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Forecasting air passenger tra�c
and market share using deep
neural networks with multiple
inputs and outputs

Nahid Jafari* and Martin Lewison

School of Business, Department of Management, SUNY–Farmingdale, Farmingdale, NY, United States

Introduction: In this study, we address the challenge of accurate time series

forecasting of air passenger demand using historical market demand data from

the U.S. commercial aviation industry in the 21st century. Commercial aviation

is a major contributor to the U.S. economy, directly or indirectly generating

∼US$1.37 trillion annually, or 5% of annual GDP, and supporting more than 10

million jobs (Airlines for America, 2024). Over 1 billion passengers flew through

U.S. airports in 2023 (Bureau of Transportation Statistics, 2024a). Using multiple

correlated time series inputs predicts future values of multiple interrelated time

series and leverages their mutual dependencies to enhance accuracy.

Methods: In this study, we introduce a two-stage algorithm employing a

deep neural network for correlated time series forecasting, addressing scenarios

where multiple input variables are interrelated. This approach is designed to

capture the influence that one time series can exert on another, thereby

enhancing prediction accuracy by leveraging these interdependencies. In the

first stage, we fit four Recurrent Neural Network (RNN) models to generate

accurate univariate forecasts, each functioning as a single input-output model

to predict aggregated market demand. The Gated Recurrent Unit (GRU) model

was the top performer for our dataset overall. In the second stage, we apply

the best fitted model (GRU Model) from Stage 1 to each individual competitor

(disaggregated from the market) and then merge all input tensors using the

Concatenate function.

Results and discussion: We hope to contribute to the relevant body of

knowledge with a deep neural network framework for forecasting market share

among competitors in the U.S. commercial aviation industry, as no similar

approach has been documented in the literature. Given the importance of the

industry, there is potentially great value in applying sophisticated forecasting

techniques to achieve accurate predictions of air passenger demand. Moreover,

these techniques may have wider applications and can potentially be employed

in other contexts.

KEYWORDS

air passenger demand forecasting, the U.S. Airlines Market, deep neural networks,

multiple input-output, gated recurrent units

1 Introduction

Demand for air travel is essentially driven by business and leisure activities. Economic

downturns lead to a decrease in demand for both leisure and business travel, which in turn

reduces the demand for air transport. Conversely, periods of economic growth increase the

demand for leisure and business travel, which increases the demand for air transportation.

According to the U.S. Department of Transportation’s Bureau of Transportation Statistics
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(2024b), from 2000 to 2023, U.S. revenue passenger miles for

domestic air travel increased by ∼87%. The U.S. economy grew

considerably over that same period.

Air transport demand forecasting is gaining increasing

attention due to its significant economic impact and the inherent

challenges of accurately predicting future demand. A reliable

forecasting system is essential for effective airline decision-making,

as it enables precise estimations of passenger demand. Given the

complexity of air passenger demand—characterized by irregular

patterns, high volatility, and seasonality—time series forecasting

is an ideal approach. This method uses observed time series data

from the past to predict future values over a specified look-

ahead horizon, and is widely applied across fields such as finance,

economics, and engineering.

To enhance forecasting accuracy, both univariate and

multivariate time series methods are employed, especially when

dealing with correlated time series—multiple interrelated time

series that influence one another. Forecasting air traffic demand

can be approached as a correlated time series problem, where

multiple input variables are analyzed in relation to each other.

This method recognizes that the value of one variable can

affect and be affected by others, capturing the interconnected

nature of the variables and resulting in more accurate forecasts.

Despite its importance, there is a lack of extensive research on

forecasting air traffic demand specifically as a correlated time series

problem. Most existing studies have focused on simpler univariate

models or have not fully explored the complexities introduced

by multiple interrelated variables. Addressing this gap through

more comprehensive studies that consider these correlations

could significantly enhance forecasting accuracy and provide more

robust tools for the airline industry.

Several factors add complexity to time series forecasting,

including the sequence of input data, systematic patterns such as

seasonality and stationarity, the length of the prediction horizon,

and random noise. Among quantitative forecasting methods,

econometric, statistical, and artificial intelligence approaches are

particularly well-known for their application in these complex

scenarios. Below, we briefly review these techniques in the relevant

literature on air passenger demand forecasting.

