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Introduction: The electronic health record (EHR) has greatly expanded

healthcare communication between patients and health workers. However,

the volume and complexity of EHR messages have increased health workers’

cognitive load, impeding e�ective care delivery and contributing to burnout.

Methods: To understand these potential detriments resulting from EHR

communication, we analyzed EHR messages sent between patients and health

workers at Emory Healthcare, a large academic healthcare system in Atlanta,

Georgia. We quantified the burden of messages interacted with by each health

worker type and visualized the communication patterns using graph theory.

Our analysis included 76,694 conversations comprising 144,369 messages

sent between 47,460 patients and 3,749 health workers across 85 healthcare

specialties.

Results: On average, nurses/certified nursing assistants/medical assistants

(nurses/CNA/MA) interacted with the most messages (350), followed by non-

physician practitioners (NPP) (241), physicians (166), and support sta� (155),

with the average conversation involving 10.51 interactions before resolution.

Network analysis of the communication flow revealed that each health worker

was connected to approximately two other health workers (average degree

= 2.10). In message sending, support sta� led in closeness centrality (0.44),

followed by nurses/CNA/MA (0.41), highlighting their key role in fast information

spread. For message reception, nurses/CNA/MA (0.51) and support sta� (0.41)

also had the highest values, underscoring their vital role in the communication

network on the receiving end as well.

Discussion: Our analysis demonstrates the feasibility of applying graph theory to

understand communication dynamics between patients and health workers and

highlights the burden of EHR-based messaging.

KEYWORDS

artificial intelligence, data visualization, electronic health records, electronic medical

records, graph visualization, network analysis

1 Introduction

The electronic health record (EHR) contains rich and diverse data that offers significant

insights into clinical practice (Zhang et al., 2016; Schrodt et al., 2020). While the

adoption of EHRmessaging has opened new channels for care coordination and improved

patient-health worker relationships, there is evidence that rising message volumes have
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led to significant health worker burnout and even resulted in

patient morbidity from delayed responses (Sittig and Singh, 2012;

Casalino, 2017; Gardner et al., 2018; Jha et al., 2019; Chavez et al.,

2020; De et al., 2021; Mermin-Bunnell et al., 2023).

In addition to the large volume of messages, inconsistent

data harmonization and the complexity of interconnections in

EHRs present challenges in retrieving and interpreting useful

information (Yousefi et al., 2009; Chen et al., 2016; Zhang

et al., 2016). Messages frequently have multiple recipients, which

can exponentially increase the complexity of a conversation.

As a result, currently available analysis and reporting tools are

insufficient at communicating the underlying issues that may have

the most significant impact on patient needs and outcomes (Lee

and Hohler, 2014; Rashotte et al., 2016). Previous studies have

targeted streamlining interfaces and enhancing usability to address

cognitive burden (Shah et al., 2020). However, these initiatives

have failed to reduce the intricate cognitive demands placed

on health workers. Provider training programs have also been

devised; however, they also show limited success in addressing the

complex cognitive hurdles, intricate workflows, and health worker

burnout associated with EHR communication (DiAngi et al., 2019).

With regard to understanding healthcare communication, previous

studies have primarily used social network analysis (SNA), often

focusing on interpersonal interactions and information flow in

clinical teams. For example, SNA has been used to understand

referral patterns among physicians or collaboration networks in

multidisciplinary teams (Sabot et al., 2017; Francis et al., 2024).

