
Frontiers in Artificial Intelligence 01 frontiersin.org

Artificial intelligence and machine 
learning applications for cultured 
meat
Michael E. Todhunter 1†‡, Sheikh Jubair 2†‡, Ruchika Verma 2, 
Rikard Saqe 3, Kevin Shen 4 and Breanna Duffy 5*†

1 Todhunter Scientifics, Minneapolis, MN, United States, 2 Alberta Machine Intelligence Institute, 
Edmonton, AB, Canada, 3 Department of Mathematics, University of Waterloo, Waterloo, ON, Canada, 
4 Department of Biology, University of Waterloo, Waterloo, ON, Canada, 5 New Harvest, Sacramento, 
CA, United States

Cultured meat has the potential to provide a complementary meat industry 
with reduced environmental, ethical, and health impacts. However, major 
technological challenges remain which require time-and resource-intensive 
research and development efforts. Machine learning has the potential to 
accelerate cultured meat technology by streamlining experiments, predicting 
optimal results, and reducing experimentation time and resources. However, 
the use of machine learning in cultured meat is in its infancy. This review covers 
the work available to date on the use of machine learning in cultured meat 
and explores future possibilities. We address four major areas of cultured meat 
research and development: establishing cell lines, cell culture media design, 
microscopy and image analysis, and bioprocessing and food processing 
optimization. In addition, we  have included a survey of datasets relevant to 
CM research. This review aims to provide the foundation necessary for both 
cultured meat and machine learning scientists to identify research opportunities 
at the intersection between cultured meat and machine learning.
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1 Introduction

Food production generates about a quarter of global greenhouse gas emissions and causes 
other negative impacts on the environment and human health (Crippa et al., 2021; Steinfeld 
et al., 2006). Animal products, including meat, seafood, eggs, and dairy contribute more than 
56% of food’s emissions, despite providing only 37% of protein and 18% of calorie intake 
(Poore and Nemecek, 2018). Meat production is a large sector, producing 328 Mt. in 2020 and 
expected to expand to 374 Mt. by 2023, based on estimates from the Organisation for 
Economic Co-operation and Development (OECD) and the Food and Agriculture 
Organization (FAO) of the United Nations (Michele, 2021). In light of projected growth in the 
global population and income, these estimates projected that meat consumption will increase 
by 14%. To meet global meat demand and limit global warming to 1.5°C there is a need for 
major changes in the production of meat (Clark et al., 2020; Ivanovich et al., 2023). Cultured 
meat (CM), known by many names including “cell-based” or “cultivated” meat, is an emerging 
technology that uses tissue engineering and biomanufacturing techniques to produce animal 
meat through cell culture rather than animal husbandry. Proponents of the technology herald 
its potential to provide an option for producing animal agriculture products with reduced 
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environmental, ethical, and health impacts (Sinke et  al., 2023; 
Tuomisto and Teixeira de Mattos, 2011). However, major technological 
challenges remain in bringing CM products to market and achieving 
their proposed benefits (Risner et al., 2021). Many challenges stem 
from the fact that the technologies for mammalian tissue culture come 
primarily from the medical field, where the scale is much lower and 
the market has weaker incentives to reduce the costs of production. 
However, if these technologies are to be applied to food, the challenges 
of scale and cost must be addressed.

Some specific improvements to CM can be, and have been, made 
using traditional experimental approaches. However, tackling some of 
the more complex research questions requires more advanced 
approaches and experimental conditions. In recent years, an increasing 
number of groups have been using methods enhanced by artificial 
intelligence (AI), and in particular its subset machine learning (ML), 
for such tasks. ML can streamline experiments, predict optimal 
results, and reduce experimentation time and resources. There are 
many opportunities for ML to accelerate research development and 
reduce costs in CM. Some companies have indicated the use of ML in 
CM product development or CM-associated services (Business Wire, 
2023; Ho, 2021; Leach, 2024; Marston, 2022; Penarredonda, 2017; 
Protein Report. Protein Report, 2022; Shieber and This, 2021; Southey, 
2023), but very little of this progress in applying ML to CM has been 
shown or validated in the public domain. Academic and government-
supported research in this space is emerging, including at the 
University of California at Davis, Virginia Tech, Tufts University, and 
The CentRe of Innovation for Sustainable banking and Production of 
cultivated Meats (CRISP Meats). However, few publications on the 
topic exist to date, which are summarized in Table 1 (Cosenza et al., 
2023; Cosenza et al., 2022; Cosenza et al., 2021; Nikkhah et al., 2023; 
Ng and Tan, 2024). An increase in open public research on the use of 
ML to optimize and scale CM production would greatly accelerate the 
application of ML to the CM field.

In this review, we aim to provide the foundation necessary for 
researchers, from the CM or ML fields, to identify research 
opportunities at the intersection between CM and ML. We  first 
provide a brief overview of both fields. Subsequent sections delve into 
both existing and potential ML applications for optimizing cell lines, 
formulating culture media, aiding cell culture microscopy and image 
analysis, and optimizing bioreactor and food processing parameters. 

Note that we  have focused on CM challenges to which ML can 
be applied, and this should not be seen as a comprehensive review of 
all challenges in the CM or ML fields. As applications of ML in CM 
are limited, we discuss how ML methods that have been applied in 
other areas of bioinformatics can be  adopted to solve tasks in 
CM. Finally, by combining existing literature and atlases, a compilation 
of animal biology datasets has been created for different CM-relevant 
species (Supplementary Table S1).

2 Background on the fields of cultured 
meat and machine learning

2.1 Cultured meat

CM aims to replicate the taste and texture of animal tissue within 
a manufacturing system using animal cells (Figure 1). First, cells from 
a species of interest are selected or engineered for desirable growth 
and differentiation traits in vitro. The selected cells are grown in a 
suitable medium, providing the nutrients and signaling cues that 
would normally be provided in the body. At early stages, such as cell 
selection, the cell culture may start at a small scale in plastic dishes or 
flasks. Cell culture is eventually scaled up to industrial-scale 
bioreactors, devices capable of controlling environmental temperature, 
pH, dissolved oxygen, and nutrient exchange at large volumes (Post 
et al., 2020). Once enough cells are grown, they are differentiated into 
mature cell types. At this stage, the cell culture may be formed into a 
tissue (i.e., structured product, such as a steak) or a cell slurry, which 
is later processed into a meat product (i.e., unstructured product, such 
as ground beef).

This process leans heavily on medical tissue engineering, an area 
of research that has been studied for nearly 40 years and has been 
commercialized at a small scale for simple grafts of cell-laden scaffolds 
for skin and cartilage. However, complete tissues, such as skin with 
hair follicles and sebaceous glands or functional muscle, still face 
technological barriers (Beheshtizadeh et  al., 2022). While tissue 
function is not critical for CM, using this technology for the 
production of food comes with unique constraints, especially the need 
for larger scale, lower costs, and materials that are both edible 
and palatable.

How closely CM products replicate the properties of conventional 
meat varies depending on the techniques used and will rely on further 
technological development to reach the goal of equivalent taste, 
texture, nutrition, and cost. A comparison of CM and conventional 
meat has been reviewed elsewhere (Fraeye et al., 2020; Broucke et al., 
2023; Chriki et al., 2024).

Commercial and academic interest in CM has grown rapidly in 
the last decade. The number of companies working on CM grew from 

TABLE 1 Summary of published works on the application of AI/ML to CM.

Reference Method Topic(s) Species/Cell type

Cosenza et al. (2023) Bayesian algorithm Media (formulation) Mouse myoblast (C2C12)

Cosenza et al. (2022) Bayesian algorithm/genetic algorithm Media (formulation) Mouse myoblast (C2C12)

Cosenza et al. (2021) Response surface methodology Media (formulation) Mouse myoblast (C2C12)

Nikkhah et al. (2023) Response surface methodology Media (formulation) Zebrafish embryonic stem cells (ZEM2S)

Ng and Tan (2024) N/A (review article) Bioprocess (3D bioprinting, flavor, quality control) N/A

Abbreviations: AI, artificial intelligence; CHO, Chinese hamster ovary; CM, cultured 

meat; CNN, convolutional neural network; FAO, Food and Agriculture Organization; 

GAN, generative adversarial network; GNI, gene network inference; GNN, graph 

neural network; ML, machine learning; NLP, natural language processing; OECD, 

Organization for Economic Co-operation; RL, reinforcement learning; RNN, 

recurrent neural network; VAE, Variational Autoencoder.
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1 to over 170 from 2011 to 2023, with over 3 billion dollars of 
investment (Battle et al., 2024). Similarly, academic interest in the field 
has grown dramatically, with 350+ papers published on CM in the last 
2 years, more than all other years prior (with tracking) combined 
(Battle et al., 2024). In parallel, cost estimates for CM have come down 
significantly in the last decade: from the first CM demonstration in 
2013 of a 140-gram burger at approximately €250,000 (Kupferschmidt, 
2013), to recent claims of costs as low as $7.70/lb from industry 
developers (Poinski, 2021). However, these industry cost claims have 
yet to be proven publicly. Furthermore, CM production has yet to 
be shown on a scale close to that needed to offset even a fraction of 
current meat consumption (FAO, 2020). Current production capacity 
is not known, but estimates range from 1 to 10 kg/y, compared to the 
3.2 × 1011 kg/y produced by conventional meat (Humbird, 2020). 
Highly optimized industrial mammalian cell lines, such as Chinese 
hamster ovary (CHO), are still produced at a much lower scale and 
higher cost than needed for food production (Humbird, 2020). Given 
that consumers are unlikely to want to consume hamster ovary cells, 
significant technological challenges must be overcome for meat and 

seafood-relevant cells to be produced at a scale and cost needed to 
replace a meaningful portion of the conventional meat market.