1.1 Air passenger tra�c forecasting
approaches

There are many different methodological approaches to

forecasting air passenger demand. Among quantitative forecasting

methods, econometric, statistical, and artificial intelligence

approaches are well-known. Below, we briefly review these

techniques in the relevant literature on air passenger demand

forecasting. For one, time series forecasting problems in

commercial aviation can be examined as standard regression

problems with time-varying parameters. Duval and Schiff (2011)

and Abed et al. (2001) developed regression analysis models for

forecasting the number of air passengers using various financial

measures. Kim and Shin (2016) used basic regression analysis

to consider causal relationships between air passenger demand

and other variables. They analyzed big data from online search

queries to determine which variables are reflected in short-term

fluctuations of air passenger demand. Carmona-Benitez et al.

(2017) proposed a forecasting approach using an Econometric

Dynamic Model (EDM) to estimate passenger demand in the

Mexican air transport industry. They applied the panel data

Arellano-Bover method to calibrate the EDM, which was validated

by the Sargan test and the Arellano-Bond Autocorrelation

test. Hsiao and Hansen (2011) modeled city-pair air passenger

demand at the route level using a type of Discrete Choice Method

(demand assignment). Discrete Choice Methods are widely used

for the analysis of individual choice behavior. Holt-Winters and

AutoRegressive Integrated Moving Average (ARIMA) models are

two practical methods among statistical time series forecasting

models. The Holt-Winters method (Holt, 2004), which uses

exponential smoothing, is an effective approach to forecasting

seasonal time series. Bermudez et al. (2007) forecasted the

number of air passengers in the UK using monthly air passenger

data based on a smoothing method. Grubb and Mason (2001)

presented a modified version of the Holt Winters method and

Dantas et al. (2017) combined Holt Winters with Bootstrap

aggregating (also called Bagging, a well-known machine learning

technique) to improve the accuracy of air passenger forecasts.

The ARIMA model (Box and Pierce, 1970) is one of the most

prominent among univariate time series forecasting models

which include other models like autoregression (AR), moving

average (MA), and Autoregressive Moving Average (ARMA),

another model which adapts various exponential smoothing

techniques (McKenzie, 1984). ARIMA models are rarely used

in high dimensional multivariate time series forecasting due to

their high computational cost, but Tsui et al. (2014) employed

the Box–Jenkins ARIMA methodology for forecasting Hong

Kong’s passenger demand (using data between 1993 and 2011)

and projected the demand’s future growth trend for the period of

2011–2015. In addition, Vector AutoRegression (VAR) is used for

multivariate time series, and Support Vector Regression (SVR) is a

linear model for univariate time series forecasting (Cao and Tay,

2003).

1.1.1 Artificial intelligence approaches
Artificial intelligence (AI) techniques have also been

investigated in air transportation forecasting. AI is a broad

field that encompasses the development of systems or machines

that can perform tasks that typically require human intelligence.

These tasks include learning, reasoning, problem-solving,

understanding natural language, and perception. AI includes a

wide range of techniques such as rule-based systems, decision

trees, genetic algorithms, machine learning, and neural networks,

and it can be applied in a wide variety of complex computational

domains. Neural networks in AI are capable of learning patterns

and revealing the tendencies of the series. Brazilian air transport

demand forecasting using neural networks has been studied

by Alekseev et al. (2002) and Alekseev and Seixas (2009). The

studies found that neural processing outperforms the traditional

econometric approaches. Srisaeng et al. (2015) developed and

empirically examined genetic algorithm optimization models (an

alternative artificial intelligence-based approach) for forecasting
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Australia’s quarterly domestic airline passenger demand. To

predict short-term air passenger traffic, Xiao et al. (2014) combined

singular spectrum analysis for identifying and extracting the trend

and seasonality of air transport demand with an adaptive-network-

based fuzzy inference system (another artificial intelligence

technology) to deal with the irregularity and volatility of demand.

