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With the rapid advancement of 3D acquisition technologies, 3D sensors such as

LiDARs, 3D scanners, and RGB-D cameras have become increasingly accessible

and cost-e�ective. These sensors generate 3D point cloud data that require

e�cient algorithms for tasks such as 3D model classification and segmentation.

While deep learning techniques have proven e�ective in these areas, existing

models often rely on complex architectures, leading to high computational

costs that are impractical for real-time applications like augmented reality and

robotics. In this work, we propose the Multi-level Graph Convolutional Neural

Network (MLGCN), an ultra-e�cient model for 3D point cloud analysis. The

MLGCN model utilizes shallow Graph Neural Network (GNN) blocks to extract

features at various spatial locality levels, leveraging precomputed KNN graphs

shared across GCN blocks. This approach significantly reduces computational

overhead and memory usage, making the model well-suited for deployment

on low-memory and low-CPU devices. Despite its e�ciency, MLGCN achieves

competitive performance in object classification and part segmentation tasks,

demonstrating results comparable to state-of-the-art models while requiring

up to a thousand times fewer floating-point operations and significantly less

storage. The contributions of this paper include the introduction of a lightweight,

multi-branch graph-based network for 3D shape analysis, the demonstration

of the model’s e�ciency in both computation and storage, and a thorough

theoretical and experimental evaluation of the model’s performance. We also

conduct ablation studies to assess the impact of di�erent branches within the

model, providing valuable insights into the role of specific components.

KEYWORDS

3D point cloud, 3D shape analysis, Graph Neural Networks, e�cient networks, graph

KNNs

1 Introduction

With advances in 3D acquisition technologies, 3D sensors are becoming more

accessible and cost-effective. Sensors including 3D scanners, LiDARs, and RGB-D cameras

(e.g., RealSense, Kinect, and Apple depth cameras) provide a wealth of information about

the shape, scale, and geometry of objects in the environment. Consequently, there has been

an increasing need to develop algorithms and models for point cloud analysis, and 3D

model classification and segmentation have become active areas of research in machine

learning and computer vision. Deep learning techniques have proven to be highly effective

for this task due to their ability to learn rich features and representations from raw data.

However, most existing 3D deep learning models rely on large and complex architectures,

making them computationally expensive and unsuitable for real-time applications, such as

augmented reality, robotics, and autonomous driving.
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Most sensors on modern 3D perception devices acquire data

in the form of point clouds, and traditionally, researchers sample

this data on voxel grids for 3D volumetric convolutions. However,

the use of low-resolution can result in information loss, e.g.,

when multiple points fall within the same voxel. To preserve

necessary detail in the input data, a high-resolution representation

is preferable, but this can lead to an increase in computational costs

and memory requirements. Whereas data acquired by sensors is

often in the form of 3D point clouds, they are unordered and sparse,

requiring models that are permutation agnostic and multi-scale.

Whereas classical Convolutional Neural Network (CNN) models

have been effective for image-based computer vision problems, they

cannot be directly applied to 3D point cloud analysis.

In recent years, numerous powerful models have been proposed

to analyze point clouds (Qi et al., 2017b; Qiu et al., 2021; Rezanejad

et al., 2022; Ma et al., 2022; Wang Y. et al., 2019; Chen et al.,

2019; Wan et al., 2021; Huang et al., 2024). Most of these models,

however, suffer from a significant drawback: they are typically too

complex in terms of parameters and require a large number of

mathematical operations, making them unsuitable for industrial

use or deployment on lightweight compute devices. Specifically,

many of them need to calculate graphs of connectivity on top of

point clouds multiple times, resulting in a large number of Floating

Point Operations (FLOPs).

