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Introduction: Individuals with diverse motor abilities often benefit from

intensive and specialized rehabilitation therapies aimed at enhancing their

functional recovery. Nevertheless, the challenge lies in the restricted availability

of neurorehabilitation professionals, hindering the e�ective delivery of the

necessary level of care. Robotic devices hold great potential in reducing the

dependence on medical personnel during therapy but, at the same time, they

generally lack the crucial human interaction and motivation that traditional

in-person sessions provide.

Methods: To bridge this gap, we introduce an AI-based system aimed at

delivering personalized, out-of-hospital assistance during neurorehabilitation

training. This system includes a rehabilitation training device, a�ective signal

classification models, training exercises, and a socially interactive agent as

the user interface. With the assistance of a professional, the envisioned

system is designed to be tailored to accommodate the unique rehabilitation

requirements of an individual patient. Conceptually, after a preliminary setup

and instruction phase, the patient is equipped to continue their rehabilitation

regimen autonomously in the comfort of their home, facilitated by a socially

interactive agent functioning as a virtual coaching assistant. Our approach

involves the integration of an interactive socially-aware virtual agent into a

neurorehabilitation robotic framework, with the primary objective of recreating

the social aspects inherent to in-person rehabilitation sessions. We also

conducted a feasibility study to test the framework with healthy patients.

Results and discussion: The results of our preliminary investigation indicate

that participants demonstrated a propensity to adapt to the system. Notably, the

presence of the interactive agent during the proposed exercises did not act as a

source of distraction; instead, it positively impacted users’ engagement.

KEYWORDS

social agent, virtual coach, robotic neurorehabilitation, behavior adaption, human-

robot interaction, a�ective computing

1 Introduction

Neurorehabilitation is a widely used medical practice that aims to aid recovery

from a nervous system injury. Its purpose is to maximize and maintain the patient’s

motor control while trying to restore motor functions in people with neurological

impairments. Given the constant growth and aging of the world population, the

number of patients affected by neuromotor disorders that seek the attention of
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professionals for their rehabilitation therapy is constantly

increasing (Crocker et al., 2013). However, due to a lack of

medical personnel, it is impossible to provide the intense training

that would be needed for an effective recovery of the patient’s

capabilities, therefore hindering the actual outcomes of the

treatment (Teasell et al., 2005).

This situation is both harmful for the patients and constitutes a

relevant burden on society and the healthcare system (Wynford-

Thomas and Robertson, 2017). To address this issue, robot-

assisted training has been widely investigated as an effective

neurorehabilitation approach that helps augment physical therapy

and facilitates motor recovery. According to literature, such

approaches can help therapists save time and energy while

providing patients with a tool capable of assisting the execution

of accurate and repetitive moments in high-intensity training

sessions (Kwakkel et al., 2008; Zhang et al., 2017; Qassim and

Wan Hasan, 2020). The current situation sees a limited number

of this kind of devices, already installed in rehabilitation clinics,

hindering their potential as they have to be scheduled over a large

number of patients (Maciejasz et al., 2014; Stein, 2012). However,

forecasts show that a relevant diffusion of this technology is taking

place meaning that, in the near future, we will see an exponentially

rising number of the installations of this technology (Morone

et al., 2023). Moreover, most of the devices currently available

are bulky and expensive but, thanks to the push for telemedicine

and telerehabilitation, a new generation of rehabilitation robots is

making its way into the market (Washabaugh et al., 2018; Molaei

et al., 2022; Mayetin and Kucuk, 2022; Tseng et al., 2024). These

affordable and portable solutions would allow for the capillary

diffusion of the technology, out of the clinics and directly at home

for the patients to use. The application of rehabilitation robots in

domestic environments would represent a plausible solution to the

lack of treatment intensity that patients are experiencing nowadays.

