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Computational analysis of countercurrent flows in packed absorption columns,
often used in solvent-based post-combustion carbon capture systems (CCSs),
is challenging. Typically, computational fluid dynamics (CFD) approaches are
used to simulate the interactions between a solvent, gas, and column'’s packing
geometry while accounting for the thermodynamics, kinetics, heat, and mass
transfer effects of the absorption process. These simulations can then be used
explain a column’s hydrodynamic characteristics and evaluate its CO»-capture
efficiency. However, these approaches are computationally expensive, making
it difficult to evaluate numerous designs and operating conditions to improve
efficiency at industrial scales. In this work, we comprehensively explore the
application of statistical ML methods, convolutional neural networks (CNNs),
and graph neural networks (GNNs) to aid and accelerate the scale-up and
design optimization of solvent-based post-combustion CCSs. We apply these
methods to CFD datasets of countercurrent flows in absorption columns with
structured packings characterized by several geometric parameters. We train
models to use these parameters, inlet velocity conditions, and other model-
specific representations of the column to estimate key determinants of CO,-
capture efficiency without having to simulate additional CFD datasets. We also
evaluate the impact of different input types on the accuracy and generalizability
of each model. We discuss the strengths and limitations of each approach
to further elucidate the role of CNNs, GNNs, and other machine learning
approaches for CO»-capture property prediction and design optimization.

KEYWORDS

machine learning, graph neural networks, convolutional neural networks,
computational fluid dynamics, carbon capture systems

1 Introduction

Electricity generation is a main contributor to global greenhouse gas emissions, and
reducing the carbon intensity of this process is critical to reducing greenhouse gas
concentrations to safe, sustainable levels (Arto and Dietzenbacher, 2014). Mitigating
emissions from fossil-based power plants can be achieved with various CO;-capture
technologies. Typically, CO,-capture from flue gas is accomplished using pre-combustion,
oxyfuel-combustion, or post-combustion technologies (Koytsoumpa et al., 2018). Among
these, the most utilized approach is solvent-based post-combustion, wherein CO; is
absorbed through interactions between a liquid solvent and flue gas inside a reactor column
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filled with packings (Wang et al., 2017); an example of a column is
shown in Figure 1a. Packings are structured materials placed inside
the column to help distribute the flow of a solvent throughout
the column and increase the contact surface between the solvent
and flue gas, thereby enhancing the efficiency of CO, absorption.
A fundamental challenge in designing such solvent-based carbon
capture systems (CCSs) is optimizing the selection of solvent,
packing geometry, and operating conditions to maximize CO;-
capture. The combination of the large design space of parameters
and complex interactions between the solvent, gas, and packings
makes it difficult to find an optimal configuration that maximizes
CO;-capture efficiency while minimizing costs associated with
searching, building, and testing a candidate design of a CCS.

Computational fluid dynamics (CFD) simulations can provide
detailed insights into the fluid flow and interactions between
solvents and CO,-rich flue gases without physical testing, making
it possible to virtually evaluate a wide range of alternative designs
quickly and cost-effectively. These simulations are crucial for
reducing product-development cycles and scaling up from lab
to industrial applications, ensuring robust and scalable designs
(Mudhasakul et al., 2013; Razavi et al., 2013). However, generating
CFD simulations is computationally expensive, presenting a major
bottleneck in evaluating potential configurations within a CCS
design optimization process. As a result, there has been a growing
interest in using machine learning (ML) to accelerate CFD
simulations and obtain near-real-time predictions (Bhatnagar et al.,
2019; Kochkov et al.,, 2021; Thuerey et al., 2020). Carbon capture
technologies have seen emerging applications of ML to both
large-scale (industries) and small-scale (R&D and laboratory-scale)
problems, including optimizing flow operating conditions and
screening ionic liquids, adsorbents, and membranes (Shalaby et al.,
2021; Venkatraman and Alsberg, 2017; Meng et al., 2019; Zhang
et al,, 2022). Additional backgound information and related works
can be found in Supplementary material, Section 3.