In contrast, our approach uses graph theory to study

EHR communication networks, as network analysis of EHR

communication could potentially help alleviate the complex

relationships that previous methods have been unable to (Brunson

and Laubenbacher, 2018; Moncho et al., 2021). Graph theory

is a mathematical discipline focused on modeling the pairwise

relationships between objects (Bollobás, 1998). Related data

elements are represented as nodes (points or vertices in a graph)

with edges (lines or connections between two nodes) (Bollobás,

1998; Schrodt et al., 2020). Recent studies have applied graph

approaches in healthcare to study problems such as understanding

trends in disease diagnoses, treatment, and clinical decision support

(Soulakis et al., 2015; Zhang et al., 2016; Birtwell et al., 2019;

Yang et al., 2019; Schrodt et al., 2020). For example, Soulakis

et al. (2015) visualized EHR usage among healthcare providers

treating heart failure patients, uncovering complex collaborative

networks and multidisciplinary record access patterns, while Yang

et al. (2019) proposed graphical modeling to optimize clinical

information retrieval in EHRs.

This study aimed to investigate the communication dynamics

in EHR-based patient-to-health worker and health worker-to-

health worker conversations by identifying key participants,

analyzing messaging patterns, and visually representing

communication networks using graph theory. The specific

objectives were to (1) classify health workers into distinct roles in

the EHR system and quantify the communication burden borne

by each health worker type; (2) visually represent the interactions

between different health worker types and the associated message

burden; and (3) extract key network parameters and statistics from

the visualized communication networks.

2 Materials and methods

2.1 Study design and data sources

In this retrospective observational study, we analyzed

messaging data from all outpatient clinics at Emory Healthcare,

an integrated academic healthcare system in Atlanta, Georgia,

USA. Deidentified metadata were extracted from PowerChart EHR

(Oracle Cerner, Inc., Kansas City, MO) for all messages sent and

received by health workers between March 1 and April 30, 2022.

Our analysis mimicked the current workflows based on the desired

destination of messages. The system was created using known

workflows documented by the institution, and our analysis was

designed to understand movement within the workflow protocol.

For a high-level understanding of communications, we

classified health workers into four major categories: physicians,

non-physician practitioners (NPP) (e.g., physician assistants and

nurse practitioners), nurses/certified nursing assistants/medical

assistants (nurses/CNA/MA), and support staff. A complete

list of health worker titles for each category is provided in

the Supplementary material. In this study, the term “health

worker” refers to both clinical providers, such as physicians,

NPPs, and nurses/CNA/MA, and non-clinical personnel, including

administrative and operational support staff, all of whom play a

role in healthcare communication and delivery. Communications

within the dataset were categorized as touches, messages, and

conversations. A message referred to any written communication

between patients and health workers; a conversation was defined

as a complete thread of messages; and a “touch” referred

to each instance a health worker interacted with a message,

such as reading, replying, or forwarding. The data were

extracted in compliance with the Health Insurance Portability

and Accountability Act (HIPAA) safe harbor provision. The study

was deemed exempt from human subjects research by the Emory

University Institutional Review Board and received a waiver of

informed consent.

In preparation for data analysis, the raw messaging data

were cleaned using Python 3.9. The data contained potential

inconsistencies such as duplicate entries, missing values, and

improperly formatted roles. We identified and removed duplicate

messages based on unique message IDs to prevent skewing the

analysis. Records with critical missing information (e.g., sender or

receiver IDs) were excluded. A descriptive statistical analysis was

performed to quantify the total communication burden on health

workers by calculating metrics, including average conversations

per health worker, average messages per health worker, average

touches per conversation, and average touches per message. Burden

of messages was calculated and plotted as the total number of

messages interacted with by each health worker type. Furthermore,

distinction was made between the proportion of messages where

health workers were carbon copied (CC'ed) and those where they

were intended to respond.
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2.2 Graphical visualization

Graph theory (Schrodt et al., 2020) was applied to the

messaging patterns between patients and healthcare workers using

Gephi 0.10.1. Circular nodes represented message senders or

receivers and edges represented the message paths. Each node

was color-coded to represent distinct healthcare roles: physicians

(blue), nurses/CNA/MA (pink), support staff (green), NPP (red),

and patients (dark green).