The Multi-level Graph Convolution Neural Network

(MLGCN) model is an ultra-efficient approach for 3D point

cloud analysis that utilizes shallow Graph Neural Networks (GNN)

blocks to extract features at various spatial locality levels. It employs

precomputed KNN graphs shared among GCN blocks within a

GNN block, significantly reducing computational overhead and

memory usage. The model demonstrates competitive performance

in object classification and part-segmentation tasks, achieving

results comparable to state-of-the-art models while requiring

up to a thousand times fewer floating-point operations and

significantly less storage. Our work addresses the above limitations

by introducing a lightweight model that can be trained easily

and deployed on low-memory and low-end CPU devices. Instead

of relying on complex and deep structures, such as attention

mechanisms or deep stacks of feature extraction blocks, which

require a large amount of training data and are susceptible to

over-fitting, our proposed model (see Figure 1) consists of multiple

shallow graph-based network blocks that capture information

from point clouds using different graph KNNs. The k-Nearest

Neighbors (KNN) algorithm is a simple, non-parametric method

used for classification and regression, which predicts the label of

a data point based on the majority class or average of its k closest

neighbors in the feature space (Fix and Hodges, 1989). The use of

different KNN graphs combined with shallow GNNs can alleviate

the over-smoothing issue caused by deep GCNs (Li Q. et al., 2018;

Zhou et al., 2020). Furthermore, utilizing precomputed shared

graph KNNs within a GNN block greatly reduces the number

of floating point operations. This architecture offers an efficient

solution for processing point clouds without compromising

accuracy, making it practical for real-world applications. The main

contributions of this paper are as follows:

1. We propose a novel multi-branch, graph-based network that

effectively captures features at various spatial locality levels of

3D objects using lightweight, shallow Graph Neural Network

(GNN) blocks.

2. We demonstrate that our MLGCN model is significantly more

efficient in terms of both computation and storage compared

to existing approaches, without compromising on accuracy for

downstream computer vision tasks.

3. We provide a thorough theoretical and experimental analysis of

our model’s performance, including the impact of each layer and

component on the overall efficiency and accuracy.

4. We conduct extensive ablation studies to investigate the role and

contribution of different branches within the model, offering

deeper insights into its structure and functionality.

2 Related work

Over the past few years, the field of deep learning has seen a

surge in research efforts aimed at developing effective methods for

analyzing 3D sensor data. Methods that are designed for 2D images

cannot be directly applied to 3D point clouds, which can be sparse,

nonuniform in density, and lack local spatial ordering. A promising

neural network model for 3D shape analysis in this setting is the

PointNet model (Qi et al., 2017a). Unlike previous methods that

transform point cloud data to regular 3D voxel grids or collections

of images, PointNet processes point cloud data directly, extracting

information from individual points and aggregating it into a feature

vector using Global Max Pooling. The PointNet model’s inability to

capture local structures induced by themetric space limits its ability

to represent fine-grained patterns and also generalize to complex

scenes. To address this issue, PointNet++ (Qi et al., 2017b) applies

PointNet recursively on nested partitions to extract local features,

then combines the learned features across multiple scales.

In Qiu et al. (2021), the Geometric Back-projection Network

(GBNet) combines channel affinity modules and CNN networks

to improve the representation of point clouds, while learning

both local and global features. GBNet utilizes an error-correcting

feedback structure to design a back-projection CNN module. In

Rezanejad et al. (2022), medial spectral coordinates are added

as additional features to point cloud 3D coordinates. These

coordinates contain both local and global features, resulting in

improved performance of vanilla models for computer vision

tasks. The PointMLP model (Ma et al., 2022) utilizes Multi-layer

Perceptrons (MLP) to gather local information from points in

a hierarchical manner without using a local feature extractor.

Additionally, it employs lightweight affine modules to transform

information from points to a normal distribution.

GNNs have the unique ability to handle topologically-

structured data without requiring explicit encoding into vectors, by

capturing graph-based information (Scarselli et al., 2009), making

them an ideal candidate for the efficient processing of point clouds.

The authors of Wang Y. et al. (2019) proposed the Dynamic

Graph CNN (DGCNN) model where an EdgeConv neural network

module incorporates local information around each point, and

is then stacked to learn global shape properties using Graph

Convolutional Networks. Han et al. (2024) proposed Mamba3D, a

state spacemodel with local geometric features designed specifically

for point cloud learning. The model incorporates a Local Norm

Pooling (LNP) block, which enhances local geometry extraction.
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FIGURE 1

Overview of the MLGCN architecture. (Top) The complete architecture of the MLGCN model, designed for e�cient 3D point cloud processing. The

model consists of multiple branches of Graph Neural Network (GNN) blocks. Input points sampled from a 3D object are processed through these

GNN blocks, which compute features at various spatial locality levels. These features are then used for downstream tasks such as object classification

and part segmentation. (Bottom) Detailed structure of the GNN and Graph Convolutional Network (GCN) blocks, which serve as the fundamental

components of the MLGCN model. The “+” symbol indicates the concatenation operation, allowing for flexible scaling by adding more GCN blocks

as needed to enhance feature extraction and model performance.