In fact, a system capable of assisting the patient in performing

the necessary repetitive motions would relieve a lot of the

pressure that is acting on the clinical structures, since the physical

presence of medical personnel would be required only for sporadic

interventions. However, a crucial issue for rehabilitation training is

user engagement and motivation (Blank et al., 2014), which may be

lacking if the rehabilitation system is used without a humanmedical

coach. Since the effectiveness of the treatment has been proven to

be related to the patient’s level of engagement (Turner-Stokes et al.,

2015), it is important for the envisioned system not only to be able

to physically assist the patients but also to understand their affective

state and react accordingly. Hence, we believe that introducing a

socially-aware interactive virtual agent could represent a promising

solution to recreate the social aspects of in-person rehabilitation

sessions. In this scenario, having a socially interactive agent can

help support the patients’ engagement and motivation in a flexible

and personalized way. It is important to state that professional

physiotherapists would still play a fundamental role in this home-

based robotic treatment. In fact, the system is envisioned to be

used by patients at home only after a training phase. During this

phase, the system is required to learn directly from the experience

of professional physiotherapists how to respond to the needs of

the specific patient (Lequerica et al., 2009). In particular, the

system should be able to understand both the patient’s residual

physical capabilities, in order to provide a properly tuned level

of assistance, and the behavioral patterns that should be elicited

by the virtual coach in order to keep the patient engaged in the

exercise. Moreover, insights from the field of social robotics suggest

that the enhancement of a rehabilitation system through affective

and social signal processing can augment the personalization of

the system and further facilitate neuroplasticity (Nahum et al.,

2013). Therefore, a neurorehabilitation training system capable of

modeling the patient’s state and tuning its behavior depending on

both the measured performance deviation index and the inferred

mental and physical state could improve the user’s engagement

and the outcome of the therapy. The performance deviation

index, which is inversely proportional to the user’s performance,

represents the deviation of the actual path followed by the

participant from the ideal path.

This paper investigates the feasibility of the Empathetic

Neurorehabilitation Trainer depicted in Figure 1, a technology-

based upper-limb neurorehabilitation system equipped with social

interaction capabilities and composed of (1) a planar rehabilitation

device for physical assistance and (2) a socially interactive virtual

agent in the role of a supportive coaching assistant. In this

context, the physiological and behavioral signals of the user

are collected, analyzed, and elaborated into attentiveness, stress,

and pain information, which are then exploited to tune the

rehabilitation session coherently. Proving the feasibility of the

proposed approach represents a first step in the direction of smart

and scalable robot rehabilitation systems which would be beneficial

in closing the gap between the need of intense training and the lack

of available personnel.

The paper is structured as follows: Section 2 provides a

complete overview of the background knowledge and related works

on which the rest of the study is based on. Section 3 presents

the materials and methods used to build the proof-of-concept

system tested in Section 4. Finally, Section 5 is dedicated to the

discussion of the collected outcomes before the conclusions drawn

in Section 6.

2 Background and related works

Before going straight into the description of the envisioned

Empatic Neurorehabilitation Trainer, an overview of the

background knowledge gathered and analyzed as a basis for

the conceptualization of the system is reported.

2.1 Neurorehabilitation best practices

In order to gather precious insights on the strategies

and struggles that professional neurorehabilitation therapists

experience during their daily practice, we decided to perform a

series of interviews online through Microsoft Teams as free open

discussions. Overall, we were able to collect the point of view of 15

therapists spread over the Italian territory and here a summary of

the obtained insights is reported.

The constantly growing employment of technological

devices in neurorehabilitation therapy can be explained by the

introduced ease in reaching a significant number of movement

repetitions in a specific body district (body parts grouped by
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functionality) (Bonney et al., 2017) and in obtaining higher patient

engagement, fundamental aspects in the motor rehabilitation

process. In this regard, one of the interviewees said (translated

from Italian): “I like to use technological solutions for the intensity

they can provide and for the possibility to perform rehabilitation

also in very extreme cases.” However, even when relying on robotic

solutions, one must be able to balance movement repetition, often

leading to boredom, with variability and incentive to enhance the

patient’s attention and commitment.

During every therapy session, a therapist assesses the actual

level of attention, commitment, engagement, stress, and pain

currently experienced by the patient to deliver the correct amount

of exercise and to avoid the risk of too easy or too difficult tasks that

may lead to a decay in interest or even a feeling of frustration (Flores

et al., 2008; King et al., 2010; Zimmerli et al., 2013). In order

to reach this goal, the therapist relies on the activity scores and

the patient’s behavior. For example, if the patient cannot achieve

a particular performance deviation index, the selected activity is

likely too difficult. On the other hand, if the patient can perform

the exercise but, after some time, becomes very talkative and less

performing, it is likely that a decay in interest is occurring. In

such cases, the therapist must give feedback and, if needed, support

when the activities are too difficult or change the exercise when

the attention starts to decrease. Furthermore, considering patients

affected by neurological impairments, attention problems are

frequent. Recording the period to which the attention lasts can be

valuable information to provide a correct dosage of exercise. Lastly,

the management of neurological disorders can be considerably

different between adults and children. In both cases, understanding

when a pause or a change of exercise is necessary is crucial. In this

regard, one of the interviewees said (translated from Italian): “The

currently available robotic devices often require the patient to adapt

to them instead of the opposite. An automatic tuning of the exercise

duration and difficulty to the needs of the patients would be game-

changing.” Moreover, considering adults, one can count on their

responsibility to train toward an improvement, even if the activity

could lead to boredom. On the other hand, childrenmay not behave

in the same way and, to augment their engagement, it is crucial to

introduce gaming aspects to the exercise.

2.2 Control logics

The first goal of a neurorehabilitation robot control algorithm is

the ability to elicit neuroplasticity and enhance the patient’s motor

recovery. To make this possible, it is crucial that the assistance

provided by the device is not too low in order to allow the patient

to complete the task and to avoid frustration, but also not too high,

thereby ensuring that the patient actively participates in the task

with no risk of slacking (Erdogan and Patoglu, 2012). Also, it is

important that the device does not perfectly correct the motion

initiated by the user. In fact, a certain amount of error has been

proved to be useful in stimulating neuroplasticity given that the

patient has to put focus and effort on the task in order to correct

the motion autonomously as much as possible (Takagi et al., 2018).