The size of each node was proportional to the total

number of messages the group interacted with, highlighting the

communication burden on each role. Edges between nodes were

directed, with arrows indicating the flow of messages from sender

to receiver. The thickness of each edge corresponded to the

frequency of messages exchanged between the groups. Edges were

color-coded to enhance visual distinction, with specific colors

representing different communication pathways (e.g., light blue

arrow from physicians to patients, brown arrow from physicians

to nurses/CNA/MA). Exact message counts were annotated on

each edge to provide quantitative context. We applied the

ForceAtlas2 layout algorithm to position nodes such that those with

stronger connections were closer together. This layout emphasizes

clusters within the network, revealing communication patterns

and potential bottlenecks. Annotations and labels were added to

highlight key communication pathways and differences between

health worker types.

2.3 Communication network analysis

For a more comprehensive understanding of data distribution

and the formation of clusters or groups (i.e., “communities”), we

imported the complete parent dataset into Gephi (Gephi, 2024)

after creating the relevant nodes and edges using Python 3.9.

In this context, “communities” referred to clusters within the

network where certain health workers (nodes) interacted more

frequently or intensively among themselves than with other health

workers in the network. To shed light on these communities and

their characteristics, we applied the built-in Gephi algorithms to

calculate average degree, network diameter, number of connected

components, modularity, and average path length:

• Average degree–the average number of edges per node in the

network.

• Network diameter–the longest shortest path between any two

nodes in the network.

• Number of connected components–connected components

are subgraphs directly or indirectly connected to each other

but not to any nodes outside the subgraph in the network.

• Modularity–a measure of how well a network decomposes

into modular communities. Ranging from 0 to 1, a low

modularity score indicates a weak community structure, with

uniform node distribution. High modularity scores indicate

nodes are connected in dense clusters with fewer connections

to outside clusters.

• Average path length–the average shortest distance between all

pairs of nodes.

To understand the centrality of the network, we used three

centrality measures for both senders and receivers:

• Closeness centrality–the relative importance of a node in a

network, measured as the reciprocal of the sum of the lengths

of the shortest paths of all other nodes to a node. Closeness

centrality is measured on a scale from 0 to 1. See Equation 1

for the mathematical formula. In this equation,

– C(v) represents the closeness centrality of node v. It

measures how close node v is to all other nodes in the

network.

– N is the total number of nodes in the network.

– d(u, v) represents the shortest path distance between node

u and node v. It represents the number of edges that need

to be traversed to go from u to v.

• Harmonic closeness centrality - a modification of closeness

centrality that reverses the sum and reciprocal operations and

is set to 0 if there is no path between two nodes. Harmonic

closeness centrality ranges from 0 to 1. See Equation 2 for the

mathematical formula. In this equation,

– H(v) is the harmonic closeness centrality of node v. It’s a

variation of closeness centrality that handles disconnected

graphs better.

– d(u, v) represents the shortest path distance between node

u and node v.

• Eigenvector closeness centrality–used to measure influence

of nodes in a network, assigning relative scores to nodes based

on the concept of high-scoring nodes having connections

that contribute more to the score. Thus, eigenvector closeness

centrality is affected by the centrality of its neighbors as well

as connections to other nodes. It ranges from 0 to 1. See

Equation 3 for the mathematical formula. In this equation,

– E(v) is the eigenvector centrality of node v. It measures a

node’s influence in a network based on the influence of its

neighbors.

– xv is the eigenvector centrality score of node v.

– λ is the largest eigenvalue of the adjacency matrix of the

graph. It normalizes the equation.

– M(v) is the set of nodes directly connected to the node v.

– xt is the eigenvector centrality score of a neighboring node

t.

– av,t is the entry in the adjacency matrix, representing the

connection between node v and node t. It is 1 if node v and

node t are connected and 0 otherwise.

– G is the entire set of nodes in the network.