Papageorgiou and Poczeta (2017) proposed a two-stage model

for multivariate time series prediction based on the efficient

capabilities of evolutionary fuzzy cognitive maps (FCMs) enhanced

by structure optimization algorithms and artificial neural networks

(ANNs). In the first stage of the model, an evolutionary FCM is

constructed automatically from historical time series data using

a genetic structure optimization algorithm, while in the second

stage, the produced FCM defines the inputs in an ANN, which

next is trained by the back propagation method with momentum

and the Levenberg-Marquardt algorithm on the basis of available

data. Chai and Lim (2016) presented a forecasting model of cyclical

fluctuations of the economy based on the time delay coordinates

embedding method. The model uses a neuro-fuzzy network with

weighted fuzzy membership functions. Martinez et al. (2018)

proposed a new strategy that forecasts every different season using

a different specialized k-nearest neighbors (kNN) learner. Each

kNN learner is specialized because its training set only contains

examples whose targets belong to the season that the kNN learner

is able to forecast. Wang and Han (2015) presented an improved

extreme learning machine featuring a simple structure and good

performance for the online sequential prediction of multivariate

time series. Carson et al. (2011) found that in air travel demand

forecasting, airport-specific forecasts perform better than forecasts

using aggregate data. Zhang and Qi (2005) studied the effectiveness

of data preprocessing, including deseasonalizing and detrending,

on neural network modeling and forecasting performance. They

found that neural networks are not able to capture seasonal or

trend variations effectively with the unpreprocessed raw data

and either detrending or deseasonalizing can dramatically reduce

forecasting errors. We now discuss the approach used in our

analysis, deep learning.

1.2 Deep learning: an overview

Deep learning, which has received an increasing amount of

attention in time series analysis, is a branch of machine learning,

which is itself a subset of AI. While AI is the overarching

field concerned with creating intelligent systems, DL is a specific

approach within AI that uses complex neural networks to process

and learn from data. It focuses specifically on neural networks

with many layers (hence the expression "deep") and is used for

learning from large amounts of data. DL encompasses models

and architectures that learn optimal features from data by

capturing increasingly complex representations of the data with

combinations of layers of nonlinear data transformations (LeCun

et al., 2015; Goodfellow et al., 2016). The two major architectures

of deep neural networks involved in DL are Convolution Neural

Networks (CNNs), which are appropriate for spatial data, object

recognition, and image modeling, due to their ability to detect local

patterns in data. Recurrent Neural Networks (RNNs)are suitable

for sequence modeling. RNNs significantly enhance the capabilities

of the feed-forward network with recurrent memory loops, which

take the input from the previous and/or same layers or states RNNs

are designed to handle sequence data, making them suitable for

tasks involving time series and language modeling due to their

capability to maintain temporal dependencies in the data through

their feedback loops and internal states (Michelucci, 2018).

Time series forecasting (as Supervised Learning) using deep

neural networks has been studied since early work was done using

naive RNNs (Connor et al., 1991) and hybrid models (Zhang

et al., 1998; Zhang, 2003). Models have progressed from Zhang

(2003) combining ARIMA and Multilayer Perceptions (MLPs), to

the recent combination of vanilla RNN and Dynamic Boltzmann

Machines in time series forecasting (Dasgupta and Osogami, 2017).

Yu et al. (2017) also proposed a deep learning approach to forecast

short-term and long-term traffic patterns. They applied a deep

neural network based on LSTM to forecast peak-hour traffic and

managed to identify unique characteristics of the traffic data. They

further improved the model for post-accident forecasting with

a Mixture Deep LSTM model. Lai et al. (2017) also proposed

a deep learning framework designed for multivariate time series

forecasting, namely Long– and Short–term Time-series Network

(LSTNet). LSTNet uses CNNs and RNNs to extract short-term local

dependency patterns among variables and to discover long-term

patterns for time series trends. In general, deep learning methods

work better if we deal with huge datasets and if sufficient training

data is available. By comparison, statistical forecasting methods

(such as ARIMA/SARIMA and Holt-Winters) are computationally

expensive, are practical only for small datasets, and are useful only

in cases of univariate prediction.

In this paper, we propose a deep neural network framework

for forecasting correlated time series data for the problem of

predicting market share among competitors in an industry. We will

deploy the proposed method using data from the U.S. commercial

aviation industry. We examine various deep learning models to

predict air passenger demand for U.S. domestic airlines as single

and multiple inputs and outputs forecasting. We implement the

models with Keras, the Python deep learning library. No previously

reported study appears to address this problem. Our contribution

to this literature is to develop a more accurate deep learning

model upon which to ground univariate and multivariate forms of

this forecasting problem. In Section 2, we first describe the data

and then discuss preparations made to the data. In Section 3, we

propose the framework of the deep learning models of our data

and then identify the best fit. Finally, in Section 4, we summarize

the model’s performance and discuss its strengths and drawbacks

in Section 5.