Thus, the capability of a robot to actively and automatically adapt

the level of assistance according to the skills and the performances

of the patient is one of its most important features (Marchal-Crespo

and Reinkensmeyer, 2009; Meng et al., 2015).

Furthermore, the level of provided assistance should not be

defined only on the basis of the kinematic performances of the

patient. In this regard, the evaluation of social, physiological and

psychological aspects provides a more fine-grained assessment

of the patient’s state, useful to achieve a better tuning of the

behavior of the system (Novak et al., 2011; Malosio et al.,

2016). For instance, as mentioned in Section 2.1, a patient

that starts feeling bored will be less engaged on the task

with the risk of reducing the effectiveness of the exercise. A

system capable of detecting this state could, instead, render

the task more challenging, for instance by reducing the level

of provided assistance, to bring the patient’s focus back on

the exercise.

2.3 A�ective signal interpretation

During the training sessions, the affective signals collected from

the patients can be used to infer useful information about their

experience. Home-based healthcare systems frequently leverage a

diverse range of affective signals (Majumder et al., 2017; Philip

et al., 2021; Wang et al., 2021). In this section, we provide a brief

description of three affective states integral to neurorehabilitation,

along with an overview of typical modalities utilized for inferring

these states.

• Attention: Motivation and attention serve as crucial

modulators of neuroplasticity, influencing the outcomes of

rehabilitation therapy (Cramer et al., 2011). Distractions,

stemming from factors like boredom or lack of motivation,

can disrupt the user’s engagement during training sessions.

Hence, the user’s attention level becomes a pivotal input

for the agent’s motivational strategy in neurorehabilitation.

While previous studies in various domains have demonstrated

the prediction of attention through physiological signals

such as EEG (Acı et al., 2019; Souza and Naves, 2021), these

methods require proper sensor placement and additional user

training on sensor usage. A more practical alternative lies

in camera-based solutions, which capitalize on a common

behavioral cue associated with distraction – looking away

from the task. Research in other domains (Zaletelj and Košir,

2017; Smith et al., 2003; Prajod et al., 2023) has indicated

that facial and body pose features, including gaze direction,

head orientation, and body posture, can effectively detect

loss of attention. Inferring attention from such features is

contingent on the setup (e.g., screen position), and detection

models need to be appropriately calibrated. Nonetheless, this

approach presents a cost-effective and unobtrusive solution

when compared to sensors like EEG.

Since attention/distraction detection models rely on the

setup layout and positioning of objects, a direct comparison

of their performance is difficult. However, models trained on

public distraction datasets have been reported to achieve high

performance. For instance, studies have reported convolution

neural networks (CNNs) achieve accuracies higher than 90%
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on public driver distraction datasets such as State Farm and

AUC datasets (Kashevnik et al., 2021).

• Pain: Research on the occurrence of pain within the

neurorehabilitation population and the consequent necessity

for medical interventions has been extensively explored in

works dedicated to neurorehabilitation (Benrud-Larson and

Wegener, 2000; Castelnuovo et al., 2016). In the realm of

healthcare applications, numerous systems employ image or

video-based automatic pain detection (Kunz et al., 2017;

Sellner et al., 2019). These approaches typically entail the

identification of pain based on facial expressions captured by

a frontal camera. Some works (Lopez-Martinez and Picard,

2018; Werner et al., 2014) have also delved into the utilization

of physiological signals such as ECG, EDA, etc., for pain

recognition. Despite recent strides in affective computing

toward automatic pain detection, the available datasets remain

limited in size, often necessitating techniques like transfer

learning to address this constraint (Wang et al., 2018; Prajod

et al., 2021).

The UNBC-McMaster shoulder pain dataset (Lucey et al.,

2011) and the BioVid heat pain dataset (Walter et al., 2013)

are widely used publicly available datasets for pain detection.

The CNN models trained on UNBC-McMaster have achieved

state-of-the-art performance of 91% accuracy Ben Aoun

(2024), whereas few models have achieved more than 70%

accuracy on BioVid dataset (Werner et al., 2016; Prajod et al.,

2022; Gkikas and Tsiknakis, 2023). However, models trained

on the BioVid dataset have been shown to be more robust to

data from other datasets (Othman et al., 2019; Prajod et al.,

2022, 2024b).