2.2 Machine learning

An ML workflow involves a series of steps, as illustrated in 
Figure  2, which starts with preparation of the dataset. A dataset 
typically consists of datapoints, each one an observation with features 
that describe the datapoint. The type of data varies widely: numerical, 
time series, text, images, audio, video, sequential, graph, or any 
combination of these. This data undergoes preprocessing, where 
procedures such as imputing missing values and reducing data 
dimensionality are undertaken. Since many machine learning models 
require numerical data, a data transformation step converts the data 
to numerical values (Kabas et al., 2023; Kayakuş and Açıkgöz, 2022). 
Subsequently, an integral component of the ML methodology is 
dividing data into distinct subsets: training, validation, and testing. 
Some common approaches, such as K-fold cross-validation, 

FIGURE 1

Cultured meat manufacturing process. Reproduced from Reiss et al. (2021) with permission.
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leave-one-out, and holdout validation, can typically be used for most 
problems (Bishop, 2006). Prior to model training, it may be necessary 
to employ feature selection or extraction techniques on the training 
set to identify the most informative variables in the data, and these 
features must be used in both the test and validation sets to maintain 
the integrity of the evaluation process.

The culmination of this preparatory work is a dataset suitable for 
training an ML model. Typically, experiments are conducted with 
different ML algorithms/architectures (such as random forests, 
k-means, and deep neural networks) to settle on the most performant 
overall model. However, sometimes the choice of ML model depends 
on the type of data. For example, convolutional neural networks 
(CNNs) are preferred for image data since they can extract spatial 
features from the image (Li et al., 2022). On the other hand, recurrent 
neural networks (RNNs) are typically used for sequential data since 
they can remember information in a long sequence through their gate 
mechanism (Lipton et al., 2015).

The training set is instrumental in building the model since the 
model adjusts its parameters to learn the distribution of the training 
set. The validation set is required for fine-tuning the model’s 
hyperparameters and ensuring that the model generalizes well beyond 
the training data, thereby avoiding overfitting. Finally, the test set 
provides a measure of the model’s predictive accuracy and overall 

performance in real-world scenarios. Some of the typical performance 
metrics for classification tasks are accuracy, precision, recall, and 
F1-Score. Typical performance metrics for regression are R2 score, 
mean absolute error, and mean square error (Alpaydin, 2020). 
However, lots of other performance metrics are used depending on 
the tasks and types of data. The purpose of performance metrics is to 
compare the performance between different models and also to 
understand how a model is performing overall for the specific task. In 
Figure  2, to make the machine learning procedure easily 
understandable, we  provided the example of a simple machine 
learning process. Note, this example does not include procedures that 
involve reinforcement learning (discussed in Types of Machine 
Learning subsection) or other complex supervised and unsupervised 
learning scenarios.

2.3 Types of machine learning

ML methodologies can be broadly classified into three categories: 
supervised, unsupervised, and reinforcement learning (RL). In 
supervised learning, the model is trained on a labeled dataset, where 
each example is paired with an outcome or label that aligns with the 
objective of the specific task at hand. Consider the goal of predicting 

FIGURE 2

Illustration of the typical steps of how machine learning can be applied to biological data.
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gene expression levels from DNA sequences; here, the data point 
would be the DNA sequence, while the associated expression level 
serves as the label. The model hones its predictive capability by 
learning the relationship between input features and their 
corresponding labels. When it comes to evaluation, the trained model 
is tasked with predicting labels for new, unseen data points. Key 
traditional supervised learning models include logistic/linear 
regression, k-nearest neighbors, and support vector machines. The 
supervised ML approach has made significant contributions across 
various domains in bioinformatics, enabling advancements in DNA 
segmentation, gene expression prediction, and protein structure 
prediction (Larrañaga et al., 2006).

Unsupervised learning, in contrast, does not rely on labeled data. 
It is particularly useful when the goal is to unearth underlying patterns 
or structures within the data, independent of predefined outcomes. 
This makes unsupervised learning a potent tool for exploratory 
analysis, especially in scenarios where labeled data is scarce or when 
the structure of the data is not fully understood. Some of the key 
unsupervised learning approaches are k-means, hierarchical 
clustering, and density-based spatial clustering of applications with 
noise. Unsupervised learning has been successfully applied in 
grouping functionality-related genes, microarray analysis, and 
biological image segmentation (Larrañaga et  al., 2006; Parasa 
et al., 2021).

RL is a dynamic and adaptive approach well-suited for situations 
where a machine is required to make a series of decisions to achieve a 
desired goal or perform an optimization task, offering a framework 
for learning through interaction (Sutton and Barto, 2018). Within this 
paradigm, an agent—often an advanced ML model in deep RL—
engages in a sequential decision-making process, each time interacting 
with a complex environment represented by a set of variables that 
define the current state of the environment. The agent executes 
actions, transitioning between states, and ultimately may reach a 
terminal state, signaling the conclusion of the decision sequence. The 
RL framework incorporates a system of rewards and penalties, with 
the agent receiving feedback in the form of rewards for beneficial 
actions or penalties for undesirable outcomes. The objective for the 
agent is to devise a strategy that maximizes cumulative rewards, thus 
steering toward the most optimal actions to attain its final goal. RL has 
recently been applied to bioinformatics (Angermueller et al., 2020; 
Jumper et al., 2021; Neftci and Averbeck, 2019) and gained lots of 
attention because of its success in areas such as sequence alignment 
(Jafari et al., 2019) and protein loop sampling (Barozet et al., 2020).

2.4 Neural networks

Recent advances in applying ML to biology are based on neural 
networks, a subset of ML methods that can be employed in all three 
ML categories: supervised, unsupervised, and RL (Menden et  al., 
2020). ML models with neural networks are often referred to as deep 
neural networks when there are multiple layers of neural networks in 
the architecture of the model, a method more broadly known as deep 
learning. These neural network layers typically attempt to mimic the 
activity of brain neurons, where each neuron employs a mathematical 
function that alters the data it receives from the previous layer (LeCun 
et al., 2015; Schmidhuber, 2015). At first, the data is fed into an input 
layer, which then connects to hidden layer(s) (used for computing), 

and finally an output layer, designed to deliver the final prediction. 
The model learns by optimizing the function parameters of each node. 
Some popular neural network architectures are feed forward networks, 
CNNs, RNNs, and transformers (LeCun et al., 2015; Schmidhuber, 
2015; Vaswani et al., 2017). Deep learning models typically capture 
complex biological processes and incorporate heterogeneous data in 
the model through its different layers, which may be a necessity for 
many optimization and prediction tasks in CM (Li et al., 2020). It can 
be applied to both supervised and unsupervised scenarios. In RL, deep 
learning models can be employed as agents as well (Li, 2018).

2.5 Generative AI

Generative AI is another subfield of unsupervised learning which 
typically aims to generate new data or samples based on the patterns 
learned from the training data. Variational Autoencoders (VAEs) 
(Kingma and Welling, 2019; Singh and Ogunfunmi, 2022; Wei and 
Mahmood, 2021), which employ deep learning, are the first generation 
of generative AI models. VAEs typically employ two deep learning 
models: (i) an encoder that encodes the input into a latent space and 
(ii) a decoder that reconstructs the input by sampling from this latent 
space using variational inference techniques. Together, the encoder 
and decoder minimize the reconstruction loss of the input. Figure 3 
shows the general architecture of VAE.

The second generation of generative models is deep adversarial 
networks (Creswell et al., 2018; Zhang et al., 2017). These architectures 
also have two networks: a generator and a discriminator. Initially, 
generators generate new data randomly and discriminators classify 
whether the generated sample is original or generated. Iteratively, both 
the generator and discriminator learn how to generate a better sample 
and distinguish between original or generated sample. Eventually, the 
generator learns to generate realistic data samples that are difficult for 
the discriminator to distinguish from real data.

Recent advances in generative AI are mostly based on transformers 
(Vaswani et  al., 2017), which have revolutionized various fields 
including natural language processing, computer vision, and 
bioinformatics (Ji et al., 2021; Zhang et al., 2024). Transformers have 
demonstrated exceptional capabilities in capturing long-range 
dependencies and modeling complex sequential data. In 

FIGURE 3

General architecture of a variational autoencoder (VAE).
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bioinformatics, methodologies heavily draw inspiration from NLP 
techniques due to the inherent similarities between biological 
sequences and natural language texts. By employing transformers, 
researchers are able to effectively model biological sequences such as 
DNA, RNA, and protein sequences, leading to significant 
advancements in tasks such as sequence generation, structure 
prediction, and drug discovery (Jumper et al., 2021; Ji et al., 2021; 
Zhang et al., 2024; Bran and Schwaller, 2023; Nguyen et al., 2024).

2.6 Graph neural networks

Graph neural networks (GNNs) are another area of ML that works 
with graph structured data and biological networks, such as via 
protein interaction networks, gene coexpression networks, and 
metabolic networks (Scarselli et  al., 2009; Zhou et  al., 2020). A 
biological network or biological graph typically is arranged in terms 
of nodes and edges, where the nodes are biological entities (i.e., genes, 
proteins, metabolites, etc.) and the edges indicate how these entities 
relate to one another. GNNs can be used to model these complex 
networks and predict how perturbations will affect the whole network.