2 The data

2.1 Data description and analysis

In this study, we work with air passenger demand data

from the U.S. domestic airlines over the period 2001–2023.

Table 1 shows the source of the data and descriptions of

key characteristics. We obtained the data from the U.S.

Department of Transportation Bureau of Transportation
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TABLE 1 Source of the study data and detailed description of key factors, along with descriptive statistics for U.S. airline passenger demand, 2001–2023.

The three U.S. domestic carriers categories

The U.S. domestic airlines are categorized into three classes of carriers: Legacy, Low Cost Carriers, and Other,

based on common characteristics and history. Legacy airlines began operations before 1978, at a time when fares,

routes and market entry were federally controlled. The 1978 Airline Deregulation Act lifted a lot of restrictions

for new airlines to enter the market and led, to a major expansion of the industry. All Low Cost Carriers

entered the market under the new regime, when the circumstances allowed for low-cost no-frills strategies to be

adopted. The LCCs focus on charging passengers only for minimal services and have consistently targeted

passengers on short trips who require only small, hand-carried luggage.

The airlines abbreviation

Legacy American (AA), Continental (CO), Delta (DL), Northwest (NW), US Airways (US),

United (UA), America West (AW).

Low Cost Carrier (LCC) Southwest (WN), jetBlue (B6), AirTran (FL), Frontier (F9), Virgin America (VX).

Other Alaska (AS), Hawaiian (HA), Spirit (NK), Allegiant (G4).

Note: American West merged with US airways in 2006: US Airways merged with American Airlines in 2015;
Continental merged with United in 2012; Northwest merged with Delta in 2010; AirTran merged with

Southwest in 2015.

Sources

Description Type Reference

Number of passengers Monthly Air Carriers : T-100 Domestic Segment (U.S.

Carriers)

Bureau of Transportation Statistics (Bureau of

Transportation Statistics, 2024).

Descriptive statistics

Monthly number of passengers, 2001–2023

Measures Values Measures Values

Mean 55,639,607 Range 73,407,995

Median 56,583,775 Minimum 2,924,771 (April 2020)

Standard deviation 10,533,808 Maximum 76332766 (July 2023)

Statistics (Bureau of Transportation Statistics, 2024), which

provides comprehensive data on airlines in the U.S. domestic and

international markets.

Figure 1 offers a simple graphic depiction of the data.

Annual passenger demand is plotted in Figure 1A and monthly

passenger demand is plotted in Figure 1B. In the plot of

annual passenger demand, only four years of declines in

passenger totals are apparent, corresponding to reductions in

the wake of the terror attacks of September 11, 2001 (2002),

during the Great Recession (2008–2009), and the collapse of

air travel in the first full year of the COVID-19 pandemic

crisis (2020).

The monthly air passenger demand data from U.S. domestic

airlines passenger traffic between January 2001 and September

2023 is plotted in Figure 1B. It shows that the demand

for air travel is seasonal and cyclical. Demand spikes, as

expected, in the summer months of June, July, and August.

The dataset contains an aggregated number of air passengers

for each month with no breakout of carrier (airlines). The

dataset feeds single input-output models that we describe in

Section 3. We will consider passengers carried by the currently

operating U.S. domestic airlines every month when we predict

air passenger traffic for individual routes between specific airport

pairs to feed a multiple input-output model that we describe

in Section 3.

Jafari (2022) attempted predictive analysis of U.S. domestic

air passenger demand data from January 2001 to April 2021,

but volatility resulting from the COVID-19 pandemic caused

interruptions in the forecasts and produced inadequate results.

Therefore, here we include the data only from 2001 to 2019 to feed

our models. Bypassing the irregular data years is warranted because

the aim of this work is developing a general model for correlated

time series forecasts.

3 Methodology

This study forecasts air traffic in a market using multiple time

series inputs (variables) while considering their correlation with

each other, a method known as correlated time series forecasting.

