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Background: Imbalanced datasets pose challenges for developing accurate

seizure detection systems based on electroencephalogram (EEG) data.

Generative AI techniques may help augment minority class data to facilitate

automatic epileptic seizure detection.

New method: This study investigates the impact of various data augmentation

(DA) approaches, including Wasserstein Generative Adversarial Network with

Gradient Penalty (WGAN-GP), Vanilla GAN, Conditional GAN (CGAN), andCramer

GAN, on classification performance with Random Forest models. The best-

performing GAN variant, WGAN-GP, was then integrated with a bidirectional

Long Short-Term Memory (LSTM) architecture and compared against traditional

and synthetic oversampling methods.

Results: The evaluation of di�erent GAN variants for data augmentation with

Random Forest classifiers identified WGAN-GP as the most e�ective approach.

The integration of WGAN-GP with bidirectional LSTM yielded substantial

performance improvements, outperforming traditional oversampling methods

and achieving an accuracy of 91.73% on the augmented data, compared to 86%

accuracy on real data without augmentation.

Comparison with existing methods: The proposed generative AI approach

combining WGAN-GP and recurrent neural network models outperforms

comparative synthetic oversampling methods on metrics relevant for reliable

seizure detection from imbalanced EEG datasets.

Conclusions: Incorporating the WGAN-GP generative AI technique for data

augmentation and integrating it with bidirectional LSTM elevates seizure

detection accuracy for imbalanced EEG datasets, surpassing the performance of

traditional oversampling and class weight adjustment methods. This approach

shows promise for improving epilepsy monitoring and management through

enhanced automated detection system e�ectiveness.
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Highlights

• Epilepsy detection systems often struggle with imbalanced datasets, impacting their

accuracy.

• This study explores the potential of generative AI techniques for augmenting EEG data

to facilitate improved seizure detection.
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• The proposed WGAN-GP data augmentation approach,

when integrated with a bidirectional LSTM architecture,

outperforms conventional synthetic data generation methods

for boosting seizure detection performance.

1 Introduction

Epilepsy is a neurological condition characterized by recurring

seizures, abrupt disruptions in the brain’s usual electrical activity

(Fisher et al., 2005). These seizures can manifest in various

symptoms, including muscle spasms, loss of consciousness, and

alterations in behavior. Timely identification of an impending

seizure empowers individuals to mitigate its impact by seeking

medical assistance (World Health Organization, 2006).

Electroencephalography (EEG) serves as a widely employed

diagnostic tool in epilepsy, playing a vital role in assessing treatment

options for seizure management (Stafstrom and Carmant, 2015;

Jemal et al., 2022). However, the practical implementation of EEG-

based systems for seizure detection and prediction encounters

significant hurdles, such as protracted calibration time and limited

applicability. The primary challenge in seizure research lies in

collecting data during actual seizure occurrences, primarily due

to their unpredictable nature. Acquiring an extensive and diverse

sample size required for obtaining reliable outcomes poses a

substantial obstacle (Kuhlmann et al., 2018).

Imbalanced data in the context of data analysis refers to

scenarios where the quantity of data points within one class

significantly differs from another class. This imbalance can impede

the accuracy of machine learning models in predicting the

occurrence of epilepsy, as models can be more influenced by the

more prevalent class, typically the negative examples (Kuhlmann

et al., 2018). Consequently, this leads to subpar performance and

increased false negatives, affecting the precision and reliability

of machine learning models in predicting seizure outcomes or

classifying different types of seizures.

Addressing the challenge of imbalanced data is crucial for

advancing epilepsy research and treatment. Several approaches can

be employed, including resampling techniques like oversampling

or undersampling, and algorithms specifically designed for

imbalanced data, such as decision trees or random forests.

Data augmentation is another valuable technique, which

involves generating new synthetic examples based on existing data.

Various methods for data augmentation include synthetic data

generation, data transformation, data combination, and data noise

injection (Dubey et al., 2014; Johnson and Khoshgoftaar, 2019;

Kraiem et al., 2021). By using these techniques, it may be possible

to overcome the challenge of imbalanced data and enhance the

performance of machine learning models in epilepsy research. It is

also important to carefully evaluate the performance of the model

on the imbalanced data, using metrics such as precision, recall, and

the F1 score, rather than solely relying on overall accuracy.