• Stress: Detecting stress becomes crucial, especially with

the introduction of gamification elements in the training

session, where the patient may experience stress, particularly

if the exercise surpasses their current skill level. Extensive

research has explored diverse modalities for stress detection,

encompassing physiological signals, speech, gestures, and

contextual behavioral patterns (Koceska et al., 2021; Larradet

et al., 2020; Giannakakis et al., 2019; Heimerl et al.,

2023). Physiological signals, including ECG, BVP, EDA,

and respiration, have demonstrated high efficacy in stress

detection (Gedam and Paul, 2021; Prajod et al., 2024a; Smets

et al., 2018). Audio or speech analysis is another prevalent

modality for automatic stress recognition (Dillon et al., 2022;

Lefter et al., 2015). However, this approach typically involves

substantial verbal interaction with the agent, a scenario not

anticipated during neurorehabilitation exercises. Contextual

behaviors, such as keystrokes and specific gestures, are often

tailored to specific use cases andmay not be directly applicable

in the context of neurorehabilitation.

The WESAD dataset (Schmidt et al., 2018) is a

popular stress datasets which includes high arousal positive

state (amusement) and negative state (stress). Both these

states may occur during the training session, depending

on the difficulty level of the exercise. Previous works

have demonstrated high-performing stress detection models

(accuracy: 83%–93%) trained on the WESAD dataset (Vos

et al., 2023).

2.4 Warmth and competence

In the pursuit of developing socially interactive agents for

neurorehabilitation, our aim is to not only create effective

agents but also ensure that they are perceived as warm and

competent. These perceptions of warmth and competence hold

substantial importance as they underpin the establishment of

trust and user engagement, both of which are integral to the

success of our approach. In these terms, several key factors

emerge as critical determinants of success. Anthropomorphism,

which involves attributing human-like qualities to non-human

entities, plays a fundamental role in cultivating a sense of

warmth in social agents (Nass and Moon, 2000; Lee et al., 2006).

Users tend to respond more positively to agents that exhibit

anthropomorphic traits, perceiving them as approachable and

friendly, and this perception of warmth significantly contributes to

users’ overall experiences and their willingness to cooperate with

the technology (Prajod et al., 2019).

Competence, another essential factor, has been identified in

psychology research as a critical determinant of trust (Hancock

et al., 2004; Bickmore et al., 2009). An agent’s competence, reflecting

its capabilities and effectiveness, directly influences the trust users

place in it (Hancock et al., 2004; Bickmore et al., 2009). Users are

more inclined to trust and cooperate with agents they perceive

as competent in assisting them with their rehabilitation tasks.

Both warmth and competence exert substantial influence on user

engagement, as research demonstrates that users are more engaged

and motivated to interact with agents perceived as both warm and

competent (Nass and Moon, 2000). This heightened engagement

is of paramount significance in neurorehabilitation, as it bolsters

users’ commitment to therapy and increases the likelihood of

positive outcomes (Nass and Moon, 2000).

To enhance the warmth and competence of social agents

in the context of neurorehabilitation, careful consideration must

be given to anthropomorphic design elements, including the

incorporation of human-like features, gestures, and verbal and

non-verbal communication styles, all of which may elicit feelings

of warmth and trust in users (Nass and Moon, 2000; Lee et al.,

2006). Our research underscores the importance of integrating

anthropomorphic design, effective communication strategies, and

a robust knowledge base in crafting agents that not only provide

effective assistance to patients but also cultivate trust, foster

engagement, and contribute to positive rehabilitation outcomes. It

is evident that further investigation is warranted to delve deeper

into the nuances of how warmth and competence perception

influence user engagement and, ultimately, the outcomes of

neurorehabilitation interventions.

2.5 Socially interactive agents as medical
coaches

In the realm of neurorehabilitation, the use of socially

interactive agents as medical coaches has garnered increasing

attention due to their potential to enhance patient engagement and

therapeutic outcomes. This section provides an overview of related

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1441955
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Arora et al. 10.3389/frai.2024.1441955

works in this domain, shedding light on the role of virtual coaches

and their impact on patient motivation and progress.

Within the domain of virtual coaching and interactive systems

for medical applications, several notable initiatives have paved

the way for the development and implementation of socially

interactive agents in various healthcare contexts. Bickmore et al.

(2005) introduced the Fit Track system, featuring the relational

agent Laura, who serves as an exercise advisor. Laura engages

with patients, motivating them to participate in physical activities

and thereby fostering their rehabilitation progress. This system

stands as an early exemplar of virtual coaching in the medical

field. The SenseEmotion project (Velana et al., 2017) explored pain

management strategies among the elderly, employing an avatar for

crisis interventions to facilitate reassuring dialogues and support

for older adults. This initiative highlighted the potential of avatars

in the context of pain management. Schneeberger et al. (2021)

delved into stress management using virtual characters in simulated

job interview scenarios. Their research aimed to understand

the various interaction strategies these virtual characters could

employ to induce stress in participants, offering valuable insights

into human-agent interaction and applications in training and

preparatory systems. Neumann et al. (2023) investigated the

impact of virtual social support on physiological pain responses

within a virtual reality environment, showcasing the potential

for virtual characters to provide emotional support and reduce

physiological pain responses. Additionally, Giraud et al. (2021)

proposed a tangible and virtual interactive system to train children

with Autism Spectrum Condition in joint actions, demonstrating

the broader potential of socially interactive agents in training

social and motor skills relevant to neurorehabilitation. Nadine, a

Digital Human Cardiac Coach, was developed to support heart

patients throughout their cardiac health journey. Considering

the specific application of avatars during neurorehabilitation

therapy, a number of examples exist in literature but most

of them introduce the virtual character with a first-person

strategy, with the aim of giving a more realistic visual feedback

to the patient. Examples of this kind of approach can be

found in works such as Cho et al. (2017), where the authors

introduce a first-person avatar in combination with a Functional

Electrical Stimulation (FES) system achieving promising results.