Additionally, the proposed C-SSM feature reverse SSM alleviates

pseudo-order reliance in unordered points. Zhang et al. (2019)

enhanced DGCNN by introducing Linked Dynamic Graph

CNN (LDGCNN), which links hierarchical features from different

dynyamic graphs to calculate informative edge vectors. They

removed the transformation network from DGCNN and showed

that an MLP can extract transformation-invariant features. They

further improved performance by freezing the feature extractor and

retraining the classifier.

As attention mechanisms gained momentum in capturing node

representation on graph-based data, Chen et al. (2019) proposed

the GraphAttention-based Point Neural Network (GAPNet)model

which embeds a graph attention mechanism within stacked MLP

layers to learn local geometric representations. The GAP-Layer

employs an attention-based graph neural network to consider

the importance of each neighbor of a point. The Dilated Graph

Attention-Based Network (DGANET) model (Wan et al., 2021)

uses an improved KNN search algorithm to construct a local

dilated graph for each point, modeling long-range geometric

correlations with its neighbors. This helps the point neural

network to learn more local features of each point, with a larger

receptive field during the convolution operation. The authors

embed an offset-attentionmechanism into a dilated graph attention

module and employ graph attention pooling to aggregate the most

significant features. Huang et al. (2024) propose the Dual-Graph

Attention Convolution Network (DGACN), which introduces an

improved version of graph attention that leverages information

from different hops. They also propose a novel graph self-

attention mechanism that extracts more informative features from

point clouds.

Li et al. (2021) proposed sharing KNN graphs among multiple

GCNs to avoid redundant KNN calculations for each GCN.

Additionally, the number of neighbors (K) in the GCNs increases

as information progresses through the layers, ensuring a growing

receptive field. This method also applies MLP before aggregating

the feature. Although they manage to make DGCNN about five

times faster, and about two times smaller, their solution is still

relying on deep GNN blocks and is still very heavy as DGCNN is an

extremely heavy model itself. The Point-transformer (Zhao et al.,

2021) model utilizes self-attention to capture local information in

the vicinity of each point. In addition, the authors introduce a

trainable positional encoding that is learned within the end-to-

end network. Wan et al. (2021), Huang et al. (2024), Wang L.

et al. (2019), and Zhao et al. (2021) use graph attention-based

mechanisms that are known to be parameter-heavy and can make

the process of training and inference computationally expensive.

Point-BERT (Yu et al., 2022) introduces a novel approach to

adapting the Transformer architecture, popularized by BERT, for

the task of processing 3D point clouds. Unlike traditional methods,

the authors propose a Masked Point Modeling (MPM) pre-training

task that involves dividing the point cloud into local patches and

training Transformers to predict masked-out patches, enhancing

the model’s ability to understand complex 3D data. PointGPT

(Chen et al., 2023) introduces a pre-training task focused on

point cloud auto-regressive generation. It divides the input point

cloud into structured patches, arranging them sequentially by

spatial proximity. Leveraging an extractor-generator transformer

decoder with dual masking, PointGPT learns latent representations

from previous patches to predict the next point in an auto-

regressive manner. Point2vec (Zeid et al., 2023) introduces a novel
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self-supervised representation learning approach that overcomes

the shortcomings of data2vec (Baevski et al., 2022), enabling

the acquisition of robust and transferable features through self-

supervised learning.

3 The proposed method: MLGCN

MLGCN is a multi-level graph neural network model that can

capture information from 3D point clouds at different locality levels

efficiently. The model consists of multiple GNN blocks, each taking

a set of 3D point clouds as input and learning a representation of the

3D dataset. Themodel then concatenates and uses these features for

downstream tasks. We have designated two downstream branches:

one for the classification task (i.e., correctly labeling the 3D model)

and one for the segmentation task (i.e., decomposing themodel into

a set of semantically meaningful parts). In this section, we describe

the key components of the MLGCNmodel, a schematic of which is

shown in Figure 1. We assume the following point cloud as input to

the system:

X =
{

pi = (xi, yi, zi) ∈ R
3 for i = 1, 2, · · · ,N

}

(1)

3.1 KNN graphs

Given 3D point cloud data, the model forms a set of KNN

graphs, where the nodes represent 3D points, and each node

is connected to its k closest nodes using edges. The parameter

k defines the locality level around each point where local

neighborhood information will be collected. The unique utilization

structure of our KNN graph is that the graph is computed once for

an input X and then reused for various other blocks’ outputs of Y .

