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Human motion detection technology holds significant potential in medicine, 
health care, and physical exercise. This study introduces a novel approach to 
human activity recognition (HAR) using convolutional neural networks (CNNs) 
designed for individual sensor types to enhance the accuracy and address 
the challenge of diverse data shapes from accelerometers, gyroscopes, and 
barometers. Specific CNN models are constructed for each sensor type, 
enabling them to capture the characteristics of their respective sensors. These 
adapted CNNs are designed to effectively process varying data shapes and 
sensor-specific characteristics to accurately classify a wide range of human 
activities. The late-fusion technique is employed to combine predictions from 
various models to obtain comprehensive estimates of human activity. The 
proposed CNN-based approach is compared to a standard support vector 
machine (SVM) classifier using the one-vs-rest methodology. The late-fusion 
CNN model showed significantly improved performance, with validation and 
final test accuracies of 99.35 and 94.83% compared to the conventional SVM 
classifier at 87.07 and 83.10%, respectively. These findings provide strong 
evidence that combining multiple sensors and a barometer and utilizing an 
additional filter algorithm greatly improves the accuracy of identifying different 
human movement patterns.
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1 Introduction

The elderly demographic is rapidly expanding and is expected to accelerate significantly 
in the 21st century. This projection is based on an analysis conducted by the United Nations 
(UN) examining global population aging trends from 1950 to 2050. Based on the UN, the 
population of Saudi Arabia will increase to 40 million by 2050, with a quarter of this population 
(i.e., 10 million individuals) aged 60 years or older. The population’s age distribution in 
Saudi Arabia during the period 1950–2050 is depicted in Figure 1.

Cohorts aged 60–79 years and those aged above 80 years are currently experiencing 
particularly pronounced growth. In addition, there has been a consistent increase of 
approximately 5% in the number of individuals aged 60 years and over from 1950 to 2015, as 
illustrated in Figure 2.
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Human activity recognition (HAR), a research hotspot in 
academia and industry aiming to further ubiquitous computing and 
human–computer interactions, is utilized in healthcare, fitness, 
gaming, tactical military operations, and indoor navigation. Wearable 
sensors and external equipment (e.g., cameras and wireless RF 
modules) represent two basic HAR systems. In sensor-based HAR, 
sensors are worn on the body to capture segmented and precise sensor 
signal patterns (Alarfaj et al., 2021).

There are many proposed machine learning (ML) algorithms for 
HAR prediction, with the five main types of algorithms as follows: 
algorithms based on fuzzy logic (FL) (Medjahed et al., 2009; Schneider 
and Banerjee, 2021), algorithms based on probabilities (Maswadi 
et al., 2021; Schneider and Banerjee, 2021), algorithms based on rules 
(Hartmann et al., 2022; Radhika et al., 2022), algorithms based on 
distance (Agac et al., 2021; Fahad and Tahir, 2021), and optimization-
based approaches (Muralidharan et al., 2021; Nguyen et al., 2021). The 
six actions recognized in HAR, including exercise, lying down, sitting, 
standing up, walking, and sleeping, are recognized by fuzzy rule-based 
inference systems using FL (Medjahed et al., 2009). Recently, a new 
method for HAR using first-person video and fuzzy rules for inference 
was reported (Schneider and Banerjee, 2021).

This study presents a novel methodology for enhancing HAR 
using sensor-specific convolutional neural networks (CNNs). 
Each CNN is designed to the unique data characteristics and 

shape of a particular sensor type (accelerometer, gyroscope, or 
barometer), facilitating effective processing and accurate 
classification of a wide range of human activities. The 
methodology incorporates a late-fusion technique to integrate 
predictions from these diverse models, generating a comprehensive 
and accurate estimation of human activity. This approach 
addresses the limitations of single-model methods, using the 
strengths of individual sensor-specific CNNs for 
improved performance.

The novelty of this study lies in developing the sensor-specific 
CNN architecture, which enables the effective capture and 
utilization of distinctive features inherent to each sensor type, 
enhancing activity classification accuracy. This research overcomes 
the constraints of single-model approaches by implementing the 
late-fusion technique, which aggregates predictions from 
individual CNNs to comprehensively and accurately estimate 
human activity.

This study significantly contributes to the field of HAR by 
demonstrating the superior performance of the proposed late-fusion 
CNN model compared to the traditional support vector machine 
(SVM) classifier. This model’s enhanced accuracy and robustness can 
revolutionize healthcare applications, enabling advanced monitoring, 
early detection of health issues, and personalized interventions for 
improved patient outcomes.

FIGURE 1

The Saudi Arabian population by age group is in the thousands (Abusaaq, 2015).

FIGURE 2

Share of the population aged over 60  years in Saudi Arabia (Abusaaq, 2015).
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2 Study background