In this study, we evaluate the performance of statistical ML
methods, convolutional neural networks (CNNs), and graph neural
networks (GNNs) in predicting CO,-capture efficiency metrics.
Our results indicate that the GNN-based model outperforms other
methods in terms of prediction accuracy. We also highlight the
importance of using detailed data representations, such as images
and structured graphs, to enhance predictive performance. The
findings of this research provide valuable guidance for selecting
appropriate ML algorithms and demonstrate the potential of
leveraging these models to identify optimal packing geometries and
operating conditions.

2 Method

2.1 Dataset description

We focus on a COjz-capture column with periodic or
structured packings, which is commonly used in solvent-based
post-combustion CCSs. Within these columns, CO; is captured
through an absorption process caused by the interaction between
a liquid solvent and a CO;-laden gas. The structured packings
help distribute the flow of solvent and increase the surface area
of interaction. Figure 1b shows a CFD simulation snapshot of
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countercurrent flow occurring in a 2D bench-scale column, in
which solvent is injected into the column from the top “inlets” and
a compressible ideal gas is injected below.

Two key CO;-capture efficiency metrics that can be derived
from CFD simulations of this flow are the interfacial area and the
wetted area. The interfacial area represents the total surface area
where the liquid solvent meets the CO,-laden gas. The rate of CO,
absorption is correlated with the available interfacial area for mass
transfer between the gas and liquid phases; an increased interfacial
area provides more points of interaction, which can enhance the
CO; absorption efficiency (Ataki and Bart, 2006; Tsai et al., 2011).
The wetted area measures the surface area of the packing materials
that is in contact with the liquid solvent (Bolton et al., 2019). Proper
wetting of the packing materials is crucial for ensuring optimal
effective mass transfer between the two phases, and the amount of
wetted area can influence how effectively the solvent is distributed
and retained, thereby affecting its contact with the gas (Singh et al.,
2022).

Due to the high computational costs of generating a CFD
simulation and the labor, material, and other expenses required
to physically build a column, we seek to train ML models
to accurately estimate CO;-capture efficiency metrics based on
the physical geometry of a column and its expected operating
conditions to screen designs, without having to compute additional
CFD simulations or physically build a candidate design. However,
to train ML models, we still require an initial dataset of CFD
simulations of countercurrent flows from which we can compute
these metrics. We use Ansys Fluent (Ansys, 2011) to model the
fluid dynamics and chemical interactions within a CO;-capture
column under various operating conditions and packing geometry
configurations. In particular, we consider two inlet velocity values,
0.01 and 0.05 m/s, which describe the flow rate of the solvent into
the column. For small inlet velocities, the wetted area may be more
stable and predictable, but the interfacial area may be less effective
due to lower turbulence (Zhu et al., 2020). In contrast, for large inlet
velocities, the wetted area may be more variable due to increased
turbulence, which may enhance the interfacial area by improving
the contact between the phases, thus potentially increasing the
efficiency of CO, capture (Zhu et al., 2020). We also consider
structured packing geometries that are parameterized by three
structural variables: 6, H, and d. Figure 1c shows a representative
column; 6 describes the angle of a packing unit, H describes the
length of unit, and d describes the distance between units. We
consider the following values: 6 € [30, 45, 65], H € [10, 13, 14.8],
and d € [1.78, 2.68, 3.56].

For each combination of inlet velocity and packing
configuration, we generate a simulation in Ansys Fluent using
a detailed two-phase reacting flow model (see Prosperetti and
Tryggvason, 2009; Brackbill et al., 1992; Panagakos and Shah, 2023
for further details). We use three types of data representations
in our machine learning models: a 3-parameter representation
(0, H, d), an image-based representation of the CO;-capture
column, and a graph-based representation derived from the CFD
mesh used to generate the simulations in Ansys Fluent. To assess
the impact of turbulent data, we consider three dataset variants
based on the inlet velocity: one using data with an inlet velocity of
0.01 m/s only, another with 0.05 m/s only, and a third combining
data from both inlet velocities. We divide each dataset into train
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(b)

FIGURE 1
(a) Illustration of 3D CCS with packings placed inside the reactor column; (b) CFD simulation of a 2D slice at a given time step and a zoomed view of

triangular meshes; (c) structured packing geometry (defined with three parameters) and colored node types: column walls, packing,

