of these factors in predicting diabetes.

In contrast, features such as diabetes and smoking appear to have

negligible or no impact on the prediction of diabetes.

TABLE 10 Performance using stacking ensemble approach.

Dataset Accuracy Precision Recall F1-Score

Dataset-1 0.963 0.963 0.963 0.940

Dataset-2 0.933 0.933 0.933 0.787

Dataset-3 0.981 0.982 0.981 0.986

Dataset-4 0.982 0.982 0.982 0.973

Figure 7 reveals that the thirteenth record in the data has been

predicted to have diabetes with a 98% confidence level. This high

confidence in the diabetes prediction is primarily influenced by the

values of blood glucose level and age. Conversely, the same record

has been predicted to not have diabetes, but with a considerably

lower confidence of 2%. This diminished confidence in the absence

of diabetes is attributed to the values of HbA1c level, hypertension,

and BMI. The SHAP method was utilized for analyzing Dataset 2,

with the findings presented graphically.

In Figure 8, class 0 denotes non-diabetic patients, while class

1 represents diabetic patients. Notably, most features show similar

contributions for both classes, implying an equally significant

impact on the classification of individuals as diabetic or non-

diabetic.

A deeper examination of the specifics reveals that three factors-

HbA1c level, blood glucose level, and age-play pivotal roles in the

classification process. These features exert a pronounced influence

on determining a patient’s diabetic status. Conversely, features such

as heart disease and gender have a minimal impact on classification,

suggesting they are less significant in distinguishing between the

two groups.

Upon examining Figure 9, it becomes evident that individuals

with elevated HbA1c levels are more likely to be diagnosed

with diabetes. Similarly, high blood glucose levels are commonly

associated with diabetes. This observation implies that both HbA1c

level and blood glucose level are crucial factors in predicting

diabetes. The frequent occurrence of high levels of HbA1c and

blood glucose underscores their importance in making accurate

predictions about diabetes. Conversely, features such as heart

disease and gender seem to have minimal to no impact on the

prediction of diabetes, indicating their limited contribution to

differentiating between diabetic and non-diabetic individuals.

Figure 10 shows that the thirteenth record in the dataset has

been predicted to have diabetes with an 80% confidence level.

This confident prediction of diabetes is primarily based on the

values of gender, polydipsia, polyuria, and age. Conversely, the

same record has been predicted to not have diabetes, albeit with

a lower confidence of 20%. The SHAP method was employed to

analyze Dataset 3, with the results depicted in a figure. In Figure 11,

class 0 represents non-diabetic patients, while class 1 corresponds

to diabetic patients. Notably, most features demonstrate similar

contributions for both classes, indicating an equal impact on

classifying individuals as diabetic or non-diabetic.

A detailed examination reveals that three factors-

polyuria, polydipsia, and gender-play significant roles

in the classification process. These features are pivotal

in determining a patient’s diabetic status. In contrast,

features such as muscle stiffness and obesity appear

to exert minimal influence on classification, suggesting

they are less critical in distinguishing between the

two groups.

Upon analyzing Figure 12, it becomes evident that

individuals with high levels of polyuria are more likely to be

diagnosed with diabetes. Similarly, the presence of polydipsia

is commonly associated with the condition. This observation

indicates that both polyuria and polydipsia are crucial factors

in predicting diabetes. The frequent occurrence of these
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FIGURE 4

Dataset-1 lime.

FIGURE 5

Dataset-1 SHAP feature importance plot.

symptoms underscores their importance in making accurate

predictions about diabetes. On the other hand, features such

as muscle stiffness and obesity seem to have minimal to no

impact on the prediction of diabetes, suggesting that they play

a less significant role in differentiating between diabetic and

non-diabetic individuals.

Figure 13 indicates that the thirteenth record in the dataset has

been predicted to have diabetes with a high confidence level of 97%.

This strong prediction of diabetes is primarily influenced by the

values of glucose level, Diabetes Pedigree Function, pregnancies,

and age.

In contrast, the same record has been predicted to not have

diabetes, albeit with a low confidence level of 3%. This less confident

prediction is attributed to the values of insulin and BMI (BodyMass

Index).

The SHAP method was employed to analyze Dataset 4, with

the results being presented graphically in Figure 14. In this figure,

class 0 is indicative of non-diabetic patients, while class 1 denotes

diabetic patients. It is apparent from the analysis that most features

contribute similarly for both classes, suggesting an equal impact on

classifying individuals as either diabetic or non-diabetic.