The primary objective of this investigation was to examine

various data augmentation (DA) approaches in order to tackle the

issue of imbalanced data. To amplify the representation of the

minority classes, we explored diverse generative AI techniques.

Initially, we employed four different variants of deep learning

generative adversarial networks (GAN) to generate synthetic data

targeting the underrepresented classes. We conducted a projection

analysis and Qq plot analysis to compare the synthetic and real

data and ascertain the GAN variant that accurately replicated the

real data.

Furthermore, we utilized conventional DA methods such

as SMOTE and ADASYN to expand the existing dataset. We

evaluated the effectiveness of these techniques in comparison to

the most effective GAN variant. To analyze the impact of data

augmentation (DA) techniques on classification performance, we

trained Long Short-Term Memory (LSTM) models and evaluated

their performance on datasets with and without DA. Similarly,

we used the Random Forest algorithm to compare performance

metrics between classifiers trained solely on real data and those

trained on a combination of real and synthetic data generated by

DA techniques. This comparison helps us understand how different

DA methods influence the LSTM and RF’s classification accuracy

and other performance metrics.

Our primary contribution lies in the systematic evaluation

of various GAN architectures and conventional oversampling

techniques for generative data augmentation in order to address

class imbalance in seizure detection using LSTM classifiers.

We demonstrate the effectiveness of WGAN-GP in synthesizing

minority class data that closely aligns with the distribution of

real data, resulting in significant performance improvement. This

provides a crucial framework and benchmark for further research

on data augmentation strategies for managing imbalanced data in

EEG classifications and seizure detection.

2 Related state of art

In recent years, DA techniques have emerged as a promising

approach to improve the performance of machine learning models

in epilepsy detection tasks. By increasing the amount of available

training data, DA can help to reduce overfitting and improve the

generalization performance specifically when dealing with tasks

based on electroencephalograms (EEGs).

For tasks such as emotion recognition (Wang et al., 2018;

Salama et al., 2018; Luo and Lu, 2018; Chang and Jun, 2019), DA

techniques have been shown to be instrumental in improving the

performance of learning models. In the field of seizure detection,

numerous investigations have employed DA techniques to advance

the accuracy of deep learning models (Wei et al., 2019; Hussein

et al., 2018).

A comprehensive review conducted by Lashgari et al. (2020)

explored different DA approaches such as noise addition, GAN

networks, sliding windows, sampling, Fourier transform, and

recombination of segmentation and showed that DA is becoming

a prevalent approach in EEG tasks, resulting in a significant

improvement in accuracy, with an average increase of 29%.

The method proposed by Yuan et al. (2017), using the

weighted extreme learning machine (ELM), showed to be an

effective approach to mitigate the impact of the imbalanced class

distribution on performance.

In a new study published in 2022, Zhang et al. (2022), a new

algorithm called BNNSMOTE was proposed to improve seizure

detection performance by synthesizing new samples to address the
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challenge of imbalanced classification of seizure and non-seizure

data.

In other studies (Ullah et al., 2018; Wang et al., 2021),

augmentation techniques were used to address the problem

of limited data and to improve the performance of the one-

dimensional convolutional neural network (P-1D-CNN) model in

the detection of seizures. Learned models showed high accuracy,

sensitivity, and specificity.

Furthermore, researchers proposed using synthetic data

generated by Temporal GAN to increase sample size and improve

deep learning classification performance when faced with the

limited availability of labeled thalamic EEG data (Ganti et al., 2022).

In addition, Zhao et al. (2022) presented an EEG augmentation

method (EEGAug), involving the random selection of a few

samples from the underrepresented class, the transformation of

these samples into the frequency domain, the combination of

different frequency bands, and conversion back to the time domain

to generate new samples. Through the use of EEGAug, the authors

balanced the unbalanced clinical iEEG data, which performed the

best in most cases. Three studies have proposed using GANs for

DA in different applications.

In one study, a WGAN-GP model is proposed for DA in

emotion recognition using the DEAP dataset (Bhat and Hortal,

2021).