GNNs are based on the principle of message passing, where each 
node in the graph aggregates all embeddings (messages) of its 
neighbor nodes and updates the weights of pooled messages through 
a neural network. There are three main tasks in graph structured data. 
The first one is link prediction between two biological entities. 
Examples of link prediction are predicting the interactions between 
proteins or predicting interactions between genes/regulatory elements 
(Kumar et  al., 2020; Li et  al., 2022). The second task is node 
functionality prediction. For example, predicting an unknown 
function of a protein based on the physical interactions between 
proteins in the protein interaction network (Muzio et al., 2021). The 
third application of ML in network analysis is to classify sub-network 
functionality. Figure 4 shows different ML tasks in a graph or network 
structured data. Muzio et al. classified functions of subnetwork based 
on a molecule’s toxicity or solubility (Muzio et al., 2021). In addition, 
ML is also applied to obtain subnetwork embedding where the 
subnetwork is represented as a vector preserving the important 
information within the subnetwork in a numeric form. This 
embedding can facilitate further analysis of the subnetwork and is 
used for various downstream tasks (Nelson et al., 2019).

3 Cell lines

Meat consists of various cell types, predominantly muscle cells 
(approximately 90%), with fat and connective tissue cells accounting 
for the remaining 10% (Listrat et al., 2016). Additionally, there are 
some vascular, neural, and tissue-resident immune cells present in 
small amounts (Listrat et al., 2016; Ben-Arye and Levenberg, 2019; 
Reiss et al., 2021). To provide the taste, texture, and aroma expected 
in meat, most CM development has focused on muscle, fat, and 
connective tissue production. Cells will also likely contribute to the 
nutritional properties of CM products, and cell optimization may 
be used to tailor the nutritional profile of CM (Smith-Uchotsk and 
Wanjiru, 2023; Stout et al., 2020).

The cell types used to produce CM range from lineage-committed 
progenitor cells (e.g., muscle satellite cells, myoblasts, or preadipocytes) 

to stem cells able to differentiate into a broader set of cells (e.g., 
mesenchymal stem cells, embryonic stem cells, or induced pluripotent 
stem cells) (Ben-Arye and Levenberg, 2019). Developers may use 
primary cells, meaning cells that are isolated directly from an animal. 
However, cell lines, which are established cultures of cells that have 
been selected and optimized, are ideal because they are more 
consistent, characterized, and reduce the use of animals in the supply 
chain. Furthermore, immortalized cell lines or pluripotent stem cells 
are of particular interest due to their ability to escape the typical limits 
on population doublings seen in most primary cells (i.e., Hayflick 
limit) (Cong et al., 2002; Hayflick, 1965). A detailed review of cells 
used in the production of CM can be  found elsewhere (Reiss 
et al., 2021).

Few CM-relevant cell lines are currently well characterized and 
commercially available, with most coming from model organisms 
used in biomedical research, such as mouse, rat, or zebrafish, and cell 
lines for many agricultural species still need to be developed (Soice 
and Johnston, 2021). Cell lines for marine species, especially 
invertebrates such as mollusks or crustaceans, are especially 
underdeveloped, with only a few reported cell lines and not all are 
food-relevant species (Béjar et al., 2002; Buonocore et al., 2006; Gignac 
et al., 2014; Goswami et al., 2023; Krishnan et al., 2023; Li et al., 2021; 
Parameswaran et al., 2007; Parton et al., 2007; Potter et al., 2020; Saad 
et al., 2023). For many species, there is a lack of basic knowledge of 
their physiology and the biochemistry required for in vitro culture or 
immortalization (Soice and Johnston, 2021; Rubio et  al., 2019; 
Musgrove et  al., 2024). The lack of knowledge of molecular and 
genetic markers as well as few species-specific antibodies available 
makes identifying and curating cell lines difficult for under-studied 
species (Musgrove et al., 2024; Ravikumar et al., 2024). ML can help 
biologists analyze complex cellular data to assist with identifying ideal 
cell line populations and optimizing existing cell lines through 
gene perturbations.

3.1 Network analysis is a tool to model 
biological interactions

Optimization of cell lines is often challenging because it requires 
understanding the “state” of a cell or cell population (i.e., what the 
gene and protein networks are doing) and selecting or engineering for 
desired cell states. Measuring and predicting these states involves 
interpreting complex interactions between genes and proteins, 
identifying those that are important for specific qualities, and 
predicting how perturbations will affect the whole network. ML can 
be  used to model these interactions through network analysis. 
Network analysis is used throughout sections 3 and 4, so a general 
overview is first presented here. In recent years, GNNs have been 
employed for biological network analysis. GNNs have been 
implemented to predict protein interactions (Jha et al., 2022; Yang 
et al., 2020), molecular interactions (Huang et al., 2020; Kang et al., 
2022), metabolite-disease associations (Sun et al., 2022) and obtain 
subnetwork embeddings (Ciortan and Defrance, 2021) that can 
be  used to identify the functions of a biological subnetwork. 
Generative deep learning strategies, such as VAEs and deep adversarial 
network-based models, are also trained on biological networks by 
employing GNNs (Sun et al., 2022; Zhang et al., 2020). The most 
famous example to date is AlphaFold2, a deep learning GNN model 
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that was employed on amino acid sequences to predict more than 200 
million protein structures (Jumper et al., 2021). This is a significant 
advance in the field of structural biology which can be used in protein 
design, drug target prediction, cell type identification, and antibody 
development. AlphaFold2 can play a big role in designing new 
proteins and understanding the physical relationships between 
proteins (Evans et al., 2024).

Network analysis can employ multiple types of biological data 
within a multi-omics setting. Since each omics technique typically 
captures a specific biological process, integrating multi-omics data 
can provide a holistic overview of the biological process. In a 
multi-omics ML approach, different ML models are employed on 
different types of data (such as genomics, transcriptomics, 
proteomics, and metabolomics) to obtain numerical 
representations. These numerical representations are then 
combined together to obtain a more informative representation 
used to predict final outputs. For example, MOGONET employs a 
GNN on mRNA expression, DNA methylation, and miRNA 
expression data to predict disease information (Wang et al., 2021). 
Similar datasets can also be  used for CM to predict cell line 
features. More applications of multi-omics ML methods are 
discussed in section 3.2.

Furthermore, network analysis can help determine aroma and 
flavor (Lee et al., 2023). Since meat aroma and flavor are largely 
controlled by metabolic pathways (Ramalingam et  al., 2019), 
network analysis can be  applied to biosynthetic pathways to 
enhance or add flavors to CM products. Network optimization has 
been used to design yeast that overexpress licorice glycoside 
(Huang et  al., 2021), and although licorice is a flavor that few 
would want in a steak, one could imagine more savory corollaries. 
In other yeast experiments, transcriptomic network analysis has 
been used to improve acid resistance, and acid resistance is just as 
important to mammalian culture as to microbial culture (Li 
et al., 2021).

3.2 Machine learning can help to analyze 
complex omics data to identify and 
characterize new cell lines

“Omics” approaches, such as genomics, transcriptomics, 
proteomics, and metabolomics, are powerful tools for identifying and 
characterizing cell lines. In particular, RNA sequencing (RNA-seq) 
technologies are commonly used to quantify cellular gene expression 

FIGURE 4

Typical machine learning tasks for network analysis.

https://doi.org/10.3389/frai.2024.1424012
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Todhunter et al. 10.3389/frai.2024.1424012

Frontiers in Artificial Intelligence 08 frontiersin.org

to validate and optimize cell lines. However, analyzing RNA-seq or 
other-omics data across many candidate cells is a complex and 
daunting analytical task. ML can help these analyses in multiple ways, 
including by grouping functionality-related cells using an 
unsupervised approach (Ciortan and Defrance, 2021), profiling gene 
expression using a supervised approach (Chen et  al., 2016), and 
identifying different tissue types using unsupervised (Li et al., 2020; 
Lin et al., 2020) and semi-supervised approaches (Alvarez et al., 2020).

Using gene expression data to cluster cells based on cell type or 
behavior can help explain heterogeneity among cell populations and 
discover subpopulations with beneficial characteristics. When 
establishing cells for CM production, scientists may want to isolate 
only certain cell types with optimal attributes or remove undesirable 
cell types. For example, using single cell RNA-seq (scRNA-seq), 
Messemer et al. found that an isolation from cattle muscle contained 
11 distinct cell types (Messmer et al., 2023). This work led to a better 
understanding of the cells derived from a primary isolation, as well as 
cell surface markers suitable for the identification and separation of 
populations by flow cytometry. Additionally, in a recent preprint, 
Melzener et al. used RNA-seq to study subpopulations during muscle 
differentiation, understanding cell fates with an aim to improve the 
efficiency of cell differentiation and maturation (Melzener et al., 2024). 
ML is also increasingly being explored for the modeling of cell 
trajectories via scRNA-seq (Qiu et al., 2022).

Unsupervised ML can help to map cellular heterogeneity by 
grouping functionality-related cells, identifying cell sub-populations, 
and performing dimensionality reduction (Li et al., 2020; Lin et al., 
2020; Brendel et al., 2022). Typically, the input to the unsupervised ML 
model is gene expression data obtained from RNA-seq. In 
conventional ML frameworks, which are not based on neural 
networks, the outcome is generally an assigned cluster number for 
each cell or gene. For an in-depth exploration of how traditional ML 
techniques are applied in this context, we  direct readers to the 
comprehensive review by Petegrosso et  al. (2019). In contrast, 
unsupervised deep learning methods predominantly leverage 
autoencoders, which compress high-dimensional cellular data into a 
more manageable lower-dimensional space while retaining essential 
information (Li et al., 2020; Lin et al., 2020; Brendel et al., 2022). This 
lower dimensional representation of the encoder can be used to obtain 
clusters of cells (Li et al., 2020; Lin et al., 2020; Svensson et al., 2020; 
Tian et al., 2019; Wang and Gu, 2018) and can be further fine-tuned 
for gene expression profiling (Menden et  al., 2020; Alharbi and 
Vakanski, 2023).