Moreover in de Sousa and Balbino (2018), a lower-limb

rehabilitation robot assists Spinal Cord Injury (SCI) patients

to perform their exercises while a first-person avatar feedback

is provided inside a virtual environment. Along the same

lines, Gümüslü et al. (2021) exploits a first-person avatar to

explore virtual environments with the aim of enhancing patient

engagement during neurorehabilitation treatment with a Lokomat

rehabilitation system.

In this study, we strategically choose to build upon the Gloria

biofeedback training system, a well-established platform developed

by our Affective Computing group. By leveraging Gloria’s robust

framework, we ensure continuity in technological advancement

and capitalize on its pre-existing integration capabilities with

our current methodologies. This deliberate choice is guided by

the system’s demonstrated success (Schneeberger et al., 2021),

providing a solid foundation for adaptation of its behavior and

training strategies to specifically address the unique requirements

of neurorehabilitation. Our primary objective is to conceptualize

a comprehensive system that seamlessly integrates a motivating

virtual coach with a robotic rehabilitation device to optimize

patient engagement and enhance rehabilitation outcomes. Through

this exploration, we aim to address the unique challenges and

opportunities presented by neurorehabilitation, emphasizing the

potential of socially interactive agents as valuable allies in the

journey toward patient recovery. By synthesizing these related

works, we draw inspiration from the successes and insights offered

by virtual coaches in variousmedical domains, applying them to the

specialized context of neurorehabilitation and striving to empower

patients and facilitate their path to recovery.

3 Materials and methods

The envisioned Empathetic Neurorehabilitation Trainer system

is shown in Figure 1, built on the basis of the architecture depicted

in Figure 2. The system is equipped with a robotic Rehabilitation

Device and a virtual socially Interactive Agent. Both device and

agent can adapt their behavior based on the Patient’s performance,

as in most assistance-as-needed paradigms, and it also takes

into account the patient’s affective state. Moreover, these two

entities, together with the specific task to be carried out and the

feedback media chosen to provide the patient with an Explanation

regarding the Active Exercise, are intended to work as a single

entity, actively collaborating to improve the rehabilitation session

outcomes further.

3.1 Concept

With reference to Figure 2, all software and hardware

components make up a closed-loop architecture where the

monitoring of a set of heterogeneous parameters is introduced.

In fact, during the execution of the task, the robotic device is in

charge of collecting data regarding the kinematics of the patient’s

movement (e.g., position, speed), and a wearable device (e.g.,

Polar Band) is used to extract various physiological signals (e.g.,

ECG, EDA). At the same time, a camera captures the patient’s

upper body for behavioral signal interpretation purposes. These

raw data represent the input for a Signal Interpretation module,

responsible for providing a series of higher-level quantities such

as patient’s performance, attentiveness, and stress. As depicted, the

Physiotherapist still has a central role in the proposed approach.

In fact, professional expertise is required for the patient’s initial

assessment (e.g., residual mobility, attention span), used to define

the backbone of both a Patient’s Model and an Agent’s Behavior

Model and to prepare a Predefined Set of Exercises. Moreover, a

Supervised Machine Learning module is employed to learn from

the physiotherapist how to optimally balance the target execution

performance for the exercise and the social experience for the

specific patient. Also, both challenging and entertaining portions

of the session must be included to maximize the patient’s attention.

Closing the loop, a Therapy Manager actively exploits the inferred

information to decide how the behavior of the socially interactive

agent should be changed, which explanations should be given, and

which exercise and difficulty level should be activated to optimize

the therapy experience and effectiveness.
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FIGURE 1

Empathetic Neurorehabilitation Trainer concept.

FIGURE 2

Human-in-the-loop Empathetic Neurorehabilitation Trainer concept.
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Considering Figure 2, the highlightedmodules are the ones that

were not only conceptualized but completely realized and tested

with a small set of volunteers to verify the correct functioning of

all the components. A detailed description of those modules is

provided in the following sections.

3.2 Robot control

As already mentioned, the backbone of the presented

architecture is based on the Robot Operating System

(ROS) (Quigley et al., 2009). In particular, the whole robot

control software has been realized using ROS Noetic on an

Ubuntu 20.04 machine, leveraging the built-in functionalities

of ros_control (Chitta et al., 2017) and MoveIt! (Coleman et al.,

2014). Thanks to this approach, the whole software architecture

developed in this study is independent of the choice of specific

robotic device selected for the rehabilitation practice. However,

in order to validate its correct functioning, the system is tested

on a prototypical device called PlanArm2 (Yamine et al., 2020).