In another study (Hartmann et al., 2018), GANs are used

to generate electroencephalographic (EEG) brain signals. A

modification to the training of Wasserstein GANs is introduced to

stabilize the training process.

In the third study (Haradal et al., 2018), a new method is

presented to create synthetic time series data using GANs for the

classification of biosignals. These approaches can have limitations

and may not always be effective.

Based on the current state of the art in epilepsy detection,

it is clear that DA and the issue of imbalanced datasets need to

be further addressed. While recent studies have shown promising

results using GANs for DA in EEG-based classification tasks, more

research is needed to explore the potential of these techniques

for improving the accuracy and reliability of epileptic seizure

detection. As such, there is a pressing need for more studies to

focus on developing effective strategies for DA and addressing

data-imbalanced issues in epilepsy detection.

3 Method and materials

3.1 Database

The current research utilized data obtained from the Temple

University Hospital EEG Seizure Corpus (TUSZ), version v1.5.1.

This corpus consists of EEG recordings obtained in real-time from

341 patients undergoing clinical monitoring. The recordings were

conducted utilizing the 10/20 international standard system, and

among these patients, 188 were female. It includes 886 sessions,

each ranging from one minute to one hour, thus providing a varied

and diverse array of EEG signals. The TUSZ includes approximately

6% of files containing EEG seizure segments, which amount to

a total duration of 40.41 hours. The TUSZ dataset offers several

montages, but for consistency in this study, we focused exclusively

TABLE 1 Detailed overview of the Temple University Hospital EEG Seizure

Corpus (TUSZ) used in our seizure detection experiments.

Number of patients (female) 341 (188 F)

Number of patients with seizure 133 (72 F)

Total number of sessions 886

Total number of files 7,634

Number of seizure files 1,780

Number of seizure-free files 5,854

Total duration in hrs. 655.36

on the most popular bipolar Temporal Central Parasagittal (TCP)

Averaged Reference (AR) montage, ensuring uniformity across

all analyzed data. All EEG signals were sampled at a minimum

rate of 250 Hz to ensure recording accuracy. Prior to analysis,

qualified researchers removed any artifacts and eye blinks present

in the recordings by using an open-source annotation tool. Table 1

provides detailed information on the key features of the corpus

used in the study. The corpus was carefully selected for its diverse

range of EEG signals, providing an opportunity to conduct an in-

depth analysis of seizure segments in a clinical setting. For more

information about the database used, we invite readers to read Shah

et al. (2018).

3.2 The proposed framework

Figure 1 displays the proposed framework for detecting and

classifying seizures using DA techniques to address imbalanced

datasets. The framework consists of two primary steps. In the first

step, pre-processing of the EEG signal is performed, followed by

feature extraction. For each of the 19 EEG channels, 44 time and/or

frequency domain features are extracted, resulting in a total of 836

features. The list of features is detailed in Table 2 and for more

details refer to our previous work (Abou-Abbas et al., 2023, 2022,

2021).

Next, a 10-fold cross-validation method is employed to

partition the data. The cross-validation is performed using the

GroupKFold technique, to ensure that all samples from a single

patient are either included entirely in the training set or entirely

in the test set for each fold. This prevents any overlap of patient

information between the training and test phases. Specifically, the

data is divided into 10 groups (or folds), and for each iteration, 9 of

these folds are used to train the classifier, while the remaining fold

is used for testing. This process is repeated ten times, with each fold

serving as the test set once. The performancemeasures are averaged

across all ten iterations to obtain the final results.

The training set is then utilized in two distinct ways. The first

approach employs DA techniques, such as WGAN-GP, SMOTE,

or ADASYN, to balance the dataset. The newly balanced dataset is

then used to train the LSTM model. The second approach directly

trains the LSTM model using the imbalanced dataset, but with a

cost-sensitive loss function or class weighting approach. In both

scenarios, the test data is reserved for testing the trained model.
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FIGURE 1

Framework for seizure detection and classification using DA strategies to address imbalanced EEG signal datasets: a proposed methodology utilizing

10-fold cross-validation and LSTM/RF models for training and testing.