Recently, another family of autoencoders that uses GNNs has been 
employed to obtain the lower dimensional representation of 
transcriptomics data. These GNN-based autoencoders use the 
knowledge of biological networks, such as gene–gene relationships, 
cell interaction networks, protein interaction networks and biological 
pathways, along with gene expression data to obtain a more robust and 
informative representation of cells and genes (Ciortan and Defrance, 
2021; Brendel et al., 2022; Gan et al., 2022; Rao et al., 2021; Shan et al., 
2023; Wang et al., 2021; Wen et al., 2022). The GNN autoencoders are 
unique compared to traditional autoencoders as they encode 
information on biological interaction between entities along with 
structural information and biological properties.

Semi-supervised approaches have been employed in many tasks, 
such as learning responses due to gene perturbation, different 
functional score prediction due to gene knockouts, identifying 

different tissue types, and transcriptome analysis (Alvarez et al., 2020; 
Aromolaran et al., 2020; Chuai et al., 2018; He et al., 2020; Lotfollahi 
et al., 2021; Osorio et al., 2022; Tian et al., 2018). These models are 
adept at leveraging both labeled and unlabeled data, typically 
employing the unlabeled data to train an autoencoder and then using 
the labeled data to fine-tune the autoencoder toward the target 
outcomes (Alvarez et al., 2020; He et al., 2020; Bernstein et al., 2020). 
Fine-tuning is the process of adjusting pretrained model parameters 
for a specific task by utilizing a small labeled dataset. The semi-
supervised approach is notably different from its unsupervised 
counterpart as it provides a degree of guided learning, which is crucial 
when the available labeled data is sparse but critical for the 
identification of specific labels. For instance, while the categorization 
of cells based on functional similarities may fall under unsupervised 
learning—grouping cells by inherent characteristics—the task of 
pinpointing cell doublets could benefit from a semi-supervised model 
that utilizes a limited set of known doublet samples to enhance its 
predictive accuracy.

In addition to transcriptomic data, further single-cell multimodal 
sequencing technologies have been developed that provide cell-
specific information, such as chromatin accessibility (scATAC-seq) 
(Baek and Lee, 2020) and surface proteins (CITE-seq) (Stoeckius et al., 
2017). These data types provide complimentary insight into 
scRNA-seq, such as improving accuracy in modeling gene regulatory 
networks in the case of scATAC-seq (Huang et al., 2023; Kim et al., 
2023). This understanding can aid in CM-related tasks, such as 
identifying transcriptomic/epigenetic markers predictive of high 
proliferation and differentiation potential given previously observed 
variability in primary cell culture performance (Melzener et al., 2022; 
Meßmer, 2023; Metzger et al., 2020).

In an ML context, autoencoders and GNN-based deep learning 
models are mostly applied to this multimodal data (Athaya et al., 
2023). Some of these autoencoders employ individual encoders and 
decoders for each modality. We  refer the readers to a review of 
multimodal single-cell models, and a review on general best practices 
for single cell analysis, to learn more about the topic (Athaya et al., 
2023; Heumos et al., 2023).

3.3 Antibody design for characterization 
and isolation of novel species can be aided 
by machine learning

In cell line development it is crucial to both characterize cells, 
commonly via omics data (as discussed above) or visual identification 
(discussed in section 5), and isolate the cells of interest, typically using 
flow cytometry cell sorting. Visual identification and flow cytometry 
both require the use of antibodies with specific binding affinity to 
known cellular markers. Markers of muscle cell differentiation are well 
understood for most mammalian species (Yu et al., 2021). However, 
in under-explored species, such as fish or aquatic invertebrates, these 
proteins are not always shared with mammalian cells or, to the degree 
they are, have low sequence conservation (Musgrove et  al., 2024; 
Liongue and Ward, 2007). For example, recent work with an Atlantic 
mackerel (Scomber scombrus) skeletal muscle cell line found that 
antibodies for the muscle satellite cell marker paired-box protein 7 
(PAX7) was successful, while early myogenic marker myoblast 
determination protein 1 (MYOD) was not (Saad et al., 2023). Surface 
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markers, which are most commonly used during flow cytometry cell 
sorting, are particularly understudied in CM-relevant cell types, with 
most existing research focused on immunology (Liongue and Ward, 
2007; Charoensawan et al., 2010).

Attempts at validating commonly used mammalian antibodies in 
fish have led to issues with cross-reactivity and specificity, suggesting 
that establishing cell lines for CM research will require the repurposing 
of existing antibodies, if not the development of fully novel antibodies 
(Antuofermo et al., 2023). The use of ML on omics data has been 
shown to aid antibody development, such as via improving species 
cross-reactivity, antibody co-optimization, and binding affinity 
(Bennett et al., 2024; Hie et al., 2024; Makowski et al., 2022). The 
autoencoder model totalVI, trained on joint scRNA-seq and CITE-seq 
data, is able to provide insight into many key variables that would aid 
antibody development: the identification of novel differentially 
expressed features to target in a given cell subpopulation, the improved 
prediction of false positive/negative surface proteins, the reduction of 
technical bias common in antibody-based measurements such as 
“background,” and the improvement of experimental design by 
helping determine optimal antibody titrations/sequencing depths for 
balancing cost and signal-to-noise ratio (Gayoso et al., 2021). For a 
full review of computational methods relevant to antibody 
development, readers are pointed to Kim et al. (2023).

3.4 Machine learning can map and enhance 
genetic traits to optimize cell lines

Gene editing can be used to enhance or alter cellular traits to 
generate cell lines optimized for CM production, such as accelerating 
growth, extending growth (i.e., immortalization), reducing input 
costs, or tailoring the flavor and nutrition. For example, manipulating 
cellular metabolism has a large potential for increasing the efficiency 
(and therefore reducing costs) of CM products (Risner et al., 2021; 
Humbird, 2021). As another example, Stout et al. engineered cells to 
overexpress FGF2, eliminating the need for FGF2 supplementation in 
media through autocrine signaling (Stout et al., 2024). Because many 
of the species used in CM are under-studied, their genome regulatory 
networks are not yet well understood, slowing efforts for gene editing. 
ML offers an opportunity to accelerate gene editing technology.

Genes typically have many regulatory regions, such as upstream 
and downstream regions, untranslated regions, promoters, and 
enhancers. These regulatory regions determine where, when, and how 
much a gene is expressed. Thus, to apply gene editing technology, 
identifying these regulatory regions is an essential task where ML 
models have been applied successfully (Ji et al., 2021; Danilevicz et al., 
2022; Levy et al., 2022). The most relevant modern ML techniques 
demonstrated to be useful for these tasks are generative adversarial 
networks (Wang et al., 2020; Zrimec et al., 2022) and convolutional 
neural networks (Kotopka and Smolke, 2020). ATAC-sequencing is a 
very useful data modality for informing on this set of tasks (Yan 
et al., 2020).

More recently, researchers have adopted transformers and 
architectures similar to large language models, such as BERT, to 
segment regulatory regions and predict expression levels (Ji et al., 
2021). These models are typically trained on a large number of DNA 
sequences or similar kinds of data using a supervised fashion by 
employing a masking strategy to generate a labeled dataset when labels 

are not available (Ji et al., 2021; Danilevicz et al., 2022). This entails 
subdividing a DNA sequence into numerous smaller fragments, 
typically employing a k-mers based approach, where a k-mer is a 
subsequence of length k within the DNA. Selected k-mers are then 
masked within the sequence. The objective of the transformer-based 
model is to predict those masked parts of the sequence while imitating 
the interactions among different fragments (Ji et al., 2021; Akiyama 
and Sakakibara, 2022). By predicting the masked fragment, the model 
learns the underlying structure of the DNA sequences. The resulting 
output is a set of numerical vectors, often referred to as embeddings, 
representing each k-mer, encapsulating the sequence information. 
These vector representations can be  further used to fine-tune the 
model for various downstream tasks, such as segment identification, 
sequence alignment, and gene expression prediction where limited 
labeled data is available (Ji et al., 2021; Danilevicz et al., 2022; Levy 
et al., 2022).

When labeled data is available, convolutional neural networks and 
transformers can be combined to predict outcomes. This approach 
employs convolutional neural networks on the small DNA fragments 
to obtain an initial representation. Following this, the processed 
fragments are inputted into transformer layers. The transformer 
architecture finds how each fragment interacts with other fragments 
and summarizes these interactions in a vector that represents the 
fragment. The vector representations of all fragments are finally used 
to predict different genomic tracks (Avsec et  al., 2021). Since the 
vector representations of the DNA fragments derived from the final 
transformer layer encapsulate information that is both comprehensive 
and adaptable across various genomic tracks, these vectors can 
be effectively utilized for predicting a range of genomic tasks beyond 
those initially targeted.

Since these approaches can be used for gene expression prediction, 
they are particularly useful for predicting the expression of an edited 
DNA sequence. Gene editing involves adding, removing, or 
substituting a segment of DNA to alter the expression of a specific 
gene. Identification of replacement DNA segments is a complex task 
that can be addressed by employing an ML algorithm that can estimate 
the gene expression. Alternatively, using RL, the discussed ML 
approaches can be trained to generate gene-edited DNA sequences 
that maximize the expression by following the same training 
architecture of Large Language Models, such as ChatGPT (Ouyang 
et al., 2022). Initially, one of these models can be fine-tuned to generate 
a gene-edited DNA sequence from an input DNA sequence 
(supervised fine-tuned model). Then, the supervised fine-tuned 
model can be optimized for predicting gene expression, which will 
work as the reward function of the RL agent (reward model). Finally, 
the supervised fine-tuned model can be  further optimized by 
employing RL optimization techniques, such as Proximal Policy 
Optimization (Schulman et al., 2017), where outputs of the reward 
model are used as rewards for generated sequences.