This 2-DOF planar upper-limb rehabilitation robot, depicted in

Figure 3 is selected because of its affordable and compact design,

perfectly suited for home-based therapy applications. In simplified

terms, the implemented robot control system waits for a command

containing the trajectory to be executed by the patient as part of

the exercise. The latter is defined by the therapist using a dedicated

Graphical User Interface (GUI), presented in Section 3.3, and sent

to the active controller. As the patient starts moving the robot

handle along the predefined trajectory, the controller monitors

the current handle position with the relative ideal position on the

trajectory and generates an assistive restoring force if this error

overcomes a certain threshold. During the exercise, the actual

position of the robot handle is also communicated back to the

GUI both for generating a visual feedback for the patient and for

monitoring the execution performance.

3.3 Graphical user interface

In this study, participants engaged in a series of training

exercises designed to improve their precision and control in

a virtual environment. The training was facilitated through a

graphical user interface (GUI) Figure 4 developed using Unity3D

(Haas, 2014), which was connected to a robotic system via ROS

(Robot Operating System) (Younesy, 2022). The exercises were

presented as interactive games, each guided by a virtual coach

named Lydia. The training consisted of three distinct games:

Circle, Infinity, and Line (Figure 3). In each game, participants

were required to follow a predefined path (a circle, an infinity

symbol, or a straight line) on a plane. These paths were marked

by a series of dots, and participants used the PlanArm2 device

(Section 3.2) to apply the appropriate amount of force to reach

each dot as accurately as possible. As the patient starts moving

the robot handle along the predefined trajectory, the controller

continuously monitors the current handle position relative to the

ideal position on the trajectory. If the deviation exceeds a certain

threshold, the controller generates an assistive restoring force to

guide the patient back on track. Additionally, the actual position

of the robot handle is communicated back to the GUI in real-

time, providing visual feedback to the patient and allowing for

precise monitoring of execution performance. This setup simulates

a real-world physical therapy scenario, where precise control and

adherence to a prescribed movement trajectory are critical.

A small pilot study was conducted with 18 healthy participants,

including 12 men and 6 women. The sample comprised 7

undergraduates and 11 master’s students, with ages ranging from

22 to 33 years (M = 26.11, SD = 2.87, median = 25). All the

participants were healthy adults and did not suffer form any

neurological impairments. There were no specific inclusion or

exclusion criteria as the study aimed to assess the system’s baseline

usability and engagement.

Each participant completed three sessions of the selected

exercise, with each session lasting approximately 15 minutes.

During these sessions, several key performance metrics were

recorded in real-time: Trajectory Error (the deviation from the

ideal path), Distance Traveled, Time Taken to complete the task,

and Tracking Error (which informs the user if they moved away

from the given ideal trajectory). These metrics were meticulously

recorded and transmitted to the visual scene maker (VSM) for

analysis (Gebhard et al., 2012). In addition to tracking the physical

performance, Lydia also monitored the participants’ social signals,

including signs of stress, pain, or loss of attention (Section 3.4).

If any social signal exceeding the normal threshold was detected

during a session, such as stress, pain, or attention lapses, the

system automatically intervened after the session, communicating

the detected signal to the participant and offering suggestions to

overcome it, such as taking a pause. Lydia adapted its behavior

based on the detected signals, ensuring personalized feedback.

After each session, Lydia provided participants with a summary

of their performance and any detected social signals. At the end

of the training, Lydia also communicated the session in which the

participant demonstrated the best precision, offering a comparative

analysis of the three sessions. The primary goal of these training

games was to enhance the participants’ motor control and precision

through repetitive, targeted exercises, while also providing real-

time feedback to both the participants and the therapist. The

interactive nature of the games, combined with the feedback from

Lydia, was designed to engage the participants and ensure that they

remained focused and motivated throughout the training.

3.4 Machine learning models

Various affective and physiological signals can be used to

analyze the mental and physical states of the user. We trained

machine learning models to detect distraction, pain, and stress. To

facilitate the real-time prediction of the user states, we employ two

existing frameworks—SSI (Wagner et al., 2013) and SSJ (Damian

et al., 2018). SSI is a Windows-based framework, whereas SSJ

is developed for Android. The pipelines involving facial images

including capture, processing, and predictions (attention, pain

detection) are implemented using SSI. We use the SSJ plugins

to capture the raw ECG signal from the Polar H10 device and

stream it to SSI. SSI receives the raw ECG signals from SSJ and the
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FIGURE 3

The PlanArm2 prototype.

FIGURE 4

On the left a screenshot of the game and assistance selection page. On the right a screenshot of the visual feedback provided to the patient together

with the virtual character.

subsequent pre-processing, feature extraction, and stress detection

steps are performed within the SSI pipeline. Figure 5 visualizes the

SSI pipelines that were implemented and deployed. The per-frame

classification outputs from the models are communicated to the

agent via UDP (User Datagram Protocol) sockets.