(©

, gas outlet,

and test splits using Latin hypercube sampling (Loh, 1996) to
ensure sufficient coverage of the 3-parameter space in the training
set. In the combined velocity dataset, we include the inlet velocity
value as an additional input modeling feature. These scenarios
allow us to better assess each model’s performance under specific
conditions (single velocity) and its ability to make predictions
across varied operational conditions (combined velocities). If
our ML models are trained accurately with these simulations,
additional CFD simulations will not be required to estimate the
efficiency measures of other unseen parameter and operating
configurations. Additional data processing details can be found in
Supplementary material, Section 1.1.

2.2 Methods details

2.2.1 Statistical ML methods

We first consider a set of baseline statistical ML methods,
including elastic net, lasso regression, linear regression, partial least
squares regression, and ridge regression, to predict CO,-capture
efficiency metrics. To apply these methods, we use the 3-parameter
representation of the packing geometries and the inlet velocity as
inputs. Some of the major advantages of this approach include
the simplicity of the data representation, availability and ease of
use of the methods, computational efficiency, potential robustness
to overfitting with proper training, and model interpretability.
Because of the simplicity of the methods and the input data
representation, this approach serves as a benchmark for the more
complex data representations and advanced ML algorithms that we
will consider. We implemented these methods using scikit-learn
and optimized their hyperparameters through cross-validation.

The data representation used in this approach, however,
may be too simplistic and limited for practical application
and extrapolation. While the 3-parameter model efficiently
encapsulates the basic dimensions and arrangements of the design
shown in Figure lc, it cannot fully account for more complex
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or novel packing geometries. First, the model will be strongly
limited to the domain covered by the training dataset’s parameter
space. In addition, the model cannot be used to make predictions
about CO;-capture efficiency when the design of the column is
scaled or augmented, such as by expanding the column’s width
or height, and increasing or lengthening the pairs of packings.
More advanced ML architectures can potentially overcome these
limitations; methods such as CNNs and GNNs are capable of
capturing spatial hierarchies and complex topologies within data,
thus providing a more detailed understanding of fluid dynamics
and interactions within varied packing geometries.

Overall, while statistical ML methods are computationally
efficient and provide a solid foundation for initial modeling, their
inability to fully extrapolate to more complex geometries limits
their potential in scaling and optimizing CCS designs. More
sophisticated techniques may yield significant improvements in
predictive accuracy and design flexibility. To this end, we consider
CNNs and GNN.

2.2.2 Convolutional neural networks

Since the computational mesh used to generate CFD
simulations of the CO;,-capture column can also be represented
as an image by using a grid interpolation, we next consider
applications of CNNs to predict CO;-capture efficiency. CNNs are
a class of deep learning models widely used for image classification,
object detection, and other visual recognition tasks (Li et al., 2021)
and have also been used in other CO;-capture-related applications
(Zhou et al.,, 2019; Kaur et al., 2023). Here, we adapt the LeNet
architecture (LeCun et al., 1998) and hypothesize that the CNN
can use the image representation of the column and analyze the
spatial complexities of the walls, packing structures, inlets, outlets,
and other physical components to make accurate predictions of the
interfacial area and wetted area.

We consider two types of image representations of the column.
First, we interpolate the CFD mesh onto a 3 x 128 x 128 colored
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image. A colored image allows us to distinctly represent the various
physical components of the column, each differentiated by unique
colors (see Figure 1c). Compared to the 3-parameter representation
used in the statistical ML models, these images provide richer
detail about the spatial and structural components of the column
and provide an avenue to extrapolate to structures that cannot
be represented by the three parameters. However, CNNs typically
require more computational power and, given the size of our
dataset, may be prone to overfitting. We therefore also interpolate
the mesh onto a 1 x 128 x 128 grayscale image, which simplifies
the representation by translating all features into shades of black
and white but eliminates the explicit distinction between different
types of boundaries and structures. The reduced dimensionality
provides a more generalized view but forces a tradeoff between
computational efficiency and data intricacy that may be critical for
making accurate predictions about CO;-capture efficiency.