The increased utilization of wearable sensors has stimulated 
notable progress in HAR. Although early-fusion approaches have been 
prominent in industry, late-fusion methods are becoming more 
popular because of their potential for modularity, interpretability, and 
enhanced performance in specific situations. This section examines 
prominent late-fusion techniques for HAR and contrasts them with 
the CNN-based late-fusion method developed in this study. Many 
studies have investigated late-fusion methods for HAR, employing 
various sensor modalities and fusion algorithms. Hammerling and 
Rosipal (2013) used late fusion with support vector machines (SVMs) 
on accelerometer and gyroscope data for classification HAR, which 
resulted in good accuracy but limited interpretability. Yang et  al. 
(2017) introduced a majority voting method for late fusion, which 
revealed promising outcomes but can have neglected intricate 
interconnections among different modalities. Wang et  al. (2016) 
employed a layered generalization model to integrate data from an 
accelerometer, a gyroscope, and a barometer. Although this approach 
yielded better results than utilizing each model individually, more 
processing resources were required. Zhang et al. (2019) combined data 
from various modalities before inputting them into a deep neural 
network, resulting in high accuracy. However, this approach can have 
overlooked inter-modal relationships. Sun et al. (2018) introduced a 
hybrid method integrating early- and late-fusion techniques with deep 
learning (DL) models. This strategy demonstrated better results than 
fusion strategies; however, the fusion architecture must 
be meticulously designed. Yu et al. (2020) employed early fusion to 
extract features and late fusion for decision-making using a deep 
neural network. Although the model showed good accuracy and 
robustness, its complexity increased. The CNN-based late-fusion 
approach proposed in this study presents numerous advantages 
compared to previous research. Utilizing separate CNNs for each 
sensor modality enables customized extraction of features specific to 
each data type to capture more comprehensive and distinguishing 
information than generic techniques that fuse features at a higher 
level. The study utilizes a late-fusion technique where the predictions 
from separate CNN models for each sensor (accelerometer, gyroscope, 
and barometer) are combined at the decision level. Each CNN model 
processes its sensor input independently and generates predictions for 
human activity. The individual predictions are aggregated through a 
weighted average or voting mechanism to get the final prediction.

The widespread adoption and advancement of neural networks 
have led to the displacement of conventional methods by DL 
techniques in solving HAR problems. Many studies have employed 
CNNs to perform activity categorization tasks using sensor data 
(Moya Rueda et al., 2018; Demrozi et al., 2020; Mahmud et al., 2021; 
Sikder et al., 2021). In addition, Sikder et al. (2021) evaluated the 
effectiveness of one-dimensional and two-dimensional (2D) 
sequential CNN models for classifying HAR signals. The results 
indicated that 2D CNNs yield superior results and surpass traditionally 
created models. The DL models were developed to classify HAR tasks. 
Xu et al. (2019) introduced the InnoHAR model, which combines an 
inception neural network with a recurrent neural network. 
iSPLInception drew inspiration from Google’s Inception-ResNet 
architecture and delivered superior predicted accuracy with reduced 
device resource requirements for signal-based HAR (Ronald et al., 
2021). Hybrid models incorporating long short-term memory (LSTM) 

and bi-directional LSTM have become increasingly popular in recent 
studies for human activity classification as they are adept at extracting 
spatial and temporal properties (Hayat et al., 2022; Khan et al., 2022; 
Li and Wang, 2022; Luwe et  al., 2022). Zhao et  al. (2022) used a 
hierarchical LSTM CNN to classify farmers’ behavior in agriculture. 
Zhang et al. (2017) addressed gesture recognition by employing two 
types of neural networks: 3DCNN and ConvLSTM. In addition, many 
studies have used DL and ML to predict HAR (Almabdy and Elrefaei, 
2019; Xu et al., 2019; Mutegeki and Han, 2020; Zheng et al., 2021).

3 Materials and methods

The primary objective of this study is to develop a continuous 
human movement monitoring system capable of acquiring user 
movement data and accurately and efficiently transmitting them to a 
remote server. A wearable device in the form of a bracelet is designed 
to serve three primary functions: monitoring human body movement, 
fall detection, and localization. In addition, the bracelet can measure 
heart rate, pulse oximetry, and body temperature. In addition, an 
alarm system is integrated to become activated in response to concerns 
regarding declines in the user’s vital signs. This bracelet-type wearable 
device is selected for several compelling reasons: first, its accuracy 
remains unaffected by external factors such as weather, location, and 
time; second, the utilization of compact electronic components 
contributes to its low-power consumption; and third, it bears extensive 
adaptability, including minimal distance limitations, the capability to 
process and analyze substantial volumes of data, and user-friendly 
portability. Figure 3 displays the proposed framework of the HAR.

3.1 Hardware

As the detection of movement patterns can be  enhanced by 
combining multiple sensors, this study employs five distinct sensors: 
an inertial measurement unit (IMU), a barometer, a human body 
temperature sensor, a pulse-oximeter sensor, and an active buzzer. 
Each sensor is assigned a specific role with the goal of increasing the 
accuracy and precision of pattern detection. All these sensors are 
interconnected with a single microcontroller. The hardware block 
diagram is depicted in Figure 4.

3.1.1 Arduino Nano RP2040 connect
The Arduino Nano RP2040 Connect device is designed to 

encapsulate the Raspberry PiRP2040 microcontroller in a compact 
nano-sized form. The device uses both Bluetooth® and WiFi 
connectivity and possesses an accelerometer and gyroscope. In 
addition, it incorporates artificial intelligence technologies. Figure 5 
displays the Arduino Nano RP2040 type utilized to develop the 
proposed system.

3.1.2 IMU
IMUs are primarily employed in various devices for measuring 

velocity, orientation, and gravitational force. In its prior technological 
iteration, an IMU comprises two sensor types: accelerometers and 
gyroscopes. Accelerometers are utilized to quantify inertial acceleration, 
whereas gyroscopes measure angular rotation. Typically, both sensors 
provide three degrees of freedom to measure along three axes. 
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FIGURE 3

Framework of the HAR system.
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FIGURE 4

Hardware block diagram.

FIGURE 5

Arduino Nano RP2040.
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Capacitive accelerometers, the most frequently used type, rely on 
changes in electrical capacitance to determine acceleration. When 
subjected to acceleration, the distance between the capacitor plates 
within the sensor changes as the diaphragm moves. Within the IMU, 
the gyroscope quantifies instantaneous angular velocity, typically 
expressed in units of degrees per second. The IMU device that is utilized 
in the framework of the proposed system is presented in Figure 6.