4 Media design

Cell culture requires media to keep cells alive, promote growth, 
and direct differentiation. Culture media contains the nutrients and 
signals that cells receive in the body and is typically composed of 
carbohydrates, amino acids, vitamins, minerals, buffers, proteins, 
peptides, fatty acids, lipids, and growth factors. In addition, media 
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components may also contribute to the flavor of the final product 
(O’Neill et al., 2021; Simsa et al., 2019). A detailed discussion of how 
cells utilize these components has been covered previously (O’Neill 
et al., 2021).

Most existing cell culture media formulations are expensive, not 
designed for the species of interest for CM production, and include 
animal-derived ingredients (O’Neill et al., 2021). Media design for CM 
requires optimizations to address these limitations, which are often 
complex and resource-intensive research efforts. ML is well suited to 
accelerate research in this space.

4.1 Culture media design can be treated as 
a hyperparameter optimization problem

The objective of media design is to identify conditions that are 
optimized for various parameters, such as price, growth rate, stability, 
flavor, environmental impacts, and lot-to-lot reproducibility, 
sometimes optimizing for several of these objectives simultaneously 
(O’Neill et al., 2021; Hubalek et al., 2022). In addition, media may 
be optimized for specific cell responses, such as differentiation or 
spontaneous immortalization (Messmer et al., 2022; Pasitka et al., 
2023). In certain cases, media may need to be developed for uncharted 
parameter spaces; for instance, cells derived from lamb, duck, and deer 
that were not previously grown for biomedical purposes.

Most culture media contain dozens of ingredients— the classic 
media Ham’s F-12 contains 47 ingredients (Ham, 1965). Certain 
ingredients, such as fetal bovine serum or B27 (Brewer et al., 1993), 
are themselves complex mixtures of additional ingredients. In the 
absence of ML, single specific improvements of large effect can still 
be sometimes made to culture media, such as a group that swapped 
animal albumin for plant albumin (Stout et al., 2022). Big gains in the 
stability of stem cell media have been made with recombinant peptides 
(Kuo et al., 2020). Other groups have optimized media, such as bovine 
myoblast media, using straightforward factorial approaches, and 
design-of-experiments (DOE) for these approaches are quite mature 
(Franceschini and Macchietto, 2008; Kolkmann et al., 2022). However, 
a medium with 49 ingredients, each with five relevant concentrations, 
has a design space of over 1034 potential recipes, exceeding the capacity 
of traditional factorial methods (i.e., Taguchi methods; Freddi and 
Salmon, 2019) or high-throughput screening.

Some attempts have been made to apply ML to the culture media 
design problem as a means of exploring the experimental search space 
more effectively. A recent preprint (Hashizume et  al., 2022) used 
gradient-boosted trees to identify culture media that improve the 
growth characteristics of suspension-phase HeLa cells. Another recent 
paper trained a neural network to model the results of fractional 
factorial culture media experiments (Nikkhah et al., 2023). Response 
surface methodology, a classic DOE method, has been used in 
conjunction with a genetic algorithm for optimizing media properties 
such as cost, growth rate, and global warming potential for CM 
production in both zebrafish fibroblast (Nikkhah et al., 2023) and 
mouse myocyte (Cosenza et al., 2021) culture media. However, these 
methods, on their own, aren’t optimal for dealing with the complexity 
of full culture media recipe design. In addition, both studies use well-
characterized cell lines, however their applicability for food production 
is limited, and further work is needed to translate these methods to 
more food-relevent species.

Designing culture media is fundamentally a high-dimensional 
search problem, and Bayesian optimization can effectively navigate 
problems of this nature, which has the advantages of requiring only 
a small number of experiments and dealing with uncertainty in a 
robust manner. Cosenza et al. has used Bayesian optimization to 
optimize myocyte culture media for CM applications, first 
demonstrating its increased efficiency over a standard DOE 
approach (Cosenza et al., 2022), followed by its use to optimize 
serum-free growth media for CM (Cosenza et al., 2023). However, 
these studies were performed using the C2C12 mouse myoblast cell 
line as a model system and further research is required to translate 
this to a species more relevant to CM production. Outside of CM 
research, Bayesian optimization has been used to optimize 
spirulina culture media (Gamble et  al., 2021) and keratinocyte 
differentiation media (Kanda et al., 2022). Google Vizier, which is 
Google’s hyperparameter tuning service, is a key enabler of 
Bayesian optimization, as it provides biologists access to this 
algorithm via API, bypassing the need to code from scratch 
(Golovin et al., 2024). Additionally, the BoTorch library for Python 
offers a powerful free toolkit to implement Bayesian optimization 
(Balandat et al., 2020).

Even given an optimal algorithm for optimization, obtaining and 
analyzing relevant data from cultured cells remains a challenge in 
media design. One potential solution is through the use of high-
content imaging, which can be enhanced through the implementation 
of ML methods, as discussed below in section 5. Another approach 
involves the application of gene network analysis, which may be the 
most effective method for gaining detailed insights into the cellular 
response to a given culture medium.

Bayesian optimization is the leading hyperparameter exploration 
technique, but it stands among others. Genetic algorithms, which 
cluster parameters in a way that mimics biological chromosomes to 
enable recombination (Katoch et al., 2021), have been used to optimize 
cyanobacteria media (Havel et al., 2006). Simulated annealing, which 
is based on a metallurgical concept (Delahaye et al., 2019), has been 
used in conventional animal agriculture to optimize poultry feed 
(Wijayaningrum et al., 2017) and to produce a population balance 
model for CHO cells (Wijayaningrum et al., 2017). However, Bayesian 
optimization appears to be  the most widely used among these 
techniques, probably because it can work on non-differentiable 
objective functions without the difficulty of partitioning parameter 
space into somewhat arbitrary and finicky “chromosomes” 
(Qualities, 2020).

4.2 Machine learning can interpret how 
cells respond to media conditions

The heart of media design is attempting to alter the properties of 
cells by altering their environment. Assessing the properties of cells 
can be challenging—although RNA-seq can provide insight on the 
inner state of cells by quantifying expressed genes (Messmer et al., 
2022). However, that information is often not readily interpretable 
because it is high-dimensional and the effect of any single gene is often 
esoteric or context-dependent. ML-guided network analysis is a 
solution  - it can assess changes to the inner state of cells when 
performing media design or other optimizations, such as culture 
vessel geometry or atmosphere composition. Both gene-based 
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network analysis and metabolite-based network analysis can be used 
for this application.

Gene network analysis has not yet been directly used in CM 
media research, but it has been used in parallel applications. Network 
analysis has been used to improve mammalian culture, CHO cells in 
particular, to identify feed supplements (Schinn et al., 2021). Network 
analysis has also been used to find gene networks important for feed 
efficiency or milk production in cattle, with the networks formed from 
phenotype–genotype analysis (Suchocki et  al., 2016; Taussat 
et al., 2020).

To get more details about a gene network, gene network inference 
(GNI) methods can deduce the regulatory interactions between genes. 
The potential value of GNI to CM media design is that GNI can aid 
and simplify the interpretation of an RNA-seq data matrix; instead of 
looking at the differential expression of tens of thousands of genome 
features, the analyst can look at the differential activity of dozens of 
network modules. Among recent GNI methods are dynGENIE3 
(random forests) (Huynh-Thu and Geurts, 2018), Scribe (Qiu et al., 
2020), and TENET (Kim et al., 2021), all of which are benchmarks for 
the most recent papers (Liu et  al., 2022). GNI has been used to 
optimize output in traditional agriculture, both soybean cultivation 
(Hale et al., 2022) and maize cultivation (Huang et al., 2018), and GNI 
could be used for analogous output maximization problems in CM.

In biotechnology, metabolic network analysis has, historically, 
most commonly been done with flux balance analysis to predict the 
inputs and outputs of metabolites in cells (Orth et al., 2010). On its 
own, flux balance analysis has been used for CM-relevant problems 
like modeling CHO metabolic states (Hagrot et al., 2017), evaluating 
metabolic hypotheses (Martínez-Monge et al., 2019), and developing 
genome-scale metabolic models (Széliová et al., 2020). However, flux 
balance analysis has also been combined with ML in hybrid systems 
for purposes such as correlating real-world data (Wu et al., 2024) or 
determining the most relevant model features (Vijayakumar et al., 
2020). Given the use of flux balance analysis in CM and the 
demonstrated ability of ML to enhance it, this may be  a useful 
application of ML to CM going forward.

4.3 Optimizing and engineering proteins is 
much easier with machine learning

Another opportunity for optimization is in the ingredients 
themselves. Growth factors are currently estimated to contribute over 
95% of the total production cost (Specht, 2020). Altering proteins for 
use in cell culture media is a promising means to optimize the stability, 
price, or other desirable properties of these ingredients.

Recombinant production, a commonly used animal-free strategy 
to produce proteins, is a major contributor to media costs (Venkatesan 
et  al., 2022). Most proteins present in culture medium are highly 
specialized eukaryotic proteins, requiring post-translational 
modifications such as phosphorylation or glycosylation that require 
mammalian cell culture systems, rather than the far cheaper and more 
scalable bacterial production systems. Recent work developed an 
E. coli expression system to reduce the price of several relevant growth 
factors (Venkatesan et  al., 2022). Similar efforts are necessary to 
reduce the cost of other media ingredients.