This approach saves computation time and resources, making our

model very efficient. The edge connectivity from the KNN graph

is used to decide on passing information (messages) over an edge,

allowing the model to capture the global features of the input data.

Overall, the KNN graph used in ourMLGCNmodel provides a way

to explore the local structure of 3D point clouds as well as capture

global features efficiently and effectively. To formulate the KNN

graph construction, we define the graph Gk as:

Gk = (X ,Ek) (2)

where X represent the nodes in our graph and Ek ⊆ X × X

represents the edges. Each node pi is connected to another node

pj if pj locates within the k closest neighbors of pi. As the graph is

directed, the graph contains self-loops (see Figure 1 bottom left).

3.2 GNN block

Each Graph Neural Network (GNN) block takes a 3D point

cloud as input and extracts features from it. These features are then

concatenated and used for both classification and segmentation

tasks. To extract these features, the GNN block applies a series of

operations on the input data. First, a multi-layer perceptron (MLP)

is applied to transform the input, which is then processed by a series

of Graph Convolution Network (GCN) blocks and one single KNN

graph. If the parameter k is set to 0, the model skips the KNN

graph computation and extracts only global information from the

point cloud.

Each GCN block processes the input data and then its

output is concatenated with its input and passed to the next

GCN block, along with the output of the KNN graph. The

KNN graph output is shared among GCN blocks within a GNN

block. The next GCN block operates similarly to the previous

one, processing the concatenated features to extract additional

information. This process can be repeated multiple times except

for the last GCN block where the input and output vectors are no

longer concatenated. In Figure 1 bottom left, we illustrate the GNN

block architecture. Here

Ŵ(X ) = f
(

concat{GBki (X )|i = 1, · · · ,m}
)

, (3)

where f is the shared MLP applied to the concatenated outputs of

the GNN blocks GB(X ).

3.3 GCN block

The GCN block in our MLGCN model applies a series of

operations on the input data using the KNN graph information

that was computed previously. The input data is first processed

by a shared multi-layer perceptron. The GCN block then uses the

KNN graph information to propagate the input feature information

for each node and the nodes it is connected to. This operation

allows the model to capture local features of the input data using

the precomputed KNN graph. The output of the GCN block is

then max pooled. This max pooling operation summarizes the

information learned from the input data and allows the model to

capture the most important features of the input with respect to the

defined locality level k.

Our information placement module uses graph connectivity

as follows. We assume our message passing function h(pi, pj,Y)

accepts two nodes pi, pj and then passes the information (yj ∈ Y)

on node pj to node pi conditioned on the graph neighborhood

information, i.e., if (pi, pj) ∈ Ek. Here Ek is shared among all GCN

blocks that belong to the same GNN block. In Figure 1 bottom

right, we show the GCN block architecture.

3.4 Information processing in the GCN
block

As mentioned previously, a GNN block input is a 3D point

cloud X where a graph Gk = (X ,Ek) is made. We now explain

how the inputs and outputs of each GCN block are obtained. Let yti
represent the information from the ith node of our graph after the

tth GCN block operation is applied on the input. We can formulate

yti as

yti = A
({

h(pi, pj, ft(Y
∗(t−1)))|(pi, pj) ∈ Ek

})

(4)

where A is the aggregation function and ft is the tth shared MLP.

The aggregation function used in our pipeline is max pooling
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TABLE 1 We carry out a comparison of various models using di�erent metrics, with processing on the ModelNet-40 dataset as the basis for evaluation.