3.4.1 Attention detection
The patient may become distracted during the training session

due to boredom or lack of motivation. In neurorehabilitation,

the patient’s level of attention is a crucial input for the agent’s

motivational strategy. Distraction or lack of attention is a key state

to detect in this context. We say a user is distracted when they

are paying attention to the surroundings rather than the training

exercise screen. We can redefine the problem as a use case of

gaze estimation, where the user’s gaze on the screen is considered

attentive and anywhere else is considered distracted.

We train a deep neural network for discerning attention to

screen and distraction following the approach proposed by Prajod

et al. (2023). First, we train a VGG16 network for gaze estimation

using the ETH-XGaze dataset (Zhang et al., 2020). This dataset

has high variations in gaze, including extreme head positions. The

input images are face-cropped by leveraging the face detection

model (Bazarevsky et al., 2019) provided by MediaPipe. The input
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FIGURE 5

Illustration of pipelines deployed for real-time prediction of attention, pain, and stress. This image was created using resources from Flaticon.com.

images are scaled to the default VGG16 dimensions of 224 × 224.

The network outputs pitch and yaw values corresponding to the

gaze direction.

Next, we need a target dataset for training the network on

our specific task. We collected a small dataset (approximately 200

images) of people looking at the screen and distracted (looking

away in random directions). Five participants (3 males, and 2

females; aged 18–30 years) took part in the data collection, of which

three wore glasses. High-resolution images (1,920 × 1,080) were

captured using a camera positioned on top of the screen.

Finally, we adopt a transfer learning approach to detect when

the user is distracted. We fine-tune the prediction layer of the

gaze estimation network using the collected dataset. The prediction

layer is adjusted for 2-class classification (screen or away) and uses

Softmax activation. Similar to the gaze estimation network, the

input images are face-cropped and scaled to 224 × 224. The fine-

tuning is performed using SGD optimizer (learning rate = 0.01)

and categorical cross-entropy loss function. We follow leave-one-

subject-out (LOSO) evaluation to train the model using data from

four participants and reserve the unseen data from one participant

for validation. Our model achieves an average accuracy of 84.6%.

In the real-time setup, we use a frontal face camera (Logitech

RGB camera) to capture the facial expressions of the users. Each

image from the video sequence is passed through a face crop plugin

which crops the image to the face region and scales it to 224× 224.

The pre-processed image serves as input to the attention and pain

detection (detailed below) models.

3.4.2 Pain detection
Pain assessment and management are crucial for medical

interventions in neurorehabilitation and hence, is a state that

needs to be monitored during the therapy session. In this work,

we train a deep-learning model that can discern pain and no-pain

images from facial expressions captured by the front camera.

One major challenge here is that pain datasets are typically small

for training deep learning models (Wang et al., 2018; Hassan

et al., 2019; Xiang et al., 2022). To circumvent this, we follow

the transfer learning approach described by Prajod et al. (2021),

which involves leveraging features learned for emotion recognition

in pain detection. To this end, we train an emotion recognition

model using a large dataset called AffectNet dataset (Mollahosseini

et al., 2017). The model uses a VGG16 network to classify an

input image as Neutral, Happy, Sad, Surprise, Fear, Anger, Disgust,

and Contempt.

To adapt this model for pain detection, we fine-tune the

model using images from a pain dataset. We consider two datasets

commonly used in automatic pain recognition - UNBC-McMaster

shoulder pain expression database (Lucey et al., 2011) and BioVid

heat pain dataset (Walter et al., 2013). Models trained on these

datasets have been shown to learn well-known facial expression

patterns of pain (Prajod et al., 2022). So, we use a combined dataset

by merging UNBC and BioVid datasets. This increases the samples

available for training a pain model. However, both these datasets

are derived from video sequences and thus, have virtually repetitive

images. Tomitigate this redundancy, we select the images following

the strategy proposed by Prajod et al. (2022). We also leverage the

training, validation, and test dataset split that they proposed.

The prediction layer of the emotion recognition model is

modified for a 2-class prediction of pain and no-pain classes. The

entire network is fine-tuned using the combined pain dataset. Like

in the case of attention detection, the images are face-cropped and

scaled to the default VGG16 dimensions. The fine-tuning process

employed an SGD optimizer (learning rate = 0.01) and focal loss

function. The model achieved an average accuracy of 78% on the

test set.

3.4.3 Stress detection
The patient may experience stress while performing the

exercise, especially if they find the exercise hard or if they are

unable to complete the recommended exercise. Such negative

experiences can severely impact the user’s level of motivation and
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their willingness to continue training. Hence, the user’s stress level

is an important input to the agent.