The LeNet architecture that we adapted to our use-case consists
of two convolutional layers, each with a kernel size of 32, followed
by three multi-layer perceptron (MLP) layers. We use ReLU
activation functions throughout the model. To incorporate inlet
velocity as an input, we use an additional linear layer to generate
a 128-dimensional velocity embedding. This embedding is then
concatenated with the LeNet model’s output after the first two
MLP layers. We then process the resulting vector through the
third MLP layer to produce the final output prediction. We
train the model using an Adam optimizer with a learning rate
of le-4, 1,000 training steps, and a batch size of 8. Additional
information on data processing and model details can be found in
Supplementary material, Sections 1.2, 2.1.

CNNs provide a powerful tool for capturing and analyzing
the intricate details of the packed column, allowing us to begin
generalizing predictions to packing geometries that cannot be
represented by the three-parameter representation. However, these
models demand careful management of computational resources
and model complexity. Furthermore, the models require a fixed
image size as input, which prevents the models from generalizing
to columns of different scales. For example, a column that has
twice the physical height or width of the columns that our CNN is
trained on still needs to be projected onto a 128 x 128 image to be
processed by the CNN, but information about the details and scale
of the column is lost. To address this weakness, we now consider
GNNGs.

2.2.3 Graph neural networks

GNNs (Zhou et al, 2020) are a class of deep learning
models designed to operate on graph-structured data, allowing
them to capture relational information between entities. GNNs
have demonstrated promising results in various application areas,
including chemical reaction and property prediction (Do et al,
2019; Gilmer et al.,, 2017; Xie and Grossman, 2018; Sanyal et al,,
2018; Nguyen et al, 2021; Zhang et al, 2024), fluid dynamics
prediction (Hu et al., 2023), and CO,-capture-related applications
(Jian et al., 2022; Bartoldson et al., 2023). Unlike CNNs, GNNs can
operate on unstructured grids of arbitrary sizes and thus have better
generalizability across various packing columns and scales. Since
the computational mesh used to generate CFD simulations of the
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CO;-capture column is also a graph, we can apply GNNs to handle
the complex geometries of the column. GNNs come in various
architectures, each with unique approaches to aggregating and
processing information across graph structures. Here we consider
three commonly used models: Graph Convolutional Networks
(GCN) (Zhang et al., 2019), Graph Attention Networks (GAT)
(Velickovi¢ et al., 2017), and Graph Isomorphism Networks (GIN)
(Xu et al., 2018).

We construct a graph by starting with the mesh representation
of the packed columns used in the CFD simulations. Nodes in the
graph represent different locations in the column. To incorporate
geometric information, we include each node’s position and one-
hot encoded type as node features, and we include relative positions
and distances between nodes as edge features. This approach
allows our GNN-based models to effectively capture the spatial
relationships and geometric characteristics of the column’s packing
geometry, scale to arbitrary mesh sizes, and infer on novel column
designs.

On average, the graph of each column configuration consists
of 183,844 nodes and 1,090,258 edges. To preprocess the mesh
data (see Figure 1b) for GNN, we encode node and edge features
using a linear layer to obtain 64-dimensional latent embedding
vectors, which are then passed through eight GNN layers to
perform message-passing and obtain node embeddings. We obtain
the final graph embedding by applying max pooling to the node
embeddings. Our experiments indicate that only considering nodes
related to packing geometries during the pooling process yields
better performance compared to pooling over all nodes. To
incorporate inlet velocity as an input, we use an additional linear
layer to generate a 64-dimensional velocity embedding. We then
concatenate the graph and velocity embeddings and feed them
through a two-layer MLP to obtain an output prediction. To train
the model, we use a batch size of 4 and an Adam optimizer with a
learning rate decayed from le-3 to le-5 over 1,000 training steps.
Additional information on data processing and model details can
be found in Supplementary material, Sections 1.3, 2.2.