3.1.3 Barometer
Barometers are highly responsive devices employed to measure 

atmospheric pressure at a given location, in which the fluctuations in 
air pressure at varying altitudes are employed to determine the 
changes in elevation at specified points. The ability of an IMU to 
precisely assess changes in height is susceptible to the influence of 
weight. Therefore, using a barometer facilitates quantifying vertical 
displacement within the system. The barometer device used in the 
proposed system is depicted in Figure 7.

3.1.4 Temperature sensor (MAX30205) device
MAX30205 employs a negative temperature coefficient thermistor 

to measure the temperature by detecting variations in resistance in 
response to temperature fluctuations. This thermistor is placed in 
direct contact with the target object, typically the skin, and its resistance 
is measured by passing a small current through it and recording the 
resultant reduction in voltage. In addition, the sensor incorporates a 
digital filter and integrator to process the thermistor output, yielding a 
high-resolution digital representation of the measured temperature. 
The digital filter and integrator employ oversampling and noise-
shaping techniques to enhance the precision and resolution of the 
temperature measurement. The MAX30205 sensor used to measure 
the temperature in the proposed system is depicted in Figure 8.

3.1.5 Oximeter pulse sensor device
The oximeter pulse sensor operates on photoplethysmography 

(PPG) principles, a volumetric measurement technique achieved 
through optical means. PPG quantifies oxygen volume by analyzing 
variations in light absorption within the body. The device aids in 
monitoring respiratory levels and various circulatory parameters in 
the blood. In addition, it enables the calculation of heart rate based on 
peaks detected in the signal (Yang et al., 2017). Figure 9 illustrates the 
oximeter pulse sensor used in the proposed system.

3.2 Datasets

3.2.1 FallAllD: movement pattern detection 
standard data

FallAllD constitutes a comprehensive open dataset that 
encompasses human falls and activities of daily living, as simulated by 
15 participants (Saleh et al., 2021). The dataset comprises 26,420 files, 
collected via three data loggers worn on the users’ waist, wrist, and 
neck. The motion signals were captured using an accelerometer (Acc), 
gyroscope (Gyr), and barometer (Bar); the magnetometer was 
excluded from this study. These sensors were efficiently configured to 

FIGURE 9

Sensor (MAX30102).

FIGURE 6

Inertial measurement unit.

FIGURE 7

Barometer device.

FIGURE 8

MAX30205 device.
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align with potential applications such as fall detection, prevention, and 
HAR (Saleh et al., 2021). Table 1 lists the features of the dataset.

3.2.2 Custom collected data: localization
A total of 260 samples were collected from the three sensor types: 

Acc, Gyr, and a received signal strength indicator (RSSI). Every sample 
included a sequence of sensor readings with corresponding 
timestamps. In addition, the collection consisted of 111 examples 
linked to specific locations, as localization depended on these labeled 
instances as a definitive data source. The features of the customized 
dataset collected from the proposed framework are listed in Table 2.

3.3 Preprocessing

This section comprehensively explains the feature engineering and 
preprocessing procedures employed in the current methodology, 
emphasizing the transformation of raw sensor data into meaningful 
and actionable features. Figure 10 displays the preprocessing approach 
for enhancing the proposed system. The data from the various sensors 
was processed to account for differing data shapes and sensor-
specific characteristics:

 1 Data cleaning: The raw sensor data was first cleaned by 
converting string representations of lists into actual lists using 
the ast.literal_eval function.

 2 Feature extraction: Statistical features (mean, standard 
deviation, and range) were obtained from the accelerometer, 
gyroscope, and barometer data. This was done using separate 
functions for each sensor type:

 o calculate_features: Used for accelerometer and gyroscope data, 
which have X, Y, and Z axes.

 o calculate_features_rssi: Used for barometer data, which has 
pressure and temperature readings.

 3 Combined features: The extracted features from all three 
sensors were then combined into a single feature array for each 
sample. This allowed the data to be input for the ML algorithms.

The preprocessing did differ slightly between sensor types due to 
the different data shapes and characteristics:

 • Accelerometer and gyroscope: These sensors have three axes (X, 
Y, and Z), so the calculate_features function calculated the mean, 
standard deviation, and range for each axis.

 • Barometer: This sensor has two readings (pressure and 
temperature), so the calculate_features_rssi function calculated 
the mean, standard deviation, and range for each reading.

However, the overall preprocessing approach was similar for all 
sensor types, involving data cleaning and feature extraction to prepare 
the data for analysis by the ML models.

3.3.1 Data cleaning
The ast.literal_eval function is employed to convert textual 

representations of lists in the “Acc,” “Gyr,” and “RSSI” columns back 
into actual lists. The calculate_features function is defined and 
implemented to obtain statistical features (mean, standard deviation, 
and range) from accelerometer and gyroscope data. In addition, the 
calculate_features_rssi function is defined and applied to extract the 
same statistical features from the RSSI data.

TABLE 1 Features of the standard FallAllD dataset.

Feature name Data type Feature type Description Sensor

Acc X Float Numerical, Continuous X-axis acceleration Accelerometer

Acc Y Float Numerical, Continuous Y-axis acceleration Accelerometer

Acc Z Float Numerical, Continuous Z-axis acceleration Accelerometer

Gyr X Float Numerical, Continuous X-axis rotational speed Gyroscope

Gyr Y Float Numerical, Continuous Y-axis rotational speed Gyroscope

Gyr Z Float Numerical, Continuous Z-axis rotational speed Gyroscope

RSSI Integer Numerical, Continuous
Received signal strength indicator (RSSI) 

(Wi-Fi/Bluetooth signal power)
Wireless Communication

TABLE 2 Features of the customized FallAllD dataset.