We selected closeness centrality, harmonic closeness centrality,

and eigenvector centrality as they are well-suited for analyzing

communication efficiency and influence in structured healthcare
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environments. Other metrics in Gephi were not considered suitable

for our specific analysis. For example PageRank, which measures

node importance in a network, was not used because it assumes

random navigation behavior and equates highly connected nodes

with importance, which may be misleading in an EHR context

where connectivity does not necessarily reflect the criticality of a

role in patient care. Furthermore, we avoided metrics that depend

on the size of a network, such as betweenness centrality, and

focused only on metrics that are normalized between 0 and 1

and can thus be interpreted in the same manner if the analysis

were applied to a different communication network that may differ

greatly in size than the one we analyzed.

2.4 Oversight

SwitchboardMD (Atlanta, GA) provided funding for the study.

The study was designed by investigators at Emory University and

the Georgia Institute of Technology with input from the sponsor.

Primary data extraction was performed by the senior author (BA)

who is employed by the sponsor. The data were analyzed by the

first and second author (MZH and A. Hornback). The sponsor’s

remaining affiliate authors (DAG, BG, EDS and YZ) did not have

access to the study data and participated in data interpretation and

revision of the manuscript only. Additional details of the individual

author contributions are included at the end of the manuscript.

3 Results

The dataset included a total of 144,369 messages in 76,694

conversations sent between 47,460 patients and 3,749 health

workers, across 85 different specialties, as shown in Table 1. On

average, each health worker participated in 33.01 conversations

(SD 48.93) and 44.51 messages (SD 66.26). Each conversation had

an average of 10.51 touches (SD 22.76) while each message had

an average of 5.58 touches (SD 8.80). Given the large standard

deviations, we analyzed the median and interquartile range values

to understand how outliers were shifting the data. As shown in

Table 1, the median values for each of the four metrics were lower

than the average, reflecting the effect of a larger burden being placed

on a portion of health workers. For instance, the median number

of conversations per health worker was 14.00, with an interquartile

range of 41.00, while the median number of messages per health

worker was 18.00, with an interquartile range of 52.00.

Figure 1 visualizes the message touch burden by health worker

classification. Nurses/CNA/MA on average touched the most

messages, with an average slightly above 350, compared to the

median of 215 for this group. Similar patterns were seen in other

health worker classifications. A more detailed analysis of message

types (CC'ed messages vs. responded messages) across roles is

presented in Figure 2. Nurses/CNA/MA managed the highest

overall volume, with 55,384 messages, of which 71.68% were CC'ed

messages (39,700), and 28.32% were responded messages (15,684),

indicating actionable items. NPPs had a total of 38,184 messages,

with 92.82% being CC'ed messages (35,446) while 7.18% were

responded messages (2,738). Similarly, physicians handled 26,291

messages, of which 88.22% were CC'ed messages (23,193), leaving

TABLE 1 Descriptive statistics of communication variables.

Communication variable Value

Total patients 47,460

Total health workers 3,749

Total specialties 85

Total conversations 76,694

Total messages 144,369

Average conversations per health worker (SD) 33.01 (48.93)

Median conversations per health worker (IQR) 14.00 (41.00)

Average messages per health worker (SD) 44.51 (66.26)

Median messages per health worker (IQR) 18.00 (52.00)

Average touches per conversation (SD) 10.51 (22.76)

Median touches per conversation (IQR) 5.00 (7.00)

Average touches per message (SD) 5.58 (8.80)

Median touches per message (IQR) 3.00 (3.00)

11.78% as responded messages (3,098). Interestingly, support staff

exhibited a more balanced communication profile. Out of their

24,510 messages, 50.66% were CC'ed messages (12,413) and 49.34%

were responded messages (12,097).

3.1 Graphical visualization

The Gephi graph visualization in Figure 3 provides a

comprehensive view of the EHR message network, highlighting

the roles of various health workers in communication dynamics.

Support staff played a central role, managing the largest number

of message exchanges across different groups. For instance,

they sent 63,811 messages to nurses/CNA/MA and 42,173

messages to physicians, reinforcing their function as a central

conduit of communication within the healthcare system.