Compared to the statistical ML- and CNN-based approaches,
the GNN-based approach is more flexible in adapting to different
packing geometries and scales. Since GNNs can process graphs
of arbitrary sizes, we can infer CO;-capture efficiency measures
for columns whose sizes are different from those of the training
set by simply representing the new columns with a larger graph.
In addition, we can perform inference for packing geometries
not captured by the 3-parameter representation (Figure l1c) by
assigning the node types correctly in the new geometries. Therefore,
GNNs can provide more flexibility in evaluating a broader range
of designs and operational scenarios within a design optimization
pipeline.

3 Results

We evaluate the accuracy of our models using three
metrics: R-squared (R*), Root Mean Square Error (RMSE),
and Mean Absolute Percentage Error (MAPE). Comparisons
of these metrics and predictions for our statistical ML,
CNN-based, and GNN-based models are shown in Table 1
and Figures 2, 3.
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TABLE 1 A comparative analysis of various ML models in their ability to predict CO;-capture efficiency metrics.

Interfacial area

Wetted area

RMSE | MAPE | RMSE | MAPE |
Inlet velocity @ 0.01 m/s
Elastic net 0.876 0.028 0.037 0.919 0.028 0.064
Lasso regression 0.649 0.047 0.066 0.913 0.029 0.065
Linear regression 0.833 0.033 0.054 0.836 0.040 0.096
Partial least squares 0.833 0.033 0.054 0.836 0.040 0.096
Ridge regression 0.854 0.030 0.046 0.868 0.036 0.086
CNN (gray) 0.899 % 0.036 0.025 £ 0.004 0.041 + 0.007 0.875 % 0.029 0.035 + 0.004 0.079 +0.012
CNN (color) 0.872 4 0.119 0.027 £ 0.013 0.038 +0.019 0.844 4 0.047 0.039 % 0.006 0.082 % 0.026
GNN (gen) 0.814 & 0.076 0.034 + 0.008 0.057 £ 0.015 0.855 + 0.039 0.037 + 0.005 0.083 +0.017
GNN (gat) 0.711 £ 0.193 0.040 + 0.015 0.063 + 0.025 0.834 +0.119 0.038 £ 0.013 0.081 + 0.027
GNN (gin) 0.667 £ 0.182 0.045 4 0.011 0.074 £ 0.020 0.730 £ 0.156 0.049 4 0.014 0.105 £ 0.032
Inlet velocity @ 0.05 m/s
Elastic net 0.417 0.068 0.063 0.337 0.084 0.102
Lasso regression 0.194 0.080 0.065 0.389 0.081 0.090
Linear regression 0.403 0.069 0.064 0.199 0.092 0.108
Partial least squares 0.403 0.069 0.064 0.199 0.092 0.108
Ridge regression 0.408 0.069 0.064 0.355 0.083 0.101
CNN (gray) 0.764 £ 0.097 0.043 +0.010 0.036 & 0.006 0.832 £ 0.099 0.041 4 0.013 0.049 £ 0.019
CNN (color) 0.844 £ 0.056 0.035 % 0.007 0.027 % 0.006 0.855 % 0.064 0.038 £ 0.010 0.041 % 0.005
GNN (gen) 0.782 4 0.159 0.039 +0.014 0.034 £ 0.011 0.848 4 0.127 0.037 £ 0.016 0.043 +0.016
GNN (gat) 0.752 4 0.076 0.044 % 0.007 0.039 % 0.004 0.676 % 0.059 0.059 % 0.005 0.068 + 0.003
GNN (gin) 0.869 £ 0.065 0.031 % 0.007 0.026 =+ 0.005 0.620 £ 0.244 0.060 =+ 0.022 0.064 £ 0.020
Inlet velocity @ 0.01 & 0.05 m/s
Elastic net 0.926 0.056 0.071 0.868 0.058 0.105
Lasso regression 0.873 0.073 0.085 0.762 0.078 0.136
Linear regression 0.954 0.044 0.056 0.888 0.053 0.096
Partial least squares 0.954 0.044 0.057 0.886 0.054 0.095
Ridge regression 0.948 0.047 0.060 0.868 0.058 0.105
CNN (gray) 0.956 % 0.001 0.043 % 0.000 0.055 % 0.002 0.878 4 0.004 0.055 £ 0.001 0.093 + 0.002
CNN (color) 0.957 £ 0.001 0.043 % 0.000 0.055 % 0.001 0.879 4 0.001 0.055 £ 0.001 0.092 + 0.003
GNN (gen) 0.984 4 0.005 0.026 + 0.004 0.032 % 0.006 0.968 4 0.010 0.028 + 0.005 0.046 % 0.010
GNN (gat) 0.986 % 0.005 0.024 % 0.004 0.029 % 0.007 0.966 % 0.009 0.029 + 0.004 0.045 % 0.006
GNN (gin) 0.991 =% 0.003 0.019 % 0.003 0.026 % 0.004 0.971 £ 0.013 0.026 % 0.006 0.044 %+ 0.010