Probably the biggest challenges when importing transgenic 
proteins are differential folding between species (i.e., different 

chaperones, different organism temperatures) and differential post-
translational modification. There have been many efforts to use ML 
to predict post-translational glycosylation, with earlier efforts using 
random forests (Hamby and Hirst, 2008) and more recent efforts 
using multi-layer perceptrons (Pakhrin et al., 2021) or ensemble 
models (Ching-Hsuan et  al., 2020). As for differential folding, 
transformer-based models have been used to predict thermal 
protein stability (Jung et al., 2023). Combining transformers and 
GNNs has been used to predict protein subcellular localization 
(Dubourg-Felonneau et al., 2022). More recently, AlphaFold has 
been used to predict protein stability in a general sense (Pak et al., 
2023), and ColabFold was developed to improve upon it (Mirdita 
et al., 2022).

Protein ingredients can also be  engineered to optimize their 
stability in culture, reducing the total amount of protein needed for 
CM production (Goldenzweig and Fleishman, 2018). For example, 
FGF2 thermal stability was increased using point mutations in the 
protein (Dvorak et al., 2018). Similarly, Long R3 IGF-1 is a modified 
recombinant form of IGF that prevents inactivation by IGF binding 
factors, leading to x200 potency and x3 stability compared to standard 
insulin (Voorhamme and Yandell, 2006). Similar strategies could 
be  applied to other expensive media ingredients to reduce the 
necessary concentrations or additions. RFdiffusion (based on a 
generative diffusion model) (Watson et al., 2022) and ProteinMPNN 
(Dauparas et al., 2022) are tools designed to solve this problem. ML is 
also used in directed evolution experiments that iterate upon a given 
protein’s design (Hie et al., 2024; Saito et al., 2021).

For some proteins used in high concentrations, such as albumin, 
transferrin, and insulin, replacement with lower-cost alternatives, 
such as plant (Humbird, 2021; Okamoto et al., 2022) or microbial 
(Tuomisto and Teixeira de Mattos, 2011; Jeong et  al., 2021) 
hydrolysates may be  beneficial. For example, a protein similar to 
bovine insulin was found in cowpea (Vigna unguiculata) and could 
be isolated for use as an insulin replacement (Mj et al., 2015; Venâncio 
et al., 2003). Screening plants or microbes for sequence homology to 
proteins of interest could accelerate this work. The traditional, 
non-ML tool for homology searches is protein BLAST (Altschul et al., 
1990), but BLAST is underpowered because proteins can have similar 
structures without having similar sequences. Services like Dali provide 
protein structure alignment but are constrained by the paucity of 
known protein structures and the computational complexity of three-
dimensional comparisons (Holm and Laakso, 2016). ML has changed 
how to approach this problem with FoldSeek (van Kempen et al., 
2023), which uses autoencoder-based compression to simplify three-
dimensional protein structural comparisons, using AlphaFold to infer 
protein structures when no empirical data is available (Jumper 
et al., 2021).

5 Cell culture microscopy and image 
analysis

Microscopy is one of the foundational techniques of cell culture, 
providing information such as (i) the health of cells (e.g., whether they 
are mitotic, senescent, or apoptotic); (ii) the behavior of cells (e.g., 
whether they are invasive, contractile, or secretory); and (iii) the 
lineage of cells (e.g., whether they are stem cells, progenitor cells, or 
terminally differentiated cells). Many types of cell analysis rely on 
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microscopy. For example, fusion index, the percentage of nuclei inside 
myotubes using immunostaining, is the predominant test used to 
quantify myogenic differentiation (Ben-Arye and Levenberg, 2019). 
Alternatively, inexpensive colorimetric staining has been shown as an 
alternative measure of myotube differentiation (Veliça and Bunce, 
2011). Additionally, brightfield imaging, without the use of dyes, has 
been used to measure cell contractility, which is a measure of muscle 
cell maturity (Furuhashi et al., 2021; Ribeiro et al., 2017).

The relevance of microscopy during large-scale production will 
be especially dependent on its ability to serve as a low-cost, high-
throughput tool. However, microscopy has been historically 
constrained by the complexity of its analysis. Microscopy analysis 
is routinely done manually by researchers with well-trained eyes, 
and doing it automatically requires systems that can incorporate 
many nuanced features of the image data. Unfortunately, 
appropriate systems tend to be nascent, poor, or non-existent in 
biological research. Furthermore, the use of dyes to improve image 
quality is undesirable due to the cost and time constraints of CM 
production. For CM production, cell segmentation and 
classification are fundamental and indispensable due to their 
multifaceted contributions - they are relevant to quality control, 
monitoring of cell culture health, and optimizing production. 
Utilizing ML approaches for automated cell segmentation and 
classification can lead to a reduction in the time, expenses, and 
errors involved in preparing the setup for manually analyzing the 
image data.

5.1 Automatic image analysis for cell 
segmentation using machine learning

Cell segmentation is the process of identifying and separating 
individual cells within an image. This is done in digital microscopy 
and histopathological imaging to study cell structure and function. 
The goal of cell segmentation is to pick out cells in an image, and 
segmentation is necessary to measure cell size, shape, and number. 
Segmentation also enables the tracking of individual cells over time, 
allowing researchers to assess changes in cell behavior and 
morphology, which can help in optimizing conditions for CM 
production. Furthermore, cell segmentation can also help in 
identifying contaminating debris or inappropriate cells from the 
culture, ensuring the quality and safety of the final product.

Recently ML has been used to improve cell segmentation for 
various applications (Al-Kofahi et al., 2018; Durkee et al., 2021; Kumar 
et al., 2020; Pachitariu and Stringer, 2022). Manual identification of 
individual cells has poor reliability between and within human 
evaluators. Additionally, automating cell imaging tasks can free up 
researchers’ time for higher value tasks and reduce errors from fatigue 
and subjectivity (Verma et  al., 2021). However, there are several 
challenges that hinder the effectiveness of ML-based cell segmentation. 
First, cells are highly variable in size, shape, and morphology. Second, 
segmentation may fail on images that are low-contrast, have uneven 
illumination, or are out-of-focus. Third, crowded and overlapping cells 
can make it difficult to distinguish individual cells using cell-
segmentation algorithms. Fourth, training data can overfit on imaging 
artifacts, such as non-uniform illumination and background noise 
(Zinchuk and Grossenbacher-Zinchuk, 2023). These challenges are 

not unique to CM but must be taken into account prior to applying 
ML for cell segmentation in any field.

In order to overcome the above challenges and to develop robust 
algorithms for detecting and segmenting cells, the computer vision 
community requires access to large, diverse, and well-curated 
datasets with comprehensive annotations. While some public datasets 
for nuclei and cell segmentation have been released in the past 
(Kumar et  al., 2020; Verma et  al., 2021; Caicedo et  al., 2019; 
Greenwald et  al., 2022; Kaimal et  al., 2021; Naylor et  al., 2019), 
additional datasets specific to CM are necessary to develop such 
robust algorithms for accurate cell segmentation in 
microscopic images.

A classic method for cell segmentation is the watershed algorithm 
combined with optimal thresholding, which has been used in 
applications such as segmenting lymphocytes into nuclear and 
cytoplasmic regions (Mohammed et  al., 2013). There has been 
growing interest in deep neural net architectures inspired by fully 
convolutional networks for cell segmentation (Kumar et al., 2020; 
Naylor et  al., 2019; Gómez-de-Mariscal et  al., 2021; Long and 
Shelhamer, 2015; Wienert et  al., 2012; Yu et  al., 2016). These 
architectures employ encoder-decoder blocks to transfer features from 
multiple scales and levels for efficient cell segmentation on 
histopathology and microscopy images. The U-Net model, a variant 
of the fully convolutional network architecture, has shown particular 
promise for this task (Falk et al., 2019; Ronneberger et al., 2015). 
Unlike fully convolutional networks, U-Net incorporates skip 
connections that facilitate precise semantic segmentation by 
amalgamating features from diverse resolutions, enhancing the 
model’s capability to capture intricate details. Similarly, U-Net++ 
employs advanced encoder-decoder structures and loss functions to 
enhance performance for cell segmentation (Zhou et al., 2018). Such 
deep learning architectures have outperformed pathologists’ 
performance for cell segmentation in various applications (Franklin 
et al., 2021; Hekler et al., 2019).

5.2 Automatic image analysis for cell 
classification using machine learning

Cell classification is another important task in image analysis. 
While cell segmentation is the process of separating individual cells 
from the background and from each other in an image, cell 
classification is the process of assigning labels to the segmented cells 
based on their morphology, phenotype, or function (Dursun et al., 
2023; Huynh et al., 2021). The primary goal of cell classification is to 
assign each segmented cell to a specific category or label, such as cell 
type, state, or condition.