Nurses/CNA/MA also exchanged a large volume of messages

with physicians (36,244 messages sent) and support staff (39,517

messages sent). This pattern underscored the pivotal role of

nurses/CNA/MA in bridging communication between clinical and

support teams.

Patient communication was largely directed toward

nurses/CNA/MA (53,149 messages) and support staff (34,784

messages). In contrast, physicians received fewer direct messages

from patients (31,511), aligning with their more specialized focus

on clinical decision-making rather than direct patient interaction.

NPPs had a lower total message volume but still played a key role

in communication, particularly with nurses/CNA/MA, sending

40,791 messages.

This comprehensive view reflected the findings related to

overall touches depicted in Figure 1 and the message types

in Figure 2, confirming that nurses/CNA/MA and support staff

bear the heaviest communication burdens. In both views,

nurses/CNA/MA have a larger volume of message activity than

all other health workers. Related to Figure 2, it is implicit that a

larger portion of the number of messages sent to nurses/CNA/MA
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FIGURE 1

The median values for each health worker classification were below the mean, reflecting large outliers by various health workers in each

classification with a much heavier message touch burden.

FIGURE 2

Distribution of EHR messages among healthcare roles. The bar chart quantitatively depicts the total counts of CC'ed and responded messages

managed by nurses/CNA/MA, NPP, physicians, and support sta�. Each bar is proportionally segmented to reflect the relative contribution of CC'ed

and responded messages, with the total number of messages for each role displayed above.

require a response (they are not CC messages) compared to

other health workers as well. It can also be deduced that

the high number of overall touches shown in Figure 1 for

nurses/CNA/MA and the absolute measures shown in Figure 3

can explain a significant portion of the difference in the average

messages per health worker of 44.51 and the median or 18.00

shown in Table 1 as being attributable to just one category of

health workers.

3.2 Communication network analysis

The analysis of network metrics for message routing among

different health worker types, as detailed in Table 2, revealed an

average degree of 2.10. This degree indicated that each participant

was typically connected to two others, suggesting a balanced

and moderately dense communication network that facilitates

collaboration without overwhelming individual participants.
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FIGURE 3

A visualization of the conversation network in EHR showing stops and message flow. Each node, representing a health worker type, has a size

proportional to the number of messages it interacts with, while the arrows and edge width denoting the direction and frequency of message flow,

respectively. Thicker edges indicate higher message frequencies, quantified by exact numbers for clarity. Bidirectional message exchanges are

depicted, showcasing the dynamic interplay of communication between health workers.

The network’s efficiency was underscored by a network

diameter of 2.00 and an average path length of 1.00 (1.00006,

precisely, as an average path length of 1.00 would indicate all

nodes are connected by an edge, and thus, the network diameter

would also have to equal 1.00.) Here, the average path length and

network diameter indicated that the vast majority of individuals

are connected on at least one message, with a small population

not being directly connected, but only having one intermediary,

leading to a network diameter of 2.00). The network modularity of

0.40 indicated somewhat defined communities within the network,

which could represent departments or specialty groups that tend

to communicate amongst themselves almost as often as other

departments or specialty groups.

As shown in Table 3, for senders within the network, support

staff and nurses/CNA/MA exhibited the highest closeness centrality

scores of 0.44 and 0.41, respectively, indicating their central roles

in the communication network. Harmonic closeness centrality was

also highest for support staff and nurses/CNA/MA at 0.57 and

0.52, respectively. The same pattern held for eigenvector centrality

as well, with 0.51 for nurses/CNA/MA and 0.68 for support

staff. In terms of message reception, nurses/CNA/MA showed the

highest closeness centrality, harmonic closeness centrality, and

eigenvector centrality at 0.51, 0.68, and 1.00, respectively, indicating

their proximity and accessibility to other network participants.

Similarly, support staff showed relatively high scores as receivers,

TABLE 2 Overview of Communication Network Characteristics.