A fundamental characteristic of this approach is recognizing that

the values of a time series variables can be influenced by the values

of other time series variables. To enhance prediction accuracy, we

are designing a deep neural network framework tailored to capture

these interdependencies among the variables. The problem of

correlated time series forecasts that aim to estimate multiple values
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A B

FIGURE 1

Line plot of U.S. domestic airline passenger demand from 2001 to 2023. (A) Annual passengers, (B) Monthly passengers.

(outputs) simultaneously given multiple inputs has been studied

by Cirstea et al. (2018). Fox et al. (2018) has also investigated

multi-output deep architectures for multi-step forecasting.

The general framework of our proposed deep neural network

model for correlated time series forecasts is presented in

Algorithm 1. The algorithm develops in two stages. In Stage 1, we

fit an accurate univariate time series forecast model as a single

input-output model to predict aggregated demand for a market. In

Stage 2, we use the fitted model from Stage 1 for each competitor

(disaggregated from the market), and then merge (combine) all

of the input tensors using the Concatenate function. Afterward,

for each competitor, a hidden layer makes connections between

models.

Stage 1: Single Input-Output Forecasting

Fit a model for univariate (aggregated) data

• ⋄ Input layer (univariate data)

• ⋄ Hidden Layer 1 (No. Neurons, Activation

Function, No. Epochs, No. Batches, Optimizer)

• ⋄ · · ·

• ⋄ Hidden Layer n (No. Neurons, Activation

Function, No. Epochs, No. Batches, Optimizer)

• ⋄ Output Layer (1 neuron)

Stage 2: Multiple Input-Output Forecasting

For each competitor i

Model-Ci=Run the fitted model in Stage1

Merge all Model-Ci using Concatenate

Hidden Layer 1

...

Hidden Layer i

Output Layer (1 neuron)

Algorithm 1. Two stages Deep Neural Network Forecast model.

To elaborate the complex network for the multiple input-

output forecast model expressed in Stage 2, we show the associated

neural network architecture in Figure 2. Suppose we have n

correlated time series represent demand (or sale) for a product (or

a service) in a market by n competitors of a market over time as

DCi =< d
Ci
1 , d

Ci
2 , · · · , d

Ci
t > where i = 1, · · · , n. If the demand for

one competitor’s offerings increases, the demand faced by all other

competitors decreases. As we explained above, we are interested in

forecasting individual demand for each competitor in the future

simultaneously (d
Ci
t+1). Multiple input-output forecasting involves

predicting multiple output variables using multiple input variables.

To apply the method, we use the U.S. air passenger traffic

dataset previously introduced. Initially, we construct an accurate

univariate forecast model focusing solely on monthly passenger

demand as the single input-output model (shown in Figure 1B).

We will then extend the developed model into a multiple input-

output variables to predict monthly passenger demand for various

competitor airlines for an individual route.

3.1 Single input-output forecasting model

Amathematical notation for a univariate time series forecasting

model can be represented as follows:

Ŷt+h|t = f (Yt ,Yt−1, ...,Yt−k; θ)

where

Ŷt+h|t represents the forecast of the variableY at time t+h given

information up to time t.

Yt ,Yt−1, ...,Yt−k denote the past values of the time series up

to lag k, where k represents the number of lagged observations

considered in the model.

Function f (.) is the forecasting function that maps past

observations to the forecasted value. The function is fitted by

learning from the training data, which may involve multiple layers

and activation functions.

Theta (θ) represents the parameters of the forecasting model,

which are estimated based on the historical data.

Prior to specifying the forecasting function f (.), a recurrent

neural network (RNN), we prepare our univariate time series

dataset, the monthly number of passengers over the specified

period, 2001-2019. We begin by applying a lag difference to our

data to remove seasonal effects. The lag represents the number

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1429341
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jafari and Lewison 10.3389/frai.2024.1429341

FIGURE 2

Feeding process of a correlated time series forecast as a multiple imputes, deploying hidden layers, and then generating multiple outputs (knowing

D
Ci is demand for competitor i in a market).

of periods after which the seasonal cycle repeats. In this case, the

lag of our time series dataset is 12, corresponding to the monthly

frequency of the data. Therefore, the difference variable is set to 12,

which subtracts the value at each time step from the value 12 steps

earlier, effectively removing seasonal patterns from the data. The lag

difference operates by subtracting the value of period t − 12 from

the value of period t in the series.