Manual analysis of thousands of microscopy images for cell 
classification is a tedious and error-prone task. Thus, there is a need 
for ML algorithms for automatic cell classification. Recently, ML has 
been used for the classification of cells within microscopy images, 
including the identification of anemia or blood disorders based on the 
shape, size, and optical properties of red blood cells (Belashov et al., 
2021), and for the analysis of cellular microenvironments to offer 
novel insights into biological mechanisms (Winfree, 2022). However, 
the effectiveness of ML-based cell classification for microscopy faces 
several challenges. One challenge arises from the crowded or 
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overlapping cells, making it difficult to distinguish individual cells. 
Differences in cell maturity and variations in cell shape resulting from 
diverse cultivation and treatment methods can introduce complexity 
into the analysis, especially when distinguishing between different 
types of cultured cells. Complex textures, patterns, and shapes in 
multi-modal microscopy further complicate cell classification, 
requiring the integration of multi-stream models that consider 
low-level cues such as edges and gradients (Lou et al., 2023). The 
intricate cell structures found in tissue images introduce additional 
complexities such as heterogeneous cell populations and staining 
variations. These challenges necessitate the development of precise 
and efficient algorithms for cell classification.

In the domain of microscopy image analysis, many innovative 
architectures and methods have emerged for classifying cells. Among 
these, CNNs stand as a robust choice, with models like U-Net 
(Ronneberger et al., 2015) and Mask R-CNN (He et al., 2015) excelling 
in cell classification tasks. RNNs, particularly long short-term memory 
and gated recurrent units, demonstrate their prowess when handling 
sequential data, making them valuable for tracking cell dynamics 
(Ghojogh and Ghodsi, 2023). For tasks involving complex relationships 
between cells, GNNs, such as graph convolutional networks, prove 
invaluable (Chen et al., 2022). Traditional approaches like random forests 
and decision trees, which are based on hand-picked image features, are 
still relevant for classification because they are computationally fast, easy 
to train, and resist overfitting (Gurcan et al., 2009; Kumar et al., 2022). 
Transfer learning techniques harness pre-trained deep learning models 
like ResNet (He et al., 2015), while attention mechanisms and ensemble 
methods contribute to improved accuracy (Marzahl et al., 2019). With 
the ever-evolving landscape of microscopy, these versatile architectures 
continue to play pivotal roles in cell classification.

Following cell classification, cell phenotype analysis is pivotal in 
exploring cellular characteristics, encompassing physical and 
biochemical attributes such as size, shape, function, viability, 
proliferation, signaling, and morphological structure. This approach is 
particularly valuable in culture media optimization (Zhou et al., 2023). 
By scrutinizing the physical attributes and functional behavior of 
cultured cells, researchers can ensure the consistency and quality of cell 
populations, evaluate metabolic activity, and assess cellular functionality 
within the culture. Moreover, the examination of cell morphology offers 
insights into cellular health and enables fine-tuning of culture media 
formulations (Zhou et al., 2023; Grzesik and Warth, 2021). ML has 
been used to combine different forms of microscopy using transfer 
learning - such as between fluorescence and dye-free microscopy (Jang 
et al., 2021) or between traditional microscopy and mass spectrometry 
imaging (Race et  al., 2021). Thus, in the burgeoning field of CM, 
phenotype analysis contributes to the refinement of CM production, 
guiding the selection of cell strains and culture conditions to achieve 
better quality and desired growth attributes. Overall, cell phenotype 
analysis plays a pivotal role in enhancing cell culture processes and 
product quality, making it a valuable tool for CM production.

6 Bioprocess and food processing 
optimization

Moving CM from lab bench scale to commercial scale requires 
efficient bioprocess design. This centers around the use of large 
bioreactors to produce a controlled environment for cell growth and 

differentiation that maximizes biomass and minimizes by-product 
yields. A variety of bioreactor types have been proposed for use in CM, 
which are reviewed elsewhere (Allan et al., 2019). One study estimated 
that producing 1 kg of protein from muscle cells would require stirred 
tank bioreactors on the order of 5,000 L (Stephens et al., 2018). This 
dwarfs research-scale mammalian cell culture and will require extensive 
optimization. In addition, after harvesting cells from the bioreactor, 
CM products will likely require food processing steps to create a final 
product. ML is well suited to increase the scale and efficiency of CM 
bioprocessing and food processing in a variety of ways.

6.1 Bioreactor homeostasis can 
be maintained with machine learning

As the culture scale is increased, automation of closed systems will 
become important to increase efficiency and reduce contamination or 
other failure events (Specht et al., 2018). Real-time quality assurance 
and process monitoring will allow for adjusting culture conditions to 
optimize yield, monitoring for potential contamination, and reducing 
human errors. Automation in processes such as media recycling will 
further optimize the process and bring costs down.

Historically, mammalian bioreactor operation has been governed 
by systems such as proportional-integral-derivative controllers 
(Synoground et al., 2021) or model predictive control (Sarna et al., 
2023). These systems, although mainstays of control theory, are 
designed to work in deterministic environments that can be well-
described by linear differential equations. Although these systems can 
struggle with the vagaries and unpredictability of biological systems, 
they have been successfully employed in bioreactors to maximize 
antibody production (Kiparissides et al., 2015), constrain overflow 
metabolism (Bogaerts et al., 2017), and maintain glucose homeostasis 
(Craven et  al., 2014). This type of modeling has ceded ground to 
ML-based modeling in recent years, probably because, compared to 
ML, these models are relatively fragile because of their dependence on 
their top-down mathematical models accurately describing reality.

The most straightforward application of ML to bioreactors is to use 
ML-based models to control the bioreactor’s inputs. A wide gamut of 
ML models have been used to monitor and control bioreactors and 
industrial bioprocesses, especially supervised learning models like 
neural networks (Zavala-Ortiz et al., 2022), random forests (Vaitkus 
et al., 2020), and gradient boosting (Zhang et al., 2021). The step beyond 
using ML to optimize models is to use ML to optimize the policies 
themselves that determine the models, which is done by reinforcement 
learning, with examples in bioreactors ranging across deep Q-networks 
(Oh et al., 2022), policy gradients (Petsagkourakis et al., 2020), and 
probabilistic Bayesian optimization (Luna and Martínez, 2014). These 
policy-based learning methods do not necessarily require a prior 
understanding of the biochemistry of the bioreactor.

6.2 The unique challenges of structured 
products can be addressed by machine 
learning

As opposed to ground meat, structured tissues (i.e., a steak or fish 
filet) will require the formation of organized 3-dimensional tissues and 
bioreactor systems capable of supporting them. A structured product 
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entails growing an organized and three-dimensional tissue, as opposed 
to growing cells in suspension - the difference between growing cells 
as a soup and growing cells as a steak. This type of engineered tissue 
has not been shown on any scale beyond a tissue for a single patient, 
making this a major whitespace in the field (Specht et al., 2018).

Imposing organization upon cells is a classic, challenging 
problem from the field of tissue engineering, and solutions often 
involve ML. Random forests (Conev et  al., 2020) and neural 
networks (Bone et  al., 2020) have been used to predict optimal 
parameters for the extrusion printing of hydrogel scaffolds. Gradient 
boosting has been used to predict the self-assembly of dipeptide-
based hydrogel scaffolds (Li et al., 2019). In theory, ML could be used 
to design the structures of tissue scaffolds, but this avenue appears 
to be unexplored at this time. Further review of the application of 
ML for bioprinting has been completed previously (Ng and 
Tan, 2024).

Tissue self-organization is a powerful principle for structured 
meat production. Tissue scaffolds or extrusion printing are currently 
used to create top-down structured tissues because of a lack of 
understanding of bottom-up self-organization of tissue in vitro. 
However, breakthroughs in bottom-up tissue self-organization would 
accelerate the scale-up of CM, eliminating the costs of scaffolds. In the 
context of CM, relevant types of self-organization are the alignment 
of fibers (especially myofibrils and collagen cables), the production of 
functional vasculature networks, maintaining ratios of meat-relevant 
cell types (myocytes, adipocytes, fibroblasts), and the structural 
determinants of texture and mouthfeel (Nishimura, 2010). Attempts 
have been made to model tissue self-organization using differential 
adhesion (Cerchiari et al., 2015), cellular Potts models (Libby et al., 
2019), and agent-based modeling (Wang et al., 2020). Accurate models 
of tissue self-organization may provide design principles for making 
tissues with defined structure in CM.

A family of methods that may help with structured tissue 
construction in CM is spatial transcriptomics, which correlates gene 
expression in situ to physical coordinates within a tissue section (Tian 
et al., 2023). Spatial transcriptomics has been used for understanding 
specific aspects of tissue structure and cell organization that rely on 
spatial context, such as extracellular forces and gradients of signaling 
molecules (Heumos et al., 2023). GNNs have been successfully used 
with spatial transcriptomics data to model cellular communication 
(Fischer et al., 2023; Hu et al., 2021; Tanevski et al., 2022) and the deep 
learning model Tangram has also been used to resolve cell types and 
decrease imputation error from spatial data (Biancalani et al., 2021). 
Although spatial transcriptomics has not yet been used in the context 
of CM, it could prove useful in dissecting the complex tissue 
architectures involved in structured products.

Structured products will also require bioreactor systems capable of 
perfusion and harvesting of large intact tissues. The nature of a 
structured product bioreactor bears similarity to the fluidized and/or 
packed bed bioreactors that are used industrially in the wastewater and 
mineral extraction industries. Numerical fluid dynamical models are 
classically used to predict the behavior of these systems, but ML has, in 
recent years, been used for the more unpredictable aspects of these 
systems (Koerich et  al., 2018; Ouyang et  al., 2018). In particular, 
gradient boosting has been used both to predict bed expansion of 
fluidized bed bioreactors (Peng et al., 2022) and mass transfer in packed 
bed bioreactors (Guo et al., 2023). Similar methods may be useful for 
the particular challenge of CM structured product bioreactors.