3.3 Data augmentation

DA is a technique utilized to create new training data by

altering the existing data. Its primary goal is to enhance the

performance of classification systems by forming new and different

examples to train datasets. It is a valuable tool in situations where

collecting new data is difficult or costly (Mumuni and Mumuni,

2022). It can be achieved by making small changes to the dataset

or using deep learning models to generate new data points to

expand the training set, enhance its diversity, and improve model

generalization. Generative DA techniques, such as GANs and their

variants like CramerGAN, CGAN, Vanilla GAN, and WGAN-GP,

employ generative models to produce entirely new data points

that resemble the real data distribution (Goodfellow et al., 2020;

Creswell et al., 2018; Gulrajani et al., 2017; Arjovsky et al.,

2017). These generative approaches enable the creation of realistic

synthetic samples that capture the underlying characteristics of the

training data. On the other hand, synthetic DA techniques focus

on creating new samples by applying transformations or modifying

existing data points. This includes techniques like SMOTE and

ADASYN, which generate synthetic samples for minority classes by

interpolating between existing instances or adapting the generation

process based on the data distribution (Chawla et al., 2002; He et al.,

2008). Several studies have explored DA techniques in different

fields. For instance, a study proposed a general methodology for

small medical data classification that deploys an augmentation
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TABLE 2 List of all the 44 features extracted.

Number Features

1–5 Average value of power spectral density (delta, theta,

alpha, beta, gamma)

6–10 Absolute value of power spectral density (delta, theta,

alpha, beta, gamma)

11–15 Relative value of power spectral density (delta, theta,

alpha, beta, gamma)

16–18 Skewness, variance and kurtosis

19–24 Features of empirical mode decomposition (energy,

spectral entropy, mean, standard deviation, moment,

skewness)

25–29 Sample entropy, permutation entropy (4 levels)

30–32 Hjorth (mobility, activity, complexity)

33 Spectral entropy of PSD

34 Features of discrete wavelet transform-Shannon

entropy

35–36 Features of wavelet packet decomposition (log energy

entropy and Shannon entropy)

37 Successive decomposition index

38–39 Mean Energy and its cumulative sum

40–44 Features of wavelet Decomposition (Percentage of

energy-5 levels)

technique and a feature selection strategy (Alauthman et al., 2023).

Another study presented a comprehensive survey of modern DA

techniques (Mumuni and Mumuni, 2022). In this study, we will

explore the generation of data using GAN (Generative Adversarial

Network) and its variants, including CramerGAN, CGAN, Vanilla

GAN, and WGAN-GP. Additionally, we will compare these

generative approaches with synthetic data generation techniques

such as SMOTE and ADASYN. Through comparative analysis with

synthetic approaches like SMOTE and ADASYN, we will assess the

effectiveness of generative DA in addressing class imbalance and

improving the performance of machine learning models.

3.3.1 Generative Adversarial Network and its
variants

Generative Adversarial Networks, or GANs for short, have

become a very powerful deep learning technique for data

generation and augmentation. GANs are made up of two key

components - a generator and a discriminator. They work by

having the generator creates synthetic data, while the discriminator

evaluates this data to determine whether it is real or artificial. The

original GAN architecture, introduced by Goodfellow et al. (2020)

and Creswell et al. (2018) is commonly referred to as the Vanilla

GAN. Over the years, researchers have proposed numerous GAN

variants to address various challenges and limitations to the original

formulation to improve performance and extend their applications

(Gulrajani et al., 2017; Arjovsky et al., 2017; Bellemare et al., 2017;

Mirza and Osindero, 2014; Gulrajani et al., 2017). One notable

variant, the CramerGAN, replaces the discriminator with a Cramer

distance estimator improving training stability and the quality of

generated samples (Bellemare et al., 2017). Another influential

variant is the Conditional GAN (CGAN), which incorporates

additional conditioning information such as class labels or auxiliary

features, into both the generator and discriminator networks to

enable better control over the generated data (Mirza and Osindero,

2014).The Wasserstein GAN with Gradient penalty (WGAN-

GP) proposed by Gulrajani et al. (2017) and Arjovsky et al.