Next, we reframe our data from a time series to a supervised

learning dataset. Supervised learning is where an algorithm is used

to learn the mapping function from the input variables (x) to the

output variable (y). The goal is to approximate the true underlying

mapping so well that when you have new input data (x), you can

accurately predict the output variables (y) for that data.

To design a best–fitting deep learningmodel using Keras on our

datasets, we divide the data into three sets for training, validation,

and test. To avoid overfitting by reusing the test set over and over

again during the model selection, we partition our data of 228

observations to a training set (11 years), a validation set (4 years)

and a test set (4 years). Once we find satisfactory hyper-parameter

values, we retain the model from the completed training set and

obtain a final performance estimate using the independent test set.

Table 2 presents a comparison of the four recurrent neural

network (RNN) models developed for the univariate forecasting

problem.Model 1 includes an LSTM layer with a SoftPlus activation

function, followed by a dense layer with a ReLU activation function.

The dense layer serves as the single output layer for making one-

step predictions. The model is configured with 50 neurons, trained

over 400 epochs with a batch size of 100, and optimized using the

Adam optimizer.

Note that the Rectified Linear Unit (ReLU) activation function

is defined as: ReLU(x) = max(0, x). In simpler terms, the ReLU

function outputs the input directly if it is positive; otherwise,

it outputs zero. The SoftPlus activation function is defined as

softplus(x) = ln (1+ exp(x)) in which a smooth approximation

of the ReLU activation function. The output of the SoftPlus

function is always positive, and it increases monotonically as

the input increases. The Adam optimizer, short for Adaptive

Moment Estimation, is a version of stochastic gradient descent and

an advanced optimization algorithm designed for training deep

learning models.

Model 2 integrates Convolutional Neural Networks (CNN)

with Long Short-Term Memory (LSTM) networks. It comprises

two convolutional layers, followed by a max pooling layer, a

flattening layer, an LSTM layer, and a dense layer, all utilizing

the ReLU activation function. The model is configured with 100

neurons, trained over 200 epochs with a batch size of 100, and

optimized using the Adam optimizer.

Model 3 features a ConvLSTM layer, a specialized variant of

LSTM that employs the SoftPlus activation function. Additionally,

the model includes a flattening layer and a dense layer in its hidden

structure utilizing the ReLU activation function. Configured with

200 neurons, the model is trained over 100 epochs with a batch size

of 100 and optimized using the Adam optimizer.

Our final model, Model 4, is an RNN-based architecture that

includes a GRU layer with the SoftPlus activation function, followed

by a dense layer utilizing the ReLU activation function. The model

is configured with 50 neurons, trained over 200 epochs with a batch

size of 100, and optimized using the Adam optimizer.

We examine the accuracy of the models by computing two

measures of the forecast error, the Root Mean Square Error

(RMSEtest =

√

1/m
∑

i(ŷ
(test) − y(test))2i where ŷ(test) gives the

prediction of the model on the test set), and the Mean Absolute

Percentage Error (MAPEtest = 1/m
∑

i |
ŷ(test)−y(test)

y(test)
|i × 100%). The

two error measures show us the variance between the estimated

forecast of the models and the actual observed data. Note that the

RMSE is useful when we compare the performance of different

forecast models, while the MAPE expresses the forecast variance as

a percentage of the actual. The error measures presented in Table 2

are the average of 100 repeated forecasts. Table 2 shows that Model

4 has the lowest loss among all of the tested models. Model 1, the

Long Short Term Memory (LSTM) model, has the second lowest

loss. Thus the two RNNmodels outperform the other deep network

models for our dataset. The MAPE of Model 4 shows that the

forecast is off by 1.806% on average.
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TABLE 2 The details of our four di�erent forecasting models.