Network statistic Value

Average degree 2.10

Network diameter 2.00

Number of connected components 1.00

Modularity 0.40

Average path length 1.00a

Number of nodes 144,378

Numbers of edges 303,269

aThe average path length is displayed as 1.00 for precision purposes. The true value for the

average path length was 1.00006, as an average path length of 1.00 would indicate each node

of the graph was connected, and the network diameter would also have to equal 1.00. Here,

the network diameter of 2.00 indicates that some individuals were not connected via an edge

(message) in the network, but that the vast majority were, hence the slightly greater than 1.00

exact average path length.

indicating their importance and prevalence in the communication

network.

Notably, physicians as senders achieved a harmonic closeness

centrality of 0.41, mirroring the closeness centrality score of

nurses, indicating their essential role in initiating communication

within the network. NPP had relatively consistent values for all

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1422208
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zia ul Haq et al. 10.3389/frai.2024.1422208

TABLE 3 Communication Dynamics Sender Analysis.

Health worker Role Receiver or sender Closeness Harmonic closeness Eigenvector closeness

NPP Receiver 0.35 0.38 0.14

NPP Sender 0.34 0.36 0.07

Nurses/CNA/MA Receiver 0.51 0.68 1.00

Nurses/CNA/MA Sender 0.41 0.52 0.51

Physicians Receiver 0.39 0.48 0.42

Physicians Sender 0.36 0.41 0.22

Support Staff Receiver 0.41 0.51 0.51

Support Staff Sender 0.44 0.57 0.68

three measures as senders and receivers, with harmonic closeness

centrality being the largest in both mediums at 0.36 as senders

and 0.38 as receivers. These statistics, though lower than those for

support staff, nurses and clinic support staff, highlight their critical

role in the information flow.

4 Discussion

This study of EHR based messaging networks between patients

and providers visually depicts the complexity of interactions within

a large academic healthcare system. Our results highlight that

nurses/CNA/MA and support staff serve as the primary conduits

of communication, handling the highest volume of messages and

acting as critical intermediaries between patients, physicians, and

NPP. The predominance of CC'ed messages in the communication

patterns of nurses/CNA/MA and NPP suggests that much of

their workload is related to being copied on information,

with only a fraction of messages requiring direct action. This

dynamic, while essential for ensuring information flow, may also

contribute to cognitive overload and operational inefficiencies,

particularly for roles that are already under significant pressure.

The small network diameter and average path length, reflect

that the EHR messaging system allows for quick dissemination

of information with only a few intermediaries needed, which

is beneficial for timely communication. The clear centrality of

nurses/CNA/MA and support staff, as evidenced by high closeness

and eigenvector centrality scores, underscores their important role

in EHR communication. It also raises concerns regarding potential

bottlenecks, where too much information is relayed through a few

particular health workers. It is important to note, that physicians

and NPP also shoulder a significant communication burden. In

the context of healthcare delivery, the communication load on

nurses/CNA/MA and physicians is critical, as they are primarily

involved in critical clinical care.

Our findings agree with previous literature indicating that the

rise in data quantity in the EHR system is overwhelming and

can contribute to health worker burnout (Yousefi et al., 2009;

Zhang et al., 2016; Emanuel et al., 2020). Our research adds to

this discourse by providing a quantitative and visual representation

of communication dynamics, highlighting the significant roles

and burdens borne by different health worker types. The heavy

burden on nurses/CNA/MA is consistent with prior research that

links EHR usage with increased workloads and potential burnout,

particularly for nursing staff, Kutney-Lee et al. (2021) highlighting

that the insights gained from our analysis are not confined to

Emory Healthcare. The identified communication patterns and

bottlenecks are likely reflective of broader trends in healthcare

communication, especially in large, integrated health systems.