(2017) addresses training instability and mode collapse issues by

incorporating the Wasserstein distance as a more meaningful loss

function. The gradient penalty further enhances training stability,

encouraging the discriminator to behave as a true Wasserstein

distance estimator. Figure 2 gives a detailed architecture of a basic

GAN. A random noise (z) is used as input to the generator, a typical

feature of GANs. The discriminator evaluates both real data from

the dataset and the synthetic data generated. It assigns probabilities

between 0 and 1 to these data samples, indicating their likelihood

of being real or fake. The critic loss also called discriminator’s loss is

computed based on howwell its predictionsmatch the ground truth

labels from the training dataset. This creates a feedback loop where

the generator and discriminator continuously adjust: the generator

improves the quality of its synthetic data to reduce its loss, while

the discriminator enhances its ability to distinguish between real

and synthetic data to minimize its own loss.

3.3.2 Synthetic data generation techniques:
SMOTE and ADASYN

The Synthetic Minority Over-sampling Technique (SMOTE)

is a widely used method for addressing the issue of imbalanced

datasets. SMOTE works by creating new samples for the minority

class in a dataset. For each existing sample in the minority class,

it finds a few similar samples, called its nearest neighbors. It

then creates new samples by mixing the original sample with

these neighbors. To do this mixing, SMOTE uses a simple

math formula. For each minority class sample xi, SMOTE

selects k nearest neighbors. Specifically, if xi and xj are two

samples from the minority class, a new synthetic sample xnew is

generated using:

xnew = xi+3.(xj−xi) where3 is a random number between 0

and 1. The algorithm repeats this process until the desired number

of synthetic samples is generated. By creating these new samples,

SMOTE expands the decision region of the minority class, helping

to balance the dataset and potentially improving the performance of

classification algorithms on the minority class (Chawla et al., 2002).

The Adaptive Synthetic Sampling (ADASYN), is another

DA technique that generates synthetic samples of the

underrepresented class. However, ADASYN diverges from

other techniques by employing a distinct approach wherein

the density distribution of the minority class is estimated

and then the synthetic samples are produced in regions

characterized by low density. Mathematically, ADASYN operates

as follows: For each minority sample xi, the density ratio ri is

calculated as:

ri =
1i

K
(1)

where 1i represents the number of majority class samples among

its K nearest neighbors. These ratios are then normalized to form a
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FIGURE 2

GAN architecture with critic loss and backpropagation: updating discriminator and generator weights to improve signal generation.

distribution:

r̂i =
ri

∑
ri

(2)

The number of synthetic samples gi to generate for each xi is

determined by:

gi = G · r̂i (3)

where G is the total number of synthetic samples needed. New

synthetic samples are created using linear interpolation:

xnew = xi + λ · (xj − xi) (4)

where xj is a randomly chosen minority neighbor of xi, and λ is

a random number in the interval [0, 1]. This process is repeated

gi times for each xi, focusing on generating synthetic samples in

regions where theminority class is underrepresented, thus adapting

to the local data distribution (He et al., 2008).

3.4 LSTM architecture

Long Short-Term Memory (LSTM) networks are a special type

of neural network designed to handle sequential data, like EEG

signals. They’re good at remembering important information over

long periods, which is crucial for tasks like seizure detection. At

its heart, an LSTM has a cell state, a sort of memory, and three

principal components as gates: the input gate, which decides what

new information to add to the cell state; the forget gate, which

chooses what information to remove from the cell state; and the

output gate, which determines what to output based on the cell

state. The combination of all these gates provides LSTMs with the

ability to selectively remember or forget information over long

sequences, making them really powerful in many tasks related to

data that comes in a sequence or time series, such as EEG signal

analysis data (Hochreiter and Schmidhuber, 1997).

Figure 3 illustrates the LSTM architecture implemented for

classifying raw EEG data to detect seizures. This architecture

is designed to leverage the strengths of LSTMs in processing

sequential data. The LSTM network used in this study is

unidirectional, meaning it processes data in a single direction, from

past to future, which is appropriate for the nature of sequential

EEG data.

The input layer of the network receives 836 features derived

from the raw EEG signals. These features are fed into two LSTM

layers, each containing 10 neurons. Each LSTM unit within these

layers applies the three gates–input, forget, and output gates–to

manage the flow of information and maintain memory across

time steps.