Model
name

Input
layers

Activation
function

No.
neurons

No.
epochs

No.
batches

Optimizer
name

Loss

RMSE MAPE (%)

1
LSTM Softplus

50 400 100 Adam 1,557,364 2.203

Dense Relu

2

Conv1D Relu

100 200 100 Adam 4,044,128 5.686

Conv1D Relu

MaxPooling1D —

Flatten —

LSTM Relu

Dense Relu

3

Convlstm2D Softplus

200 100 100 Adam 3,547,920 4.898Flatten —

Dense Relu

4
GRU Softplus

50 200 100 Adam 1,299,472 1.806

Dense Relu

The last two columns present the average loss (forecast error) of the models in 100 repeats. Note that we use Dense(1) as the output layer in each models.

Based upon the results obtained from our experiments in fitting

a model, we select Model 4 as the fitted model to predict air

passenger traffic. Having the satisfactory hyper-parameter values,

we retain the best–performing model from the completed training

set (2001–2013) and run a final performance estimate using the

test set (2014–2019). The Root Mean Square Error (RMSE) is

equal to 1, 175, 675 and the Mean Absolute Percentage Error

(MAPE) is equal to 1.640%. To examine the performance of Model

4, we deploy the two popular statistical (classical) forecasting

models, SARIMA and Holt-Winters on our data and we obtain

a forecast loss for SARIMA (ARIMA (1, 0, 1) × (1, 1, 1)12) of

RMSE = 1, 737, 155 and MAPE = 2.143%, and for Holt-Winters

RMSE = 1, 696, 176 andMAPE = 2.218%. The comparison makes

clear that the developed GRU model outperforms the SARIMA

and Holt-Winters models. We now progress to the Multiple

Input-Output model.

3.2 Multiple input-output forecasting
model

We extend the single input-output (univariate) forecast model

to develop a multiple input-output forecast model for predicting

air traffic on specific routes between airport pairs (from an origin

airport to a destination airport) for various airlines operating on

those routes concurrently. Since passenger demand on a route

for any one airline can influence the number of passengers

carried by other airlines, the passenger traffic across different

airlines is interrelated. To capture these dependencies effectively,

we introduce a new variable that represents the total number

of passengers across all airlines. By summing up the demand

across all airlines, this new variable provides a comprehensive

measure of overall passenger traffic. Incorporating this aggregate

measure into the model allows it to learn the relationships

and interactions between the individual inputs (demand for

each airline) more effectively. This approach uses a first-degree

polynomial approximation, which simplifies the modeling of these

relationships by focusing on linear dependencies. As a result, the

model can better understand how variations in the total passenger

count influence and relate to the demand for each specific airline,

thereby improving the accuracy and relevance of its forecasts. To

handle this problem, a model with multiple inputs and outputs,

we use the Keras functional Application Program Interface (API)

vs. the Keras Sequential. The associated neural network for the

explained problem would be designed.

To run our proposed model on a test case of predicting air

passenger traffic for individual routes between specific airport pairs,

we first consider JFK (New York City) as origin airport and LAX

(Los Angeles) as destination airport. For simplicity, we model

the market using only three airlines, American (AA), Delta(DL),

and United (UA), operating on the JFK to LAX route in a zero-

sum game: If passenger demand for AA increases, then demand

for other two airlines will drop (shown in Figure 3). We feed

our multiple input-output network with three inputs, monthly

number of passengers from JFK to LAX carried by American,

Delta and United during 2001–2019. As depicted in Figure 4,

each input time series is processed through a GRU layer with

50 neurons and a SoftPlus activation function, followed by a

dense layer utilizing the ReLU activation function. The outputs

from these layers are then concatenated and passed through

three dense layers, each with 50 neurons and a ReLU activation

function, to predict traffic for American, Delta, and United in

2020. The data preparation and hyperparameter tuning for this

model follow the same approach as described for the single-input

network above.
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FIGURE 3

The market share and passenger demand correlation among three competing airlines—AA, DL, and UA—operating between JFK and LAX airports

from 2001 to 2023 is evident. Over this period, DL has experienced growth in market share, while AA and UA have faced a decline, indicating a

correlation in passenger demand across these airlines.

FIGURE 4

Architecture of our developed multiple input–output network to

predict air passenger tra�c for a route between two airports, JFK

and LAX, for monthly number of passengers carried by American

(AA), Delta (DL) and United (UA) during 2001-2019.