The evaluation encompasses three distinct datasets, each corresponding to different inlet velocities: 0.01 m/s, 0.05 m/s, and a combined dataset that integrates both velocities. For both CNNs
and GNNG, the performance metrics are summarized with their mean values and standard deviations, calculated across five different random initialization seeds. Bold values indicate the best

results for each metric across different evaluation conditions.

3.1 Statistical ML results

The statistical methods exhibit high prediction accuracy
when trained only on the 0.01 m/s inlet velocity data or
when trained on the combined velocities, and among these
methods, Elastic Net shows the strongest performance. In

Frontiersin Artificial Intelligence

05

contrast, when trained using only the higher inlet velocity
of 0.05 m/s, there is a marked drop in performance across
all metrics. This performance gap suggests that statistical
ML methods struggle to interpret the complex data resulting
higher
velocities. Comparing efficiency measures, the accuracy for

from increased turbulence and complexity at
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FIGURE 2

Relationship between predicted (mean value across all seeds) and actual interfacial area (IA) values for various models and various inlet velocities (i.e.
0.01 m/s, 0.05 m/s, and combined). Blue dots represent training data, while orange dots represent test data. The blue and orange lines are linear
regression lines for blue and orange dots, respectively. The black dotted line indicates perfect prediction. Dots closer to this line and the alignment of
the regression lines with the dotted line reflect better model accuracy and generalization. (a) Inlet velocity = 0.01 m/s. (b) Inlet velocity = 0.05 m/s.

(c) Inlet velocity = 0.01 m/s and 0.05 m/s.
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interfacial area is almost always higher than for wetted area
when the dataset includes the higher inlet velocity data.
This is likely because the interfacial area is more directly influenced
by primary flow dynamics and solvent-gas interactions, whereas
the wetted area involves more complex and variable factors, such
as the distribution and retention of the solvent on the packing
surfaces, which are highly sensitive to changes in turbulence and
flow conditions, making it harder to model accurately. These effects
become more pronounced at larger inlet velocities due to the
increased turbulence and chaotic flow patterns, which exacerbate
the variability in solvent distribution and retention, leading to
greater prediction challenges (Prosperetti and Tryggvason, 2009;
Panagakos and Shah, 2023).

Overall, the statistical ML methods can make accurate and
rapid estimates of efficiency metrics, particularly with low inlet
velocity data. However, they face challenges in predicting outcomes
when higher inlet velocity data is involved, falling short compared
to CNN- or GNN-based approaches. These advanced models
are better equipped to handle complex spatial and relational
data, leading to superior performance in predicting CO,-capture
metrics, which we discuss in detail in the following sections.

3.2 CNN-based prediction results

As shown in Table 1, CNN-based methods demonstrate higher
prediction accuracy with the higher inlet velocity model compared
to the lower inlet velocity model, in contrast to the trend observed
with statistical ML models. This improvement is attributed to the
CNN’s ability to effectively model data with greater complexity
and turbulence. When trained and tested on the combined velocity
dataset, the prediction accuracy improves over the single inlet
velocity cases. This can be attributed to the larger volume of
training data and the CNN’s ability to learn from a more diverse
set of flow conditions. Additionally, the difference in accuracy
between the two efficiency measures is small, suggesting that CNNs
effectively capture and interpret complex patterns in the data,
whether they arise from turbulence or chaotic flow conditions.