Following the LSTM layers, the network includes a fully

connected (dense) layer. This layer transforms the output from the

LSTM layers into a one-dimensional vector, which is then used

for classification. The final output is passed through a Sigmoid

activation function, which produces a probability score between 0

and 1, indicating the likelihood of a seizure event.

4 Results and discussion

4.1 Experimental setup

The framework illustrated in Figure 1 provides a

comprehensive overview of the methodology. It starts with
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FIGURE 3

LAST architecture used for classification of raw EEG data for seizure detection.

FIGURE 4

Comparison between real and synthetic data distribution vanilla GAN.

data augmentation (DA) using various Generative Adversarial

Networks (GANs) and other DA techniques, including Vanilla

GAN, CRAMER GAN, CGAN, WGAN-GP, SMOTE, and

ADASYN. These methods were selected due to their ability to

learn and generate realistic data distributions, enhancing the

representation of minority classes in the augmented dataset. Once

the augmented dataset is created, it is split into training and testing

sets using a 10-fold cross-validation approach to ensure robust

performance evaluation.

To evaluate the effectiveness of the DA approaches, the study

employs several assessment methods. Initially, Quantile-Quantile

(QQ) plot analysis is conducted to compare and analyze the

distribution of real and synthetic data, providing insights into the

fidelity of the synthetic data generation process and its alignment

with the real data distribution. Additionally, projection techniques

such as Fast Independent Component Analysis (Fast ICA),

Kernel Principal Component Analysis (Kernel PCA), Truncated

Singular Value Decomposition (Truncated SVD), and t-Distributed
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FIGURE 5

Comparison between real and synthetic data distribution-CGAN.

A B

FIGURE 6

Q-Q plot analysis-visual representation of the similarity between the synthetic and real data distributions. (A) Comparison between real and synthetic

data generated using VanillaGAN. (B) Comparison between real and synthetic data generated using CGAN.

Stochastic Neighbor Embedding (t-SNE) are utilized to analyze the

results and evaluate the performance of the DA techniques.

The core of the study’s experimental setup focuses on training

and evaluating machine learning models using the augmented

dataset. Both Random Forest (RF) and Long Short-Term Memory

(LSTM) models are employed. The RF algorithm serves as a

preliminary benchmark in our study, assessing the classifier’s

performance when trained on both real data and a mix of real and

synthetic data. This evaluation is essential for understanding how

data augmentation impacts a traditional machine learning model.

Our previous work Abou-Abbas et al. (2022), has established that

RF significantly outperforms other standard classifiers, including

Support Vector Machines (SVM). Following this preliminary

evaluation, the LSTM model, tailored for handling the sequential

characteristics of EEG signals, is then trained and assessed. This

approach allows us to explore how more advanced deep learning

techniques compare with RF in seizure detection.

TensorFlow and Keras were used to implement the DA

techniques, LSTM models, and cross-validation schemes (Fabio

et al., 2013). The Adam optimizer as a gradient-based method with

with β1 = 0.9, β2 = 0.999 and a learning rate of 0.001 was

employed for model training. We used the early stopping criteria

to prevent over-fitting where training runs up to 100 epochs, or

until the validation loss does not decrease anymore for at least

20 epochs.

Several tests are performed to assess the effectiveness of each

DA technique on the Temple University Seizure Detection Corpus

(TUSZ) data. The experiments are repeated 10 times using different

subsets of the dataset to ensure robust results. The performance

of the LSTM model is compared across various DA techniques,
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FIGURE 7

Comparison between real and synthetic data distribution-CRAMERGAN.

FIGURE 8

Q-Q plot analysis-visual representation of the similarity between the

synthetic and real data distributions-CRAMERGAN.

providing a comprehensive analysis of how each method impacts

the classification of imbalanced EEG signal datasets.

4.2 Comparative evaluation of GAN
variants

A thorough comparative evaluation was conducted to assess

the performance of different GAN variants in generating synthetic

data that closely resembled real data distributions. The evaluation

process involved analyzing the Q-Q plots which compare two

sets of data by plotting their quantiles against each other. If the

FIGURE 9

Q-Q plot analysis-visual representation of the similarity between the

synthetic and real data distributions-WGAN-GP.

synthetic data matches the real data well, the points on the plot

will form a nearly straight line, usually at a 45-degree angle.