Method Type Input Model size FLOPS Number of parameters Accuracy GPU memory

Shape Mega bytes (100 mega) 100 thousands Mega bytes

Pointnet (vanilla)

Non-GNN

1,024 3.5 1.5 8 87.1 19

Pointnet 1,024 38 4.5 35 89.2 50

Pointnet++ 1,024 17 8.9 14 90.7 100

GBNet 1,024 34 98 87 93.8 220

PointMLP 1,024 100 157 132 94.5 90

DGCNN

GNN

1,024 21 1,300 18 92.9 110

LDGCNN 1,024 13 920 10 92.9 –

DGANET 1,024 6 – 15 92.3 –

GAPNet 1,024 21 580 19 92.4 31

DGACN 1,024 – 1,600 240 94.1 –

Point-transformer 1,024 82 – 140 93.7 155

Light MLGCN
GNN

1,024 1.5 1.3 1.2 90.7 45

Lighter MLGCN 512 0.4 0.2 0.3 88.6 10

In every column except for the accuracy column, the lowest value is bold. In the accuracy column, the highest value is bold.

(although other aggregation functions could be used as well) and it

is applied along the neighborhood axes. For all GCN blocks except

for the last one, the information is yti concatenated with the input

to the same GCN block:

y∗ti = concat
(

yti , y
∗(t−1)
i

)

. (5)

For t = 1, yti = y∗ti = f0(X ). Now, with the GNN block

represented by GB(X ), GB(X ) = Y l where l is the index of the

last GCN block.

3.5 Overall architecture

Each variation of MLGCN uses a set of GNN blocks with

different values of k. Let the first block be a block with k = 0,

with the purpose of extracting global information for each node.

The other blocks can be set to extract information with different

locality levels. Now assume we have a set of m different GNN

blocks in our model with K = {k1, k2, · · · , km}. As mentioned

previously, outputs of all GNN blocks are concatenated and then

passed through a shared MLP. From there, the extracted features

are pooled and then used in a downstream task, e.g., classification

or segmentation.

3.5.1 Classification branch
We designated a classification branch to classify 3D input

models according to different labels. For the classification task, we

simply apply a max pooling along the node’s axes and pass the

outcome to a classifier as follows:

Lclassification = C
(

A
(

Ŵ(X )
))

(6)

where Lclassification is the set of classification labels, C is a classifier

and A is the max pooling function here.

TABLE 2 Accuracy and mean accuracy of models compared to

LightMLGCN.

Model Accuracy Mean accuracy

3DmFV (Ben-Shabat et al., 2018) 63.0 58.1

PointNet (Qi et al., 2017a) 68.2 63.4

SpiderCNN (Xu et al., 2018) 73.7 69.8

PointNet++ (Qi et al., 2017b) 77.9 75.4

DGCNN (Wang Y. et al., 2019) 78.1 73.6

PointCNN (Li Y. et al., 2018) 78.5 75.1

BGA-PN++ (Uy et al., 2019) 80.2 77.5

BGA-DGCNN (Uy et al., 2019) 79.7 75.7

LightMLGCN 77.3 74.2

LighertMLGCN 74.1 70.8

3.5.2 Segmentation branch
The second designated branch in our overall architecture is

dedicated to the part segmentation of the 3D models. For the

segmentation task, the model concatenates the information of each

node with the repeated pooled information obtained for all the

nodes from the GNN blocks that is used in the classification branch:

Lsegmentation = C
(

concat
(

repeat
(

Ŵ(X )
)

,Ŵ(X )
))

(7)

where Lsegmentation is the set of segmentation labels, C is a classifier

and A is the max pooling function.
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3.6 Light-MLGCN and Lighter-MLGCN

Here, we introduce two sample architectures with an

MLGCN backbone, Light-MLGCN, and Lighter-MLGCN. These

are example models to demonstrate the efficiency of MLGCN-

based models. To show this, we compare their performance to

that of state-of-the-art models that are commonly used for 3D

classification and segmentation problems.

Both Light-MLGCN and Lighter-MLGCN utilize multiple

GNN-blocks with varying k sizes. This allows them to capture

information related to different locality levels without requiring

additional trainable parameters to capture the distance from the

neighborhood center. Additionally, the l value for each GNN block

is set to 2, resulting in a shallow network that is less susceptible to

over-fitting. Moreover, Light-MLGCN computes graphs based on

only three features, as the range of f0 is 3, which makes its graph

calculation process much faster than that of other existing papers.

These models share the graph for each GNN-block, which results in

fewer mathematical operations. Light-MLGCN was trained using

hyperparameters of K = 63, 15, 0, and for each GNN block, y0 ∈

R
1024×3, y1 ∈ R

1024×32, y2 ∈ R
1024×128, and Ŵ(X ) ∈ R

1024×256.