Further scrutiny of the specific details reveals that three

factors-glucose level, BMI (Body Mass Index), and age-hold

pivotal roles in the classification process. These features are

critical in determining a patient’s diabetic status. In contrast,

features such as skin thickness and blood pressure appear
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FIGURE 6

Dataset-1 SHAP summary plot.

FIGURE 7

Dataset-2 lime explainer.

to exert minimal influence on the classification, indicating

their lesser contribution in differentiating between diabetic and

non-diabetic individuals.

Upon analyzing Figure 15, it becomes clear that individuals

with high glucose levels are more likely to be diagnosed with

diabetes. Similarly, a high BMI (Body Mass Index) is often

associated with the condition. This observation indicates that both

glucose level and BMI are crucial factors in predicting diabetes.

The frequent occurrence of high glucose levels and high BMI

underscores their importance in making accurate predictions about

diabetes. In contrast, features such as skin thickness and blood

pressure seem to have minimal to no impact on the prediction of

diabetes, suggesting their limited role in differentiating between

diabetic and non-diabetic individuals.
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FIGURE 8

Dataset-2 SHAP feature importance plot.

FIGURE 9

Dataset-2 SHAP summary plot.

FIGURE 10

Dataset-3 lime explainer.

6 Conclusion

The increasing prevalence of diabetes necessitates the

development of accurate and reliable predictive models for early

diagnosis and effective management of the disease. These models

can identify individuals at risk, enabling timely interventions

to prevent or delay the onset of diabetes-related complications.

Furthermore, predictive models assist healthcare providers in
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FIGURE 11

Dataset-3 SHAP feature importance plot.

FIGURE 12

Dataset-3 SHAP summary plot.
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FIGURE 13

Dataset-4 lime explainer.

FIGURE 14

Dataset-4 SHAP feature importance plot.

FIGURE 15

Dataset-4 SHAP summary plot.

personalizing treatment plans based on individual risk profiles,

ultimately improving patient outcomes. In our research, similar to

the findings of Walaa Hassan (Sheta et al., 2024), who identified

“Pregnancies,” “Glucose,” “BMI,” “Pedigree Function,” and “Age”

as important features, we determined that “Age,” “Glucose,”

and “BMI” are among the most significant factors in predicting

diabetes. Generally, the Random Forest classifier outperforms

other classifiers in handling diabetes datasets. Similarly, classifiers
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employing wrapper-based methods typically achieve higher

accuracy than those using filter-based methods, with notable

exceptions. The model’s accuracy tends to decrease when limited

to only important features rather than utilizing all available

features. Among the various wrapper-based methods, Gradient

Boosting consistently delivers superior results, emerging as the

top performer. Conversely, Fisher’s Score is identified as the most

effective among filter-based methods.

In this study, we implemented a stacking ensemble approach

using four base models and a Logistic Regression meta-

model across four datasets. The systematically tabulated results

reveal that the performance of the stacking ensemble approach

surpasses conventional metrics for each dataset, although it is

slightly inferior to the feature selection method. Additionally,

the integration of explainable AI techniques, such as Local

Interpretable Model-agnostic Explanations (LIME) and SHapley

Additive exPlanations (SHAP), provides valuable insights into

the decision-making processes of the predictive models. These

methods underscore the importance of features like age and

Body Mass Index (BMI) as crucial factors in diabetes prediction.

The inclusion of these explainable AI approaches enhances the

transparency and interpretability of the models, highlighting

the significance of specific features in improving diabetes

prediction accuracy. This comprehensive approach illustrates

the potential of combining ensemble methods with feature

selection and explainable AI to develop robust predictive models

for diabetes.

The study’s proposed predictive models for diabetes diagnosis

show limitations such as reduced generalizability due to dataset

specificity, decreased accuracy when using only selected important

features, and performance dependency on specific classifiers like

Random Forest. Inconsistencies in feature importance across

different datasets and methods, alongside challenges posed by

integrating explainable AI techniques, reveal that some features

minimally impact predictions, suggesting potential inefficiencies in

model interpretation. Additionally, while ensemble methods like

stacking enhance performance, they increase model complexity,

which could complicate maintaining performance without

overfitting. These limitations suggest areas for future refinement

to enhance the models’ robustness and applicability across diverse

clinical settings.
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