Feature name Data type Feature type Description Sensor

Acc X Float Numerical, Continuous X-axis acceleration Accelerometer

Acc Y Float Numerical, Continuous Y-axis acceleration Accelerometer

Acc Z Float Numerical, Continuous Z-axis acceleration Accelerometer

Gyr X Float Numerical, Continuous X-axis rotational speed Gyroscope

Gyr Y Float Numerical, Continuous Y-axis rotational speed Gyroscope

Gyr Z Float Numerical, Continuous Z-axis rotational speed Gyroscope

Bar Pressure Float Numerical, Continuous Atmospheric pressure Barometer

Bar Temperature Float Numerical, Continuous Temperature Barometer
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3.3.2 Feature extraction approach
The calculate_features function is created, which derives statistical 

features from the sensor data, including the mean, standard deviation, 
and range for each axis (X, Y, and Z for Acc and Gyr; X and Y for Bar). 
This function is used on the preprocessed Acc, Gyr, and Bar data to 
derive their characteristics.

3.3.3 Combined features
The retrieved features from the Acc, Gyr, and Bar data are 

combined into one feature array to be  used as an input for 
ML algorithms.

3.4 Classification algorithms

3.4.1 SVM
SVM is a widely used supervised learning method that can 

be applied to classification and regression tasks. Primarily, it is utilized 
for classification tasks in the field of ML. The objective of the SVM 
method is to establish an optimal line or decision boundary that can 
divide an n-dimensional space into various classes, enabling accurate 
categorization of incoming data points in the future. The optimal 
decision boundary is referred to as a hyperplane. SVM aims to identify 
a hyperplane with the largest margin, namely, the greatest distance 
between data points from different classes. Increasing the margin 
distance enhances the classification confidence of subsequent 
data points.

A standard SVM classifier using the one-vs-rest methodology was 
employed as a baseline for evaluating the performance of the proposed 
late-fusion CNN model in HAR. The SVM was selected as the baseline 
due to specific considerations.

 • SVM is a well-established and commonly utilized ML technique 
for classification tasks, such as HAR. Its performance 
characteristics are widely recognized, making it a suitable 
benchmark for assessing new techniques.

 • SVM is easier to develop and understand than more complex DL 
models such as CNNs. This facilitates comprehension of the 
factors contributing to performance disparities between the 
two strategies.

 • The one-vs-rest methodology is a popular technique for modifying 
binary classifiers such as SVM for multiclass tasks like HAR. This 
enables a balanced comparison between SVM and the late-fusion 
CNN model, both intended for multiclass classification.

3.4.2 Random forest tree
Random forest tree (RFT) is an ML method utilized to address 

regression and classification tasks. It employs ensemble learning, 

which integrates multiple classifiers to address intricate issues. The 
RFT algorithm comprises several decision trees. The “forest” created 
by the RF algorithm is trained using bagging or bootstrap aggregating. 
Bagging is an ensemble meta-algorithm that enhances the precision 
of ML methods. The RF algorithm builds an ensemble of decision 
trees, typically created via a method called “bagging” or “bootstrap 
aggregating.” This process involves creating numerous subsets of the 
original dataset (with the potential for duplication) and training a 
decision tree on each subset. Each tree in the forest is built using a 
bootstrap sample, where a sample is selected from the training set with 
replacement. In addition, when a node is divided during the tree 
construction, the selected split is no longer the most optimal among 
all the features. Instead, the selected split is the most efficient among 
a randomly selected subset of the attributes. Utilizing random subsets 
for training, encompassing both samples and characteristics, ensures 
that the trees within the forest are uncorrelated. By utilizing a forest 
model instead of individual decision trees, the resilience and accuracy 
of the model are improved.

3.4.3 K-nearest neighbors algorithm
The K-nearest neighbors (K-NN) method categorizes new cases 

by comparing their resemblance to existing cases and placing the 
former in the most similar category. The K-NN algorithm retains all 
the existing data and categorizes a new point by assessing its similarity. 
When fresh data are introduced, they can be efficiently categorized 
into a suitable group by utilizing the K-NN method. First, the value K 
is chosen for the neighbors. Then, the Euclidean distance of K 
neighbors is computed. The K-nearest neighbors are selected based on 
the computed Euclidean distance. K-NN functions by determining the 
data points in the training set closest to the new point requiring 
classification. The letter “K” in K-NN represents the nearest neighbors 
to consider. For example, when the value of K is set to 5, the algorithm 
looks for the five nearest neighbors of the new data point. Once the 
nearest neighbors are identified, the algorithm performs a majority 
vote for categorization purposes, allocating the new point to the class 
most frequently observed among its neighboring points. When 
performing regression tasks, it is feasible to determine the mean or 
median of the adjacent data points. The word “nearest” commonly 
refers to calculating the distances among locations utilizing metrics 
such as Euclidean, Manhattan, or Hamming distances.

3.4.4 CNNs
The studies were conducted utilizing two distinct datasets: the 

FallAllD dataset and a custom dataset. The FallAllD dataset, referred 
to as the standard dataset, was primarily used for HAR. When 
developing the CNN models for HAR, the raw sensor readings from 
the Acc, Gyr, and Bar were used directly without feature extraction. In 
contrast, when using the FallAllD dataset for SVM comparison, 
feature extraction was performed. The custom dataset was specifically 

FIGURE 10

Preprocessing steps.
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used for localization tasks, where feature extraction was also applied 
for traditional machine learning algorithms.

The adapted CNNs were created to capture the distinct 
characteristics of each sensor type:

Accelerometers measure acceleration to detect changes in speed 
and direction. The CNN model for accelerometers was developed to 
detect variations crucial for recognizing actions such as walking, 
running, and falling.

Gyroscopes measure angular velocity to detect rotational 
movements. The CNN model for gyroscopes was created to detect 
rotational movements, which is crucial for recognizing actions such 
as turning and twisting.

Barometers measure air pressure to detect variations in height. 
The CNN model for barometers was created to detect variations in 
height, which is crucial for recognizing actions such as ascending 
stairs or descending.