This line would mean the two sets of data have very similar

distributions. When points stray from this line, it shows differences

between the synthetic and real data. It also helps us judge if our

methods for creating synthetic data are effectively balancing out our

dataset, which originally had uneven amounts of data in different

categories.

Figures 4, 5 illustrate the results of the projection analysis,

specifically for the synthetic data generated respectively using

Vanilla GAN and CGAN. As depicted in the figures, the projected

synthetic data appears to be clustered together, significantly

deviating from the distribution of the real data. These observation
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FIGURE 10

Comparison between real and synthetic data distribution WGAN-GP.

TABLE 3 Classification performance metrics for real data only and real +

synthetic data.

Metrics Real data only Real + synthetic data

Accuracy 0.86 0.88

Recall 0.79 0.83

Specificity 0.67 0.72

F1 Score 0.83 0.86

Precision 0.81 0.84

suggests that the synthetic data generated by Vanilla GAN and

CGAN fails to capture the inherent patterns and structure present

in the real data distribution. Moreover, the form and shape of

the synthetic data in Figures 4, 5 differ noticeably from that of

the real data, indicating a significant disparity between the two

distributions.

Furthermore, the Q-Q plot analysis reinforces these findings.

The Q-Q plot in Figures 6A, B depicts a notable misalignment

between the synthetic and real data distributions, with the

points deviating considerably from the ideal diagonal line. This

misalignment further supports the notion that Vanilla GAN and

CGAN struggle to generate synthetic data that closely resembles the

distribution of the real data.

Upon evaluating the results of the projection analysis and Q-

Q plots for Cramer GAN, it is observed that its performance is

slightly improved compared to Vanilla GAN. Figure 7 displays the

projection results of the synthetic data generated by Cramer GAN,

where the dispersion of the synthetic data points appears to bemore

aligned with the real data distribution.

This indicates that Cramer GAN has a better ability to capture

the underlying structure and patterns of the real data, resulting

TABLE 4 Classification performance metrics for seizure detection.

Approach Loss Precision Recall Specificity Accuracy

SMOTE 0.1252 63.03% 70.57% 88.90% 85.25%

ADASYN 0.1281 61.50% 71.91% 88.47% 85.18%

Class

Weight

0.1255 60.38% 72.93% 87.76% 84.82%

WGAN-GP 0.0681 80.81% 76.71% 95.45% 91.73%

in a more coherent and representative synthetic data distribution.

Moreover, the Q-Q plot analysis in Figure 8 reveals a closer

alignment between the synthetic and real data distributions, as

the points in the plot exhibit a higher degree of adherence

to the ideal diagonal line in the Q-Q plot. This suggests that

CramerGAN generates synthetic data that closely mirrors the

statistical characteristics of the real data. In both Q-Q plots and

projection analyses, CramerGAN outperforms Vanilla GAN and

CGAN. However, when comparing CramerGAN to WGAN-GP,

the Q-Q plot results are quite similar as seen in Figure 9. The

difference becomes visually apparent in the projection results

shown in Figure 10, where WGAN-GP demonstrates superior

performance. The synthetic data points generated by WGAN-GP

show a remarkable alignment and integration with the real data,

indicating a high degree of similarity and coherence. This enhanced

performance suggests that WGAN-GP excels at capturing the

underlying structure and patterns of the real data, resulting in

a synthetic data distribution that closely resembles the real data

distribution. The substantial improvements achieved by WGAN-

GP in the projection analysis emphasize its efficacy in generating

synthetic data that exhibits a remarkable resemblance to the real

data distribution.
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A B

FIGURE 11

Evolution of the training and validation accuracy (A) and loss (B) as the LSTM model is trained for from 1 to 70 epochs.

The substantial improvements achieved by WGAN-GP in

both projection analysis and Q-Q plots emphasize its efficacy in

generating synthetic data that exhibits a remarkable resemblance

to the real data distribution.

4.3 Impact of data augmentation on
classification performance with random
forest

The Impact of DA on Classification Performance with Random

Forest was investigated, and the results are summarized in Table 1.