Conversely, Lighter-MLGCNwas trained using hyperparameters of

K = 31, 7, 0, and for each GNN block, y0 ∈ R
512×3, y1 ∈ R

512×16,

y2 ∈ R
512×64, and Ŵ(X ) ∈ R

512×128.

4 Experiments

We now evaluate the performance of our MLGCN models

with respect to different metrics. We demonstrate that our

models achieve comparable accuracy to existing models in both

classification and segmentation tasks while being considerably

smaller and faster.

4.1 Implementation details

We trained our models on a machine with a single P100 GPU

with 12GB memory. For the optimization step, we employed the

Adam optimizer, setting the batch size to 128. The initial learning

rate was 0.001, which was reduced by a factor of 0.997 (e−0.003) after

the 20th epoch.

4.2 Classification

Our primary experiment involves comparing the accuracy and

speed of our models on ModelNet-40 (Wu et al., 2015), a dataset

consisting of 9,843 training and 2,468 testing meshed CAD models

from 40 distinct categories. In Table 1, we compare our model to

several recent and popular models in terms of accuracy, floating-

point operations, number of trainable parameters, model storage

size, and GPU memory.

As shown in Table 1, when comparing Light-MLGCN with the

best model in terms of accuracy, we see that it is more than 100

times more efficient in terms of FLOPS, and is also more than 100

times smaller in terms of the number of parameters and more than

60 times smaller in terms of model size. Whereas it has only 3.8%
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lower classification accuracy on the ModelNet-40 dataset than the

best model (Wu et al., 2015), Light-MLGCN is considerably faster

and more compact.

Among graph-based models, DGACN achieves the highest

accuracy but requires 1,230 times more FLOPS than our model

while only achieving 3.4% higher accuracy. Additionally, Lighter-

MLGCN achieves comparable accuracy to Light-MLGCNwith only

a 2.1% difference, while being significantly smaller and faster and

processing only 512 points sampled from point clouds. A detailed

presentation of our results is in Table 1.

4.2.1 Classification on ScanObject
ScanObject (Uy et al., 2019) is a more recent dataset than

ModelNet-40, with 15,000 3D objects from 15 different classes.

Unlike Modelnet-40, whose objects are synthetic, ScanObject’s 3D

models are real, and as a result, contain background noise and are

sometimes partially occluded. To test the ability of our models, we

tested Light-MLGCN and Lighter-MLGCN on PB_T50_RS, which

is the hardest variant of the ScanObject dataset. The results are

shown in Table 2.

4.3 Segmentation

In addition to the 3D classification problem, we also evaluated

the performance of our models on the part segmentation task

using the ShapeNetPart dataset (Yi et al., 2016). This dataset

contains 16,881 3D shapes from 16 different classes, where each

class has two–six parts, resulting in a total of 50 different parts.

Our objective is to demonstrate that our lightweight model can

achieve comparative results (or even better results) while remaining

significantly smaller in size than other existing models. To ensure

a fair comparison with previous work, we trained and tested

our model on samples comprising 2,048 points each, using the

same settings as those in other papers. The results are presented

in Table 3, which shows that our model achieves comparable

performance with other state-of-the-art models, despite being

much smaller in size.

Moreover, to provide a visual representation of our model’s

output, we compared its output labels to the ground truth in

Figure 2. The results show that our model is able to accurately

segment the parts of the 3D objects, further demonstrating its

efficacy for this task.

5 Ablation studies

We now examine details of our models and demonstrate that

they are much more efficient than the other existing models.

5.1 FLOPS required for each operation

To support the idea of MLGCN, we study the effect of each

layer in our models on the number of floating point operations. In

Table 4, the complexity of each layer in LightMLGCN, in terms of

floating-point operations, is shown. In many graph-based models,

TABLE 4 Here are the complexity of each layer in LightMLGCN.