Each CNN model was specifically constructed to efficiently 
process the specific data shapes and characteristics associated with its 
respective sensors. The primary goal of these models was to accurately 
classify a broad spectrum of human activities. A window of 13 s 
instead of 20 s was selected for several reasons. An excessively long 
sliding window is at risk of encompassing extraneous behaviors, 
potentially confusing the classifier. In contrast, an extremely short 
window can fail to adequately capture all stages of falls. The suggested 
duration of 13 s is optimal, as it offers a reasonable timeframe for 
capturing all stages of falls and HAR activities (Zhang et al., 2019).

The design of the CNN models was impacted by these 
characteristics in multiple ways:

 • The input shape of each CNN model was designed to correspond 
with the data shape of the specific sensor it was built for. The 
input shape of the accelerometer CNN model was (2,899, 260, 3), 
representing 2,899 samples of 260 time steps with three axes (x, 
y, and z).

 • The filter size of each CNN model was selected to capture the 
pertinent properties of its corresponding sensor. The filter size of 
the accelerometer CNN model was selected to capture the brief 
alterations in acceleration typical of human motion.

 • The number of layers in each CNN model was selected to strike 
a compromise between the model’s complexity and its capacity 
to learn the pertinent information. The accelerometer CNN 
model featured fewer layers than the gyroscope CNN model due 
to the simpler nature of the accelerometer data.

The data initially obtained from the Acc and Gyr sensors exhibited 
a sampling frequency of 238 Hz. A deliberate decision was made to 
reduce the sampling frequency of these sensors to 20 Hz to enhance 
the ability of the system to detect temporal variations and facilitate a 
more detailed feature analysis. This adjustment extended the duration 
of each sensor measurement by an equivalent of approximately 13 s of 
recorded data. Hence, the dimensions of the Acc and Gyr data 
matrices transformed to (2,899, 260, 3), with each of the 260 samples 
representing a duration of 13 s at a sampling rate of 20 Hz. This 
modification of the CNNs facilitated their ability to analyze sequences 
of sensor data over a longer timeframe, yielding an enhanced capacity 
to detect nuanced activity patterns. The Bar sensor was designed to 
measure the barometric pressure and temperature, acquiring data at a 
sampling frequency of 10 Hz. Hence, each recorded sensor reading 

corresponded to the selected time window of 13 s. This produced a 
modified data matrix with dimensions (2,899, 130, 2). In this case, the 
130 samples represented a duration of 13 s at a frequency of 10 Hz, 
creating 130 samples. This adjustment enabled the CNNs to focus on 
variations in barometric pressure and temperature within the specified 
timeframe. This study ensured that the CNN models can efficiently 
process and extract significant information from the sensor readings 
by employing this method to modify the sensor data. This conversion 
was essential for data preprocessing, enhancing the effectiveness of the 
HAR system. Figure 11 presents the structure of the CNN model.

3.5 Late fusion technique

To capitalize on the strengths of different sensor modalities, 
namely the Acc, Gyr, and Bar, a late-fusion approach was employed in 
our CNN models. Each sensor type was assigned a dedicated CNN 
model specifically trained to capture the unique data characteristics 
pertinent to that sensor. The Acc model was designed to detect linear 
motion, the Gyr model focused on capturing rotational movements, 
and the Bar model aimed to identify changes in altitude. These models 
generated predictions in the form of class probabilities, reflecting the 
likelihood of each activity.

In the late-fusion approach, we  combined these individual 
predictions using SVM. This process involved aggregating the class 
probabilities from each sensor-specific CNN model and feeding them 
into an SVM to form a final, comprehensive prediction. The SVM 
leveraged the strengths of each model’s predictions, ensuring a robust 
and accurate classification.

This technique effectively preserved the unique features captured 
by each sensor, thereby enhancing the overall accuracy and robustness 
of the HAR system. By integrating predictions at the decision level 
with the SVM, the late-fusion method provided a more accurate and 
reliable estimation of human activities compared to single-model 
approaches. The late-fusion CNN and SVM model demonstrated 
superior performance in activity classification, thereby validating the 
efficacy of this multisensory integration strategy.

The choice to utilize late fusion was made due to its various 
benefits compared to other fusion techniques.

 1 Modularity: Late fusion enables the separate development and 
optimization of each sensor-specific CNN model, promoting 
modularity. The system’s modularity enhances its flexibility and 
adaptability to various sensor setups or data types.

 2 Interpretability: Late fusion simplifies the assessment of each 
sensor’s impact on the final prediction. This is beneficial for 
comprehending the significance of various sensor modalities 
for specific activities.

 3 Improved performance: Late fusion can sometimes enhance 
performance compared to early fusion, where sensor data is 
merged before inputting into a single model. Late fusion 
enables each model to concentrate on extracting features from 
its unique sensor data, which can be  more effective than 
attempting to learn features from mixed data with 
diverse properties.

The late-fusion technique was selected for its ability to capitalize on 
the advantages of several sensor modalities and merge their predictions 
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to create a more precise and resilient HAR system. The late-fusion CNN 
model’s performance was assessed based on specific metrics and criteria:

 • Validation accuracy: The precision of the model on a validation 
subset utilized to assess the model’s performance during training.

 • Final test accuracy: The precision of the model on a final test 
set, a subset of the dataset not utilized for training or validation, 
is employed to evaluate the model’s performance on new data.

 • A classification report is a detailed analysis of a model’s 
performance, including precision, recall, and F1-score for each 
class (i.e., each type of human activity).

 • A confusion matrix is a tabular representation that displays the 
counts of true positives, false positives, true negatives, and false 
negatives for each class.