6.3 Real-time sensory prediction and 
control could be applied with 
reinforcement learning

Unlike tissue engineering for medical treatments, the sensory 
properties of CM, such as flavor and texture, are critical to its 
commercial success. These may be generated during the cell culture 
from flavor or texture components of cells, media, or scaffolds, or after 
harvest using food processing or additives. ML is playing an important 
role in enhancing the analysis of the flavors and textures of other food 
products through the analysis of diverse data types and these 
techniques are likely to play a role in CM development as well.

During product development, flavor can be measured in a variety 
of ways. Earlier ML models used data from gas chromatography–mass 
spectrometry, which is an analytical chemistry method used to 
separate and fingerprint substances from complex mixtures (Bi et al., 
2020; Zhu et al., 2021). Later, researchers focused on electronic noses 
that mimic the olfactory capability of humans through different 
sensors. Since an electronic nose can be  used to collect real-time 
sensor data during production, ML can also be applied in real-time 
for quality and flavor control (Gonzalez Viejo et al., 2021; Gonzalez 
Viejo et al., 2020; Tian et al., 2020). However, it should be taken into 
consideration that many compounds important for the aroma of meat 
are generated during cooking (Khan et al., 2015). The latest research 
efforts concentrate on utilizing the molecular structure and 
physicochemical attributes of flavor compounds to predict flavors, 
including taste or smell (Bouysset et al., 2020; Wiltschko, 2019; Lee 
et al., 2022; Tuwani et al., 2019; Wang et al., 2021). These characteristics 
are quantified into molecular descriptors, numerical representations 
that encapsulate the properties of the molecules involved. These 
descriptors then serve as inputs for ML models, which are trained to 
predict flavor profiles and odor characteristics with greater objectivity.

Since most of these data are tabular, a wide range of traditional ML 
approaches, such as support vector machines, random forests, k-nearest 
neighbor, and AdaBoost Tree, have been employed (Lee et al., 2022; 
Wang et al., 2021; Ji et al., 2023). Additionally, deep learning approaches, 
such as CNNs (Bi et al., 2020) and multilayer perceptrons (Zhu et al., 
2021; Gonzalez Viejo et al., 2021; Tian et al., 2020), and unsupervised 
learning approaches, such as cluster analysis by using principal 
component analysis (Gonzalez Viejo et al., 2021; Tian et al., 2020), have 
also been applied to identify or predict flavors. These methodologies 
have collectively demonstrated that ML can significantly contribute to 
the enhancement of the sensory properties of a range of food products.

AI approaches, particularly RL, offer significant potential for 
enhancing efficiency in food processing operations (Petsagkourakis 
et al., 2020; Aljaafreh, 2017; Bi et al., 2020). Food-processing facilities 
are typically equipped with a variety of sensors, including those for 
temperature, pressure, moisture, and pH levels. These sensors play a 
crucial role in ensuring precise ingredient measurements, which are 
fundamental for achieving the desired taste and aroma profiles of food 
products. However, the challenge arises when new products are 
developed, as determining the optimal mixture of ingredients often 
involves extensive trial and error. Deploying an RL agent in this 
context can effectively manage and adjust the various sensor readings, 
thereby ensuring that the food consistently meets the specific 
standards and requirements set by the food processor. This approach 
not only streamlines the development process but also enhances the 
precision and quality of the final product. RL can also be valuable for 
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sensory prediction, in particular the texture prediction of finished CM 
products (Kircali Ata et al., 2023).

7 Discussion

In the last decade, the field of CM has made strides toward lower-
cost and more efficient production processes but must progress 
significantly further to effectively rival traditional meat. ML offers great 
promise in improving every stage of CM production, from cell line 
development to the final product’s sensory characteristics. With the 
current surge in both public and private research and development for 
both the ML and CM fields, and the already successful integration of 
ML into numerous life sciences fields, the integration of ML into CM 
research is timely. Despite the numerous opportunities, there are only 
a handful of peer-reviewed, publicly accessible studies that describe the 
use of ML in CM production (Table 1), and an equally small group of 
researchers versed in both ML and CM. This review aims to bridge the 
gap between the ML and CM fields and create a starting point for 
scientists to better understand how to apply ML to CM research. To our 
knowledge, this is the first review to provide a comprehensive overview 
of the applications of ML to CM, covering the topics of cells, media, 
microscopy, bioprocess, and final product properties.

Since ML has been successfully employed in many other 
bioinformatics sectors, many of the existing methods can be adopted 
to CM. However, the key limitation is the availability of sufficient data. 
Creating ML models requires large training and validation datasets, 
and ML models are only as robust and reliable as the amount and 
quality of data used to develop them (Priestley et  al., 2023). The 
scarcity of public data in CM complicates the development of models 
or even the assessment of potential model types. There are some 
publicly available dataset repositories, such as the Gene Expression 
Omnibus (GEO) for RNA-seq data,1 GenBank for sequenced genome 
data,2 and Uniprot for protein sequences.3 However, compared to 
species used in medical studies, few CM-relevant datasets are reported 
and many lack adequate descriptions, data annotations, or samples 
and replicates to be considered for statistical analysis. As an example, 
a query for “stem cell” in the GEO DataSets generates 71,327 datasets 
for Homo sapiens (human) and only 61 for Bos taurus (cattle) (as of 
February 1, 2024). Efforts to generate properly annotated data and 
incentives for the sharing of data from ongoing experiments would 
greatly accelerate the application of ML to CM research. The 
Cultivated Meat Modeling Consortium4 offers a model for 
community-generated and shared data, while protecting intellectual 
property, to accelerate computational models.

A survey of datasets with potential relevance to CM research is 
included in Supplementary Table S1. The dataset survey encompasses 
a compilation of open-access biological datasets derived from 
CM-relevant species such as fish, crustacean, mollusks, cow, pig, and 
chicken. These curated datasets span a diverse array of sources 
including sequencing (RNA, ATAC, ChIP, single cell, and genome), 
mass spectrometry (proteomics, lipidomics, and metabolomics), and 
microarray experiments.

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.ncbi.nlm.nih.gov/genbank/

3 https://www.uniprot.org/

4 https://thecmmc.org/

Transfer learning might be  able to partially make up for the 
scarcity of CM-relevant data, by using models from data-rich 
biomedical species, such as humans and mice, to inform models for 
data-poor CM-relevant species. Cross-species graph-based transfer 
learning has previously been applied in a non-CM context on 
RNA-seq data for cell-type identification (Liu et al., 2023; Wang et al., 
2024). Challenges to this approach include biological heterogeneity 
from differing sets of genes or differing functions for genes across 
species, which could potentially be mitigated through techniques such 
as universal cell embeddings (Park et al., 2024; Rosen et al., 2024). As 
a starting point, researchers may look into fine-tuning large scale 
models that have been successful in achieving improved performance 
on biological tasks relevant to CM with limited task-specific data, 
including gene network analysis and cell type annotation, such as 
Geneformer and scGPT (Cui et al., 2024; Theodoris et al., 2023).

Another challenge relates to the scale of existing studies. Most ML 
research related to CM has been limited to laboratory environments, 
which might not mirror the conditions of mass production. Solutions 
could include either verifying these lab models at a commercial level 
or using process simulations to adapt them for larger operations.

From the perspective of biologists, an important way to speed up 
ML work is to produce the biological models that are used to generate 
data for training ML models. For example, the production and 
dissemination of more high-quality cell lines from agriculturally 
relevant animals is needed to aid the generation of omics and 
microscopy data. Furthermore, biological scientists can make efforts 
to contribute to the body of existing data by publishing any quality 
data that results from their experiments, whether or not they are 
directly used in their own studies, including negative results. 
Publication of transcriptomic and epigenomic data has become more 
commonplace, however complete microscopy image sets, in particular, 
are rarely published. There is also a need for more proteomic and 
metabolomic data, especially in understudied food-relevant species, 
to address numerous use cases including metabolic modeling, flavor 
profiling, and bioreactor scaling concerns (Nissa et  al., 2022). 
Moreover, datasets should be properly annotated - this first includes 
metadata describing the samples the data came from, how the data 
was generated, and any processing that was done to the data. Ideally, 
data would include all raw data, which ML scientists could use to 
regenerate the original dataset. Similarly, properly labeled data 
(labeling of individual data points) is important for supervised 
learning models, which remain the most popular and widely used 
(Larrañaga et al., 2006). Finally, the quality and consistency of datasets 
are also critical for their use in training ML models. Variations in 
sample handling and data collection can lead to large and varied 
systematic errors that make it challenging to usefully combine 
multiple datasets or for a model trained on one dataset to apply to 
another (Priestley et al., 2023).

Efforts to make ML more accessible to researchers, such as 
infrastructure, frameworks, benchmarks, and libraries, could help 
facilitate the application of ML to CM. Currently, a variety of ML 
models are freely available from online resources like Paperswithcode5 
and Hugging Face.6 Additionally, libraries such as Python’s scikit-learn 
(Grisel et al., 2024) or frameworks such as PyTorch Lightning7 offer a 

5 https://paperswithcode.com/

6 https://huggingface.co/

7 https://lightning.ai/
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good starting point for coding ML. Similarly, accessible web interfaces 
could make ML tools more accessible to biologists, following the 
examples of AlphaFold and Foldseek, which both have interfaces 
integrated into the widely used online protein database  
UniProt.

Overall, there is an enormous opportunity for CM researchers 
to incorporate ML techniques and for ML professionals to explore 
the CM field. The ML field has been moving at unprecedented 
speed over the past few years, and CM researchers could make 
gains simply by porting over what is, in effect, yesterday’s news in 
ML. This review aims to be  an introductory resource for 
researchers eager to explore this cross-disciplinary method, which 
could help to establish CM as a viable and sustainable protein 
source in our diets.
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