Layer FLOPS

KNN O(n2 × f )

GCN O(n× f × k)

Dense O(n× f1 × f2)

n is the number of points in a 3D Object, f is the number of features, k is the number of

nearest neighbors, f1 and f2 are the number of in and out features in a Fully connected layer

respectively.

graph calculation is one of the most computationally intensive

operations. To calculate the K-NN graph, the K-nearest neighbor

algorithm is used to find the nearest neighbors of each point. This

results in a computational complexity of O(n2 × f ), where n is

the number of points and f is the length of the feature vector

for each point. Note that there are other algorithms that are not

brute-force and require less number of operations, but they all are

not well parallelizable and therefore not even nearly as efficient

as the brute-force method. This complexity can have a significant

impact on the number of floating-point operations required for a

graph-based model.

Table 5 demonstrates that graph calculation can be highly

resource-intensive when dealing with a large number of points

and features. For instance, the FLOPS required to calculate graphs

using KNN can increase dramatically as the number of points

and features increase. In contrast, Light-MLGCN employs shared

graphs on small feature vectors for multiple GCNs, resulting in

reduced computational overhead. As a result, Light-MLGCN is

able to achieve comparable performance to other state-of-the-art

models while being much faster and smaller in size.

Most current graph-basedmodels used for this specific problem

require multiple instances of graph extraction on point clouds with

32–128 features. This can result in a large number of floating-

point operations, which can lead to reduced performance and

longer training times. As shown in Table 1, graph-based models

generally require significantly more floating-point operations than

non-graph-based models.

5.2 Performance of MLGCN model with
various input shapes

While Light-MLGCN was primarily designed to operate on

1,024 points and Lighter-MLGCN on 512 points, both models can

be tested on other sampled point cloud sizes. This section aims to

demonstrate the effectiveness of our models with different point

cloud shapes. We show that our models can perform well even on

sparser point clouds. To get a better sense of this, we tested both

of our models with input sizes of 128, 256, 512, and 1,024 and

present the number of FLOPS and their corresponding accuracies

in Table 6.

As shown in this table, the simplicity and shallow structure

of both Light-MLGCN and Lighter-MLGCN enable them to

be trained on smaller point cloud samples without over-fitting,

resulting in high accuracy even when using much fewer 3D point
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FIGURE 2

The top row shows the ground truth segmentation, while the bottom row displays the predicted class output label using our MLGCN model.

TABLE 5 We provide a comparison of the number of floating-point

operations (FLOPS) required for di�erent operation types in a model.

Dimension Operation type FLOPS

Configuration Mega

(1,024.3)–(1,024.32) Point-wise dense 0.13

(1,024.32)–(1,024.64) Point-wise dense 2

(1,024.64)–(1,024.128) Point-wise dense 8

(1,024.128)–(1,024.256) Point-wise dense 33

(1,024.512)–(1,024.1024) Point-wise dense 537

(2,048.128)–(2,048.256) Point-wise dense 67

(2,048.512)–(2,048.1024) Point-wise dense 1,074

(1024.3) Graph calculation 4

(1,024,32) Graph calculation 50

(1,024.64) Graph calculation 100

(1,024.128) Graph calculation 201

(1,024.512) Graph calculation 805

(2,048.128) Graph calculation 805

(2,048.512) Graph Calculation 3,221

cloud sample points. This demonstrates the flexibility of ourmodels

and their ability to perform well under varying input conditions.

5.3 MLGCN as an encoder

Our proposed MLGCN model can also serve as an encoder

model for encoding 3D point clouds and extracting meaningful

features. To evaluate this hypothesis, we extracted the information

of the classification MaxPool
(

Ŵ(X )
)

branch (before the classifier)

and projected it into a lower-dimensional space to examine how

these features separate between different classes of 3D models.

Figure 3 presents a (2D TSNE) visualization of the projection

of feature vectors generated by our model when tested on the

TABLE 6 The performance of the MLGCNmodel can vary with di�erent

input shapes.

Model Input shape FLOPS (Giga) Accuracy

Light

1,024 0.13 90.7

512 0.06 89.5

256 0.03 88.4

128 0.014 86.4

Lighter

1,024 0.04 89.8

512 0.017 88.6

256 0.008 86.9

128 0.004 83.7

In order to evaluate the robustness of the model under different input conditions, we

conducted experiments with various input shapes and analyzed the results.

Modelnet-40 dataset onto a 2-dimensional space. The figure clearly

demonstrates that our model can effectively cluster each class of 3D

objects into a separate cluster, indicating the ability of the model

to extract and encode meaningful features from 3D point clouds.