The metrics and criteria were utilized to evaluate the model’s 
efficacy in categorizing human actions precisely. The late-fusion CNN 
model demonstrates good validation and test accuracies and strong 
performance in the classification report and confusion matrix, 
indicating its effectiveness for HAR.

3.6 Evaluation metrics

Evaluation metrics are essential for evaluating the effectiveness of ML 
and DL models. Evaluation metrics also assist in choosing models and 
adjusting hyperparameters. As various jobs necessitate specific measures, 
using the appropriate metrics is crucial for accurately interpreting model 
outcomes. In this study, we employed the following evaluation metrics 
(Equations 1–4):

 
Accuracy TP TN

TP FP FN TN
=

+
+ + +

×100%.
 

(1)

 
Recall TP

TP FN
=

+
×100%.

 
(2)

 
Precision TP

TP FP
=

+
×100%.

 
(3)

 
Fscore preision Sensitivity

preision Sensitivity
=

∗ ∗
+

×
2

100%.

 
(4)

Where True Positive (TP) indicates a correct positive prediction; 
False Positive (FP) indicates an incorrect positive prediction; False 
Negative (FN) indicates an incorrect negative prediction; and True 
Negative (TN) indicates a correct negative prediction. These metrics 
provide a comprehensive understanding of the models’ accuracy, 
precision, recall, and overall effectiveness in classifying human 
activities. By employing these metrics, the study ensured robust and 
reliable performance evaluation, highlighting the strengths and 
weaknesses of both deep learning and traditional machine 
learning approaches.

4 Experimental results

This section presents the proposed wearable system for human 
motion sensing technologies.

4.1 Experimental setup

Developing a wearable system for human motion sensing 
technologies requires substantial hardware and software. Tables 3, 4 
present these hardware and software requirements, respectively.

FIGURE 11

Structure of the CNN.
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4.2 Splitting data

Splitting a dataset into two sections enables the assessment of the 
performance of ML and CNN models, aiding in model selection, 
hyperparameter tuning, and early halting decisions. Table 5 displays 
the standard and customized datasets for splitting.

4.3 Hyperparameter optimization for all 
sensors

Achieving optimal performance for CNN models across different 
sensor types—Acc, Gyr, and Bar—requires a comprehensive 
hyperparameter optimization strategy. This strategy involves tuning key 
parameters such as epochs, batch sizes, learning rates, dropout rates, and 
regularization techniques to enhance model accuracy and robustness.

4.3.1 Accelerometer model
For the accelerometer model, the optimization focused on epochs, 

batch sizes, and learning rates. Combinations of 10 and 20 epochs, 
batch sizes of 32 and 64, and learning rates of 0.0001 and 0.001 were 
evaluated. The optimal configuration, consisting of 20 epochs, a batch 

size of 64, and a learning rate of 0.001, resulted in a test accuracy of 
86.20%. This configuration ensured sufficient training duration and 
stability while balancing convergence speed and precision.

4.3.2 Gyroscope model
The hyperparameter optimization for the gyroscope model 

incorporated L2 regularization and a dynamic learning rate schedule. 
The model utilized 20 epochs, a batch size of 16, and an initial 
learning rate of 0.0005. A learning rate scheduler was applied to halve 
the learning rate after 5 epochs, enhancing the model’s fine-tuning 
capability during later training stages. Additionally, dropout layers 
with a rate of 0.5 were used to mitigate overfitting. This combination 
of regularization, dynamic learning rate adjustment, and early 
stopping produced a robust model capable of effectively interpreting 
gyroscope data.

4.3.3 Barometer model
The optimization process for the barometer model included a 

deeper network architecture with multiple convolutional and dense 
layers, each followed by Leaky ReLU activations and dropout 
regularization. An initial learning rate of 0.001, which decayed 
exponentially every 10,000 steps, allowed for gradual refinement of 
the learning process. The model was trained for up to 50 epochs 
with a batch size of 32, employing early stopping and model 
checkpointing to prevent overfitting and to save the best-performing 
model. This comprehensive approach ensured that the model 
effectively captured the nuances of barometric data, thereby 
enhancing its predictive accuracy.

4.4 Results of standard data

4.4.1 Results of the CNN model
The results obtained from the late-fusion CNN-based model 

exhibited remarkable utility, demonstrating its substantial 
potential to enhance both the accuracy and precision of HAR 
systems. Throughout the experiments, the late-fusion CNN-based 
model consistently delivered outstanding performance metrics. 
The validation accuracy was 98.35%, with a final test accuracy of 
94.83%. For a more comprehensive evaluation of the model’s 
performance, please refer to the classification report in Table 6 
and the confusion matrix illustrated in Figure 12. The outcomes 
presented in this study provide compelling evidence of the 
effectiveness of the late-fusion CNN model in accurately 

TABLE 3 Hardware requirements.

Devices Type

Arduino® Nano RP2040 Connect
Pull up Resistors (4.7 kΩ)

Barometric pressure sensor (BMP581 

Qwiic)

Active buzzer (LTE12-03)

Human body temperature sensor 

(MAX30205)

Battery (3.7 V)

Pulse sensor & oximeter pulse 

(MAX30102)

Circuit charger + boost voltage

PCB 3D Model

TABLE 4 Software requirements.

Library Modules/functions

Pandas
“pd.read_excel,” “pd.sample,” “pd.reset_

index,” “pd.DataFrame.apply,” “pd.concat”

Numpy
“np.mean,” “np.std.,” “np.max,” “np.min,” “np.

array,” “np.hstack”

Ast “ast.literal_eval”

Sklearn.model_selection “train_test_split”

Sklearn.ensemble “RandomForestClassifier”

Sklearn.metrics “classification_report,” “accuracy_score”

Sklearn.neighbors “KNeighborsClassifier”

Sklearn.preprocessing `StandardScaler`

Sklearn.svm “SVC”

Sklearn.multiclass “OneVsRestClassifier”

Keras.models “load_model”

Keras “Sequential”

Google.colab “drive.mount”

TABLE 5 Splitting the datasets.