A major strength of this study is the novel application of

graph theory to EHR communication data, offering a detailed

visual and quantitative representation of message flow across

healthcare roles. While previous studies have used SNA to

understand healthcare communication (Sabot et al., 2017; Francis

et al., 2024), our approach differs by leveraging graph theory

specifically to model EHR-based messaging networks. It provides

a more granular and data-driven visualization of communication

dynamics. Unlike traditional SNA, which may rely on surveys

or observational data, our method utilizes actual messaging

records, enhancing the objectivity and scale of the analysis.

This methodology provides actionable insights that could inform

future efforts to optimize EHR systems, streamline workflows,

and reduce communication inefficiencies. Additionally, the large

dataset enhances the robustness of our findings, allowing for

generalizable insights into communication patterns in a major

healthcare system.

However, the study has limitations that should be considered

when interpreting the results. Most notably,the data were

derived from a single EHR system, Cerner Now Oracle Health

at Emory Healthcare. The fundamental principles of graph

theory are universal and can be applied to any system where

communication data can be extracted and structured similarly.

However, institutional workflows and policies may vary at different

healthcare facilities and EHR systems. Therefore, when applying

our method to other settings, it is crucial to account for these

variations to ensure accurate interpretation of the communication

networks. Without a clear understanding of the specific processes

that govern message routing and task delegation, it is difficult to

determine whether the observed communication burdens are the

result of inefficiencies or inherent job responsibilities.

Furthermore, the study did not account for interactions outside

the EHR system, such as face-to-face communication or phone

calls, which could provide a more holistic understanding of health

worker-patient interactions. The omission of these interactions
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means the communication network presented is incomplete,

potentially underestimating the true connectivity and workload

of health workers. Including multi-modal communication data

including phone calls, and surveys in future studies would

provide a more comprehensive understanding of health worker

communication dynamics and workload distribution.

One of the most unexpected findings was the relatively low

number of responded messages handled by NPP, despite their

important clinical role. This may suggest that NPP primarily

serve as recipients of information rather than actively engaging

in message responses, potentially due to task delegation within

care teams. This observation contrasts with their expected clinical

responsibilities and raises questions about the distribution of

communication tasks within healthcare teams. Additionally, the

nearly equal distribution of CC'ed and responded messages among

support staff highlights their dual role in administrative and clinical

coordination, a finding that may warrant further investigation into

whether this balance is optimal or if it places unnecessary burdens

on these health workers.

The identification of nurses/CNA/MA and support staff as

central nodes in the communication network suggests that they are

potential bottlenecks in message flow. To alleviate their burden and

improve communication efficiency, healthcare organizations can

consider implementing automated triage systems using artificial

intelligence and machine learning algorithms. These systems can

categorize and prioritize messages based on urgency and content,

directing them to the appropriate health worker with minimal

delay. Additionally, redistributing certain administrative tasks from

overburdened roles to underutilized staff can balance the workload

and reduce burnout risk.

Optimizing EHR workflows by customizing notification

settings and reducing unnecessary CCs can also minimize cognitive

overload. Training programs focusing on effective communication

practices within the EHR may enhance team coordination and

ensure that messages requiring action are promptly addressed.

Future studies should investigate the direct impact of the EHR

messaging burden on health worker burnout and patient outcomes,

as well as explore potential solutions.

5 Conclusion

This study at Emory Healthcare represents the utility of graph

theory to examine EHR communication networks, uncovering

critical insights into the roles of nurses/CNA/MA and support staff

as central communicators in the system. The findings highlight

the complexity of health worker interactions, with significant

communication loads being unevenly distributed across health

worker roles. The study underscores the need for targeted redesign

of EHR systems to better manage communication burdens,

streamline workflows, and reduce the risk of cognitive overload on

health workers.

C(v) =
N − 1∑
u d(u, v)

(1)

H(v) =
∑

u|u6=v

1

d(u, v)
(2)

E(v) = xv =
1

λ

∑

t∈M(v)

xt =
1

λ

∑
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