It should be noted that Z-score outlier detection was applied to the

data. The figure suggests that our proposed model can serve as a

robust encoder model for extracting features from 3D point clouds.

6 Role of di�erent sets of K

In this section, we examine the influence of different K values

in the GNN blocks on the performance of the MLGCN model.

The parameter K controls the number of nearest neighbors used

in constructing the KNN graph, thereby affecting the scale at which

features are extracted from the point cloud.

6.1 Impact of di�erent K combinations

As shown in Table 7, we conducted experiments using various

sets of K values, including our baseline configuration of ({0, 15,

63}), where K = 0 captures global features, and K = 15 and K =
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FIGURE 3

A 2D TSNE plot to visualize the projected features obtained by our proposed model (Light-MLGCN) for 20 di�erent object classes.

63 capture increasingly broader local features. This configuration

provided the best trade-off between accuracy and computational

efficiency on the ModelNet-40 dataset. We also tested alternative

sets such as ({0, 19, 63}) and ({0, 9, 44}). While these combinations

performed competitively, the baseline ({0, 15, 63}) set consistently

achieved the highest accuracy, balancing the capture of both local

and global features.

6.2 Importance of global features

Our findings highlight the significance of including K =

0 to capture global features. Incorporating global information

consistently enhances model accuracy, as it provides a broad

context that complements the detailed local features extracted by

higher K values.

6.3 Multi-scale information capture

By combining different K values, the MLGCN model

effectively captures multi-scale information, where each GNN

block focuses on a specific locality level. This multi-scale approach

ensures that both local details and global patterns are well-

represented, improving the model’s robustness in classification and

segmentation tasks.

6.4 E�ciency considerations

The choice of K values also affects the computational cost.

Larger K values (e.g., K = 63) capture more extensive local

structures but require more computations. It is crucial to

balance capturing sufficient locality with maintaining efficiency,

TABLE 7 The outcomes of our proposed model when using di�erent sets

of K in the GNN blocks.

Block FLOPS (Giga) Accuracy

[0, 15, 63] 0.13 90.7

[0, 19, 63] 0.13 90.4

[0, 9, 44] 0.13 90.3

[0, 19, 44] 0.13 90.1

[15, 63] 0.09 90.1

[0, 44] 0.08 89.9

[19, 63] 0.09 89.9

[9, 44] 0.09 89.8

[15] 0.04 89.5

[44] 0.05 89.3

[63] 0.05 89.1

particularly for real-time applications. In summary, the selection

of K values is crucial for optimizing both the performance and

efficiency of the MLGCN model. Adjusting K allows the model to

be tailored to specific tasks, ensuring a balance between accuracy

and computational demands.

7 Conclusion

In this paper, we introduced the Multi-level Graph

Convolutional Neural Network (MLGCN) model, designed

as a lightweight and efficient solution for 3D shape analysis,

particularly for tasks such as 3D object classification and part

segmentation from point cloud data. Our approach is driven

by the need for models that balance high accuracy with low
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computational and memory demands, making them suitable for

practical deployment in industrial and mobile applications.

The MLGCN model achieves this balance by leveraging

shallow Graph Neural Network (GNN) blocks, which

utilize precomputed KNN graphs shared across these

blocks to extract features from 3D point clouds at various

spatial locality levels. This design significantly reduces

the computational overhead and memory usage typically

associated with 3D deep learning models, while still maintaining

competitive performance.

Our extensive experiments demonstrate that the MLGCN

model outperforms many state-of-the-art models in terms of

efficiency, requiring far fewer operations and parameters while still

achieving high accuracy in both classification and segmentation

tasks. Additionally, we explored the impact of various parameters

and model configurations, providing insights into the trade-offs

between model complexity and performance.

Despite these advances, the choice of K values within the GNN

blocks remains an area with potential for further exploration.

Future work will aim to refine these parameters and extend the

application of MLGCN to real-world scenarios, such as real-time

LiDAR data processing, to evaluate the model’s effectiveness in

more complex environments.

Overall, MLGCN represents a significant step forward in the

development of efficient and scalable 3D shape analysis models,

with broad implications for applications in robotics, augmented

reality, and beyond. We hope that this work will inspire further

research into creating even more efficient and lightweight models

for 3D vision tasks in the future.
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