Split Number of samples

Standard dataset

  Training 60% 1739

  Validation 20% 579

  Test 20% 581

Custom dataset

  Training 60% 66

  Validation 20% 22

  Test 20% 23
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FIGURE 12

Confusion matrix of the results of the late-fusion CNN-based model.

classifying human activities. The model achieved exceptional 
accuracy, recall, and F1 scores across various activity classes, 
emphasizing its ability to accurately distinguish various activities.

4.4.2 Results of the SVM model
Employing a traditional SVM classifier with a one-vs-rest 

approach led to lower performance metrics, as the validation set 
accuracy was 87.07%, and test accuracy was 83.10%. The 262 
performance details of the SVM model are reported in the 
classification report in Table  7, and the confusion matrix is 
displayed in Figure 13. Although the SVM model demonstrates 
satisfactory performance, it is significantly outperformed by the 
late-fusion CNN-based model, with the latter achieving higher 
validation accuracy. This outcome emphasizes the superior 

ability of the CNN model to accurately classify human activities. 
The present findings unequivocally establish that the developed 
CNN model, when combined with the late-fusion technique, 
substantially enhances the accuracy of HAR. In addition, the 
classification report provides empirical evidence of its 
effectiveness in distinguishing a wide range of activities. The 
impressive accuracy of the CNN model at 95% is somewhat 
constrained by the limited availability of datasets featuring 
diverse sensor types and the relatively small dataset size, 
comprising only 2,899 samples. To further advance HAR systems, 
future investigations can explore utilizing larger and more diverse 
datasets to continue improving the accuracy and robustness of 
these models.

4.5 Results of the custom collected data

4.5.1 Results of the RFT
The results provide encouraging possibilities in the realm of 

indoor localization via the use of ML methodologies. Although 
the dataset was limited, with only 111 examples, the principal 
model used (the RF classifier) revealed strong performance in 
accurately identifying the position of users utilizing sensor data. 
The model demonstrated a commendable overall accuracy of 
91.30%. The classification report offers comprehensive metrics 
for each class, further clarifying the model’s performance. The 
metrics of precision, recall and F1-score were calculated for each 
location class (Room1, Room2, and Room3), as presented in the 
classification report provided in Table 8. The confusion matrix of 
the RF model is illustrated in Figure 14.

TABLE 6 Classification report for the late-fusion CNN model.

Precision Recall F1-
score

Support

Fall 0.99 0.98 0.99 339

Standing 0.93 0.88 0.91 98

Walking 0.84 0.91 0.87 92

Running 0.90 0.92 0.91 51

Accuracy 0.95 580

Macro 

average

0.92 0.92 0.92 580

Weighted 

average

0.95 0.95 0.95 580
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4.5.2 Results of the K-NN model
These metrics provide essential insight into the model’s 

capacity to accurately categorize each site. The confusion matrix 
offers a graphical depiction of the model’s predictions compared 
to the actual ground truth, facilitating the evaluation of true 
positives, false positives, true negatives, and false negatives. The 
findings illustrate the resilience of the RF model in indoor 
localization, indicating its potential for practical applications. 
With a larger dataset, the model’s performance can improve in 
robustness and accuracy. The classification report and confusion 
matrix of the K-NN model are presented in Table 9 and Figure 15, 
respectively.

5 Discussion

Wearable devices have enabled a range of functions, including 
recording activities, monitoring wellbeing, and interacting with 
computers, all aimed at evaluating and improving users’ everyday 
habits. These applications make use of low-power sensors on 
mobile and wearable devices to facilitate HAR. The system 
proposed in this study utilizes CNNs within a late-fusion 
framework to analyze and integrate data from various sensors for 
precise HAR specifically designed for healthcare applications. 
Processing inputs from accelerometers, gyroscopes, and other 
sensors provide a comprehensive and dynamic representation of 
patient movements, facilitating accurate and real-time monitoring 
of physical activities.

The advanced approach to HAR provides significant benefits in 
the healthcare sector by enabling continuous, non-invasive monitoring 
of users’ physical activities, contributing to personalized healthcare 
plans, early detection of potential health issues, and enhanced user 
care. The proposed system’s high accuracy and reliability in activity 
recognition can support healthcare professionals in making informed 
decisions, optimizing treatment plans, and monitoring user recovery 
processes, improving overall user outcomes.

This study conducted extensive preprocessing to prepare the 
dataset for training the ML model. The preparation procedures 
included importing the dataset from an Excel file and performing 
random shuffling to provide impartial training data. The string 
representations of the lists in the “Acc,” “Gyr,” and “RSSI” columns 
were transformed into concrete lists. Then, the sensor data were 
analyzed to obtain important statistical parameters (e.g., mean, 

TABLE 7 Classification report for the traditional SVM classifier.

Precision Recall F1-
score

Support

Fall 0.88 0.99 0.93 339

Standing 0.71 0.84 0.77 98

Walking 0.75 0.55 0.64 92

Running 0.82 0.27 0.41 51

Accuracy 0.83 580

Macro 

average

0.79 0.66 0.69 580

Weighted 

average

0.83 0.83 0.81 580

FIGURE 13

Confusion matrix for the traditional SVM model.
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FIGURE 14

Confusion matrix for the random forest model.

standard deviation, and range) like those for the feature engineering 
and traditional SVM preprocessing section above. The features were 
employed as input variables to train the model. The features from 
“Acc,” “Gyr,” and “RSSI” were merged to form a single array of 
features for each sample. Table 10 lists the performance of ML and 
the standard and customized dataset of the CNN model. The study 
demonstrated that the late-fusion approach utilizing CNNs 
outperformed traditional HAR methods, with the former achieving 
a test accuracy of 94.83% compared to that of the SVM classifier at 
83.10%. These findings highlighted the effectiveness of using 
multisensory data through advanced DL techniques, indicating a 
substantial advancement in accurately classifying diverse human 
activities. They also emphasized the potential of CNN-based models 
in setting new standards for HAR applications and the importance 
of integrating complex sensor data for enhanced performance.