Notably, CNNs demonstrate superior prediction accuracy
for both efficiency metrics when trained and tested at the
high inlet velocity. This highlights the importance of selecting
appropriate data representations for our problem setting. Image-
based representations, which incorporate packing geometries and
even distinguish different physical components in the colored
images, provide crucial spatial and contextual details that enhance
the accuracy of predicting interfacial area and wetted area.

Furthermore, according to Table 1, the colored image model
outperforms the grayscale image model in datasets that include
the higher inlet velocity. This is also evident in Figures2, 3,
where the efficiency measure predictions are closer to the ground
truth for the colored model. As data complexity increases, input
representations with richer details (i.e., colored images) enable
the model to extract more valuable information compared to the
simplified representations (i.e., grayscale images). This underscores
the benefits of using a three-channel input to differentiate various
boundaries and structures within the column, highlighting the
importance of choosing appropriate data representations.
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In general, the performance of our CNN-based models
highlights the advantages of using richer data representations for
predicting CO;-capture efficiency metrics. Next, we discuss the
GNN-based model, which further improves prediction accuracy by
leveraging graph structures to represent the complex geometries
and interactions within the CO,-capture columns.

3.3 GNN-based prediction results

Compared to the previous methods, the GNN-based methods
achieve the highest prediction accuracy in most cases. Although
there is a slight drop in accuracy for wetted area predictions across
the three datasets, GNNs still maintain a high level of accuracy.
Additionally, similar to statistical ML and CNNs, GNNs show a
notable improvement in prediction accuracy when more data is
available (i.e., combined inlet velocities) compared to using less
data (i.e., single inlet velocity). This demonstrates that increasing
both the quantity and variability of the data has a consistently
positive effect across different learning-based models.

When comparing GNNs and CNNs, GNNs demonstrate
superior overall performance, particularly excelling over CNNs
when both velocity data sets are used for training. Such
observation indicates that GNNs can better capture and model
complex relationships, especially when more data is available.
This underscores the robustness and adaptability of GNNs in
handling diverse data complexities, making them a more reliable
and favorable choice over CNNs for tasks requiring consistent
accuracy across varying conditions. The superior generalizability
of graph-based representations compared to image-based ones
further enhances their effectiveness. Among three GNN models,
GIN stands out with the best performance across most scenarios,
while GCN demonstrates the most consistent results overall.
GAT, though still effective, tends to have the lowest performance
compared to GIN and GCN in most cases.

Overall, in addition to its high prediction accuracy, GNN-based
methods offer greater flexibility in adapting to different packing
geometries and scales due to its graph-based representation.
Consequently, the GNN-based methods enable the evaluation of a
broader range of designs and operational scenarios within a design
optimization pipeline for CCS.

4 Discussion

In this work, we applied various ML models, including
statistical ML methods, CNNs, and GNNg, to predict CO,-capture
efficiency metrics. While statistical ML methods made fast and
accurate estimates at lower inlet velocities, they struggled with
higher velocities due to increased turbulence and complexity.
Additionally, these models were limited to the 3-parameter
packed column designs and scale of the training dataset columns.
Conversely, CNN-based models, especially those using colored
images, demonstrated high prediction accuracy, highlighting the
importance of detailed data representations. However, the CNNs
required a fixed image size as input, limiting their generalizability
to different scales. In contrast, the GNN-based models consistently
outperformed other methods due to their ability to capture
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complex relationships within graph-structured data. GNNs excel
at learning structural and relational details, enabling them to
adapt effectively to novel CCS column configurations, a crucial
capability for real-world applications requiring modifications to
column designs or operational conditions.

In summary, our results demonstrate that we can use ML
models to estimate various CO;-capture efficiency measures
without the need for additional CED simulations. However, our
approach still requires a large amount of data, and the CFD
data that we summarized into efficiency measures is not fully
utilized. An alternative approach would be to directly predict
CFD simulations using ML-based methods and then compute the
efficiency measures from those simulations. While this method
would maximize the use of available data and potentially enhance
prediction accuracy, it remains a challenging task due to the
complexity of accurately modeling detailed CFD simulations.
Future research may focus on overcoming these challenges to
develop more efficient and effective prediction models.
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