The table compares the classification performance metrics for

two scenarios: using real data only and using a combination of

real and synthetic data. The metrics considered are Accuracy,

Recall, Specificity, F1 Score, and Precision. The results in Table 3

demonstrate the impact of augmenting the data and training the

Random Forest model with a combination of real and synthetic

data to balance the dataset. By incorporating synthetic data, the

overall performance of the classification model improved. The

Accuracy of the model increased from 0.86 when using real data

only to 0.88 when utilizing real and synthetic data. Similarly, the

Recall increased from 0.79 to 0.83, indicating a higher ability to

correctly identify positive instances.

Furthermore, the Specificity, which represents the model’s

ability to correctly identify negative instances, also improved from

0.67 to 0.72. The F1 Score, a harmonic mean of precision and

recall, increased from 0.83 to 0.86, indicating a more balanced

performance between these two metrics. Lastly, the Precision

increased from 0.81 to 0.84, demonstrating the model’s improved

ability to correctly classify positive instances.

4.4 Classification for seizure detection
using bi-directional LSTM

Table 4 presents the classification performance metrics for

different DA approaches in the task of seizure detection. Four

approaches were evaluated based on variousmetrics including Loss,

Precision, Recall, Specificity, and Accuracy. In terms of Loss, the

SMOTE approach had a value of 0.1252, followed by ADASYN

with 0.1281, Class Weight with 0.1255, and WGAN-GP with the

lowest value of 0.0681. A lower loss value indicates better model

performance in minimizing the discrepancy between predicted

and actual values. Regarding Precision, the WGAN-GP approach

achieved the highest precision of 80.81%. This indicates that it

had a higher proportion of correctly classified positive instances

compared to the other approaches. ADASYN had the second

highest precision at 61.50%, followed by SMOTE with 60.38%, and

Class Weight with the lowest precision of 63.03%. For Recall, the

WGAN-GP approach achieved a value of 76.71%, indicating its

ability to correctly identify positive instances. ADASYN had the

second highest recall at 71.91%, followed by Class Weight with

72.93%, and SMOTE with the lowest recall of 70.57%. TheWGAN-

GP approach obtained the highest specificity of 95.45%, indicating

its ability to distinguish negative instances accurately. ADASYN

achieved the second highest specificity at 88.47%, followed by Class

Weight with 87.76%, and SMOTE with the lowest specificity of

88.90%.Moreover, the WGAN-GP approach achieved the highest

accuracy of 91.73%, followed by ADASYN at 85.18%, Class Weight

at 84.82%, and SMOTE with the lowest accuracy of 85.25%.

In Figure 11, the plotted curves depict the training and

validation accuracy and losses of the LSTM schemes employed for

the seizure detection task. The training accuracy curve showcases

the model’s performance on the training data as the number of

epochs increases, reflecting its learning progress. The ascending

training accuracy indicates effective learning from the available

data. Conversely, the validation accuracy curve illustrates the

model’s ability to generalize to unseen data. The decreasing

training loss signifies convergence toward an optimal solution as

the training progresses. Similar to the validation accuracy, the

validation loss provides insight into the model’s generalization to

new data.

5 Conclusion

This study focused on seizure detection classification using

a uni-directional LSTM model and explored the integration of
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generative data augmentation techniques. The findings provide

valuable insights into the effectiveness of data augmentation

approaches, with a particular emphasis on the use of GANs for

addressing imbalanced datasets. The investigated GAN models

include Vanilla GAN, CRAMER GAN, CGAN, and WGAN-GP,

selected for their ability to generate realistic data distributions

and improve the representation of minority classes. Additionally,

conventional techniques such as SMOTE and ADASYN were

also examined. Notably, the most significant improvements were

observed withWGAN-GP, which demonstrated a strong alignment

and resemblance to the real data distribution in projection analysis

and QQ plots. This highlights the effectiveness of WGAN-GP

in generating synthetic data that closely matches the real data

distribution, thereby enhancing seizure detection performance and

improving the classification accuracy of the LSTM classifier. The

study serves as a foundation for future investigations and inspires

further advancements in seizure detection research. However,

additional research and evaluation are required to assess the

generalizability of these findings across different datasets and

compare the performance against other state-of-the-art approaches

that incorporate data augmentation techniques.
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