4 Conclusion

This study focused on predicting air passenger traffic and

market share on specific routes between airport pairs, considering

the competitive dynamics among various airlines operating

concurrently. Recognizing that air traffic on these routes functions

as a zero-sum game—where an increase in demand for one

airline results in a decrease for others—we addressed the inherent

interdependencies between competing airlines. To capture these

complex relationships, we introduced a new variable representing

the total number of passengers across all airlines on a given route,

enabling a more comprehensive analysis of market dynamics.

To achieve accurate predictions, we developed a two-stage deep

neural network algorithm for correlated time series forecasting.

The first stage involved fitting four Recurrent Neural Network

(RNN) models to generate univariate forecasts, with the Gated

Recurrent Unit (GRU) model demonstrating the best performance

in predicting aggregated market demand. In the second stage,

the best-performing GRU model from Stage 1 was applied to

each individual airline (disaggregated from the market), with all

input tensors merged using the Concatenate function. This two-

stage approach, developed using a multiple input and output

neural network model, enhanced the model’s predictive power

by effectively leveraging the interdependencies among competing

airlines.

All models were implemented in Python 3.6 (64-bit) using

TensorFlow 1.8, with experiments conducted on a laptop equipped

with an Intel i5-6200U CPU @ 2.30GHz and 16 GB RAM.

To accommodate the complexity of handling multiple inputs

and outputs, the Keras functional API was used instead of the

Keras Sequential API. This methodology provides a nuanced

understanding of passenger distribution across airlines, ultimately

improving the ability to predict market dynamics and airline

competition on specific routes.

5 Discussion

There are additional applications for this methodology. An

application extension within the aviation industry of our proposed

multiple input-output forecast model could be used to predict

passenger demand for non-direct routings. Most U.S. airlines use
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the hub-and-spoke model, where flights go in and out of key hub

cities where passengers change flights, for at least some share of

flight operations. Aside from their usefulness for the analysis of

U.S. commercial aviation passenger traffic, these models could have

wider applications for the analysis of any industry in which market

shares of competitors are correlated with one another. The ability

to forecast demand is an attractive goal in and of itself and is highly

valued in business and market research. The growth of computing

power and the increased availability of advanced analytical software

in recent years has dramatically augmented the capacity to actually

execute demand forecasting. To this end, companies are making

large investments in software, personnel, and consulting fees to

carry out accurate demand forecasts.

Consider the problem of predicting market share among

competitors in an industry in which any competitor’s action affects

the demand for all other competitors. That is, including market

potential, if demand (or sales) for a competitor increases, then

the demand for all other competitors decreases (other competitors

lose their customers) and vice versa. In this study, we have

examined the specific problem of forecasting the number of air

passengers between two airports where several airlines operate on

the route. Significant growth in the number of passengers flying

one airline impacts the number of passengers flying on competitor

airlines. Similar market structures exist in other industries, and our

modeling may be suitable for broader application.

Additional examples of industries where this methodology

could be applied include the automobile industry, where the launch

of a new vehicle model by one manufacturer impacts the sales

of competitors; the retail sector, where promotional campaigns or

pricing strategies by one retailer can affect the sales volumes of

others; and the telecommunications industry, where changes in

pricing or plan offerings by one provider can influence customer

churn and subscription rates across all competitors.

Other applicable contexts are the pharmaceutical industry,

where new drug launches or patent expirations impact the

sales of competing medications; the hospitality industry, where

occupancy rates of one hotel chain are affected by the pricing

and promotions of another; the banking and financial services

sector, where the introduction of new products or changes in

interest rates by one institution influences the customer base

of others; and the streaming services market, where exclusive

content releases and pricing adjustments by one platform can

shift market shares among several competitors. Additionally, in

the ride-sharing and transportation network companies (TNCs)

sector, changes in fare structures, service availability, or new feature

introductions by one company can directly influence demand for

competing services.

In summary, these examples illustrate that our proposed

multiple input-output forecast model has numerous applications

beyond aviation. It can be effectively employed in any market

where a few key players dominate, capacity is fixed in the

short run, and customer choices for one provider typically

exclude simultaneous purchases from another. Therefore, the

methodology is broadly applicable across various industries where

interdependent competition exists, providing valuable insights into

market share dynamics under different competitive scenarios. The

relevant parameters need to be investigated further, but we can

conclude early on that there are numerous industries and situations

for which this methodology may be applied.
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