This study recommends, in light of the system’s exceptional 
performance and the accuracy of the sensors used, that future research 
efforts focus on the following:

 1 Dataset size: The accumulation of more diverse and extensive 
datasets. Such endeavors will bolster the system’s robustness 
across various scenarios and facilitate the exploration of new 
dimensions in HAR. In addition, the research community is 
encouraged to explore integrating these refined datasets with 
the system to enhance its efficacy and applicability in real-
world contexts. This collaborative approach promises to set 
new benchmarks in the field, extending the frontiers of 
HAR technology.

 2 Sensor fusion challenges: Combining data from various 
sensors such as accelerometer, gyroscope, and barometer can 
be difficult because of differences in sample rates, data formats, 
and sensor-specific traits. The study addressed this issue by 
creating specialized CNN models for individual sensor types 
to capture their distinct characteristics and merge the data 
successfully in a subsequent phase.

 3 Integration of additional sensors: Enhancing the process by 
integrating other sensors like heart rate monitors or 
electromyography (EMG) sensors can provide a more thorough 
understanding of human mobility and physiological reactions.

 4 Computational complexity: CNNs can be costly in terms of 
the computer resources required for training and deployment. 
In the future, this issue can be  resolved by improving the 
architecture of the CNN models using methods such as 
pruning or quantization to decrease the model size or utilizing 
cloud computing resources for training and inference.

TABLE 8 Classification report for the random forest model.

Precision Recall F1-
score

Support

Room 1 1.0 1.0 1.0 6.0

Room 2 0.8 1.0 0.89 8.0

Room 3 1.0 0.78 0.88 9.0

Accuracy 0.91 23

Macro 

average

0.93 0.93 0.92 23

Weighted 

average

0.93 0.91 0.91 23
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 5 Real-world applicability: The model’s performance in practical 
situations can vary from its performance on the test dataset due 
to differences in sensor placement, user behavior, and ambient 
variables. It can collect and test the model using a more diverse 
dataset that accurately reflects real-world scenarios to address 
this issue.

The applicability of the results in the research to different HAR 
applications and datasets is contingent on certain factors:

 • Activity similarity: The behaviors discussed in the study, such as 
walking, running, ascending stairs, and falling, are frequently 
used in various HAR applications. The techniques and models 
presented in the research can be  directly applied or readily 
adjusted for similar HAR circumstances.

 • Sensor configuration: The sensor configuration utilized in the 
paper, consisting of an accelerometer, gyroscope, and barometer, 
is frequently employed in various HAR applications. If the sensor 
setup is substantially different, such as using varied sensor kinds 
or a variable quantity of sensors, the models can require 
adjustments or retraining to accommodate the new data.

 • Data quality and quantity: The performance of models can 
be considerably affected by the quality and quantity of data used 
for training and testing. The FallAllD dataset in the paper was 
minimal, perhaps restricting the models’ applicability to bigger, 
more varied datasets. The models’ generalizability can 
be  enhanced by retraining them on a larger and more 
diverse dataset.

 • Variability: The study recognizes that the model’s performance 
can vary in real-world situations compared to its performance on 
the test dataset due to differences in sensor placement, user 
behavior, and ambient variables. Hence, it is crucial to consider 
these elements when using the methodology in various situations.

6 Conclusion

The primary objective of this study is to investigate the capabilities 
and effectiveness of a multisensory approach, specifically the 
combination of an IMU and a barometer, to observe and track human 
movement. The empirical findings support the idea that integrating a 
triaxial accelerometer, a triaxial gyroscope, and a barometer enhances 
precision in recognizing various human movement patterns. This 
enhancement is further reinforced by incorporating an additional filter 

TABLE 9 Classification report of the K-NN model.

Precision Recall F1-
score

Support

Room 1 0.56 0.83 0.67 6

Room 2 0.71 0.56 0.63 9

Room 3 0.86 0.75 0.80 8

Accuracy 0.70 23

Macro 

average

0.71 0.71 0.70 23

Weighted 

average

0.72 0.70 0.70 23

FIGURE 15

Confusion matrix of the K-NN model.
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algorithm, effectively distinguishing between diverse movement 
patterns, such as standing, falling, running, and walking. In addition, 
the comprehensive monitoring of various physiological indicators 
(e.g., cardiovascular rate, sphygmomanometer readings, and thermal 
body states) provides an additional layer of diagnostic accuracy. This 
array of capabilities represents a significant advancement in the field 
of geriatric care, with the potential to mitigate adverse consequences 
associated with unforeseen movement-related incidents, including falls.

The late-fusion convolutional neural network model in this study 
improves HAR by achieving a final test accuracy of 94.83%, 
outperforming the standard SVM classifier using a one-vs-rest approach, 
which had an accuracy of 83.10%. Using customized CNNs for each 
sensor type and employing the late-fusion strategy to combine their 
predictions has proven beneficial. The improved precision in HAR, 
mainly in distinguishing between behaviors such as falling and regular 
everyday activities, has significant implications for fall detection systems, 
personalized health monitoring, and sports performance analysis. Future 
research will focus on improving the methodology using larger and more 
diverse datasets, adding further sensors, enhancing real-time processing, 
and introducing explainable AI techniques. This research ultimately 
seeks to enhance persons’ quality of life by developing more precise and 
efficient HAR systems that can be integrated into wearable devices.
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