Unlike the other models, we rely on hand-crafted HRV (Heart

Rate Variability) features to detect stress. This choice is based on

the observations presented by Prajod and André (2022), where

HRV features showed more generalizability than models based on

raw ECG signals. We used the ECG signals from the WESAD

dataset (Schmidt et al., 2018) to derive theHRV features for training

the stress detection model. This dataset contains physiological

signals collected from 15 participants during a social stress scenario.

We compute 22 HRV features from the time domain, frequency

domain, and poincar plots. These features are computed using 60-

second-long ECG segments. The pre-processing steps and feature

extraction are detailed in Prajod and André (2022).

We trained an SVM (Support Vector Machine) with the radial

basis kernel function to predict if the user is stressed or not.

To mitigate the individual differences in the signal and derived

features (e.g., resting heart rate), the signals undergo MinMax

normalization. This model achieves an average accuracy of 87% in

LOSO evaluation.

The trained model is incorporated into the real-time pipeline

(see Figure 5). We use the Polar H10 chest band to collect ECG

signals. The data from the initial 5 minutes is considered as baseline

data and the corresponding HRV features are used to compute the

normalization parameters for each user. For the subsequent data,

we compute the HRV features, normalize them, and detect stress

using our SVMmodel.

3.5 Interactive agent

A motivating agent is used in this paper to support the patients

during their training sessions (Figure 6). The agent is displayed on

a monitor along with the training exercises and instructions (refer

to Section 3.3). The agent serves as a coach, motivating, informing,

and assisting the patient with certain neurorehabilitation tasks. As

stated in the introduction, it would be important that the agent’s

behavior and the rehabilitation device’s behavior are calibrated in

such a way that they appear to be one entity, with the agent assisting

the patient in applying a particular amount of force through the

physical capabilities made available by the robot.

The decision to use Lydia was further supported by research.

For instance, Schneeberger et al. (2021) conducted a study on

stress management training using biofeedback guided by social

agents, where a similar agent, Gloria, was effectively employed

to help individuals manage stress through interactive training

sessions. Additionally, research by Gebhard et al. (2014) explored

interaction strategies for virtual characters to induce stress in

simulated job interviews, further demonstrating the effectiveness

of socially interactive agents in training scenarios. This body of

work demonstrates that such agents are effective in guiding users

through training programs, particularly by providing a dynamic

and responsive interaction experience that enhances learning

and engagement.

Lydia is a socially interactive agent equipped with advanced

speech synthesis and animation capabilities, allowing her to

engage in lifelike, contextually appropriate interactions based on

social cues. Her speech output is generated using the Nuance

Text-To-Speech system, which supports precise lip-syncing and

manipulation of speech patterns. To enhance realism, Lydia’s

animations are controlled through direct manipulation of her

skeletonmodel joints, such as the neck and spine, enabling nuanced

and dynamic physical responses (Gebhard et al., 2014). She can

perform 54 conversational gestures captured via motion capture

technology, adjustable in real-time, and express a range of 14 facial

expressions, including the six basic emotions defined by (Ekman,

1992). Lydia’s speech patterns and gestures are dynamically

aligned with the user’s recognized social signals, as identified

by our system’s social signal interpretations, with the Scenario

Manager selecting the appropriate reactive behavior model to

ensure contextually suitable and engaging interactions.

Additionally, Lydia’s design incorporates human-like features

and behavior, including narrow gestures, positive facial expressions,

shorter pauses, and friendly head and gaze behavior. On the

verbal level, explanations and questions show appreciation for

the user and contain many politeness phrases (Gebhard et al.,

2014). The interactive agent is designed to follow the best

practices of training professionals (Section 2.1). Our approach

includes the deliberate incorporation of human-like features and

behavior in the virtual agent’s design, thereby establishing an

immediate connection with users. This anthropomorphic design

choice goes beyond aesthetics; it serves as a conduit for users

to attribute human-like motivations and intentions to the agent,

reinforcing feelings of warmth and approachability. This parallels

the significance of warmth and competence in human-human

relationships and leverages the concept that individuals often

apply the same social rules and expectations to virtual agents

as they do to humans (Nass and Moon, 2000; Epley et al.,

2007).

At the heart of our agent’s design and implementation lies

the fundamental concept of trust. Drawing inspiration from

established principles of trust in human-human relationships,

we have meticulously integrated key elements of warmth

and competence into our virtual agent’s behavior. To ensure

that our agent embodies trustworthiness, we partnered with

experienced psychologists and employed advanced tools like

the VSM. Through iterative refinements, we fine-tuned the

agent’s verbal expressions to strike the right balance between

warmth and competence. These interactions serve as a tangible

representation for making the agent a trustworthy ally in the

therapeutic journey.

Our agent effectively balances warmth and competence in

communication. Warmth is conveyed through expressions like

“WOW!” and commendations such as “I’m impressed by your

determination” (see Figure 7). In contrast, its competence is

highlighted with terms like “overall accuracy,” and action verbs

like “suggest” and “recommend” (Gebhard et al., 2014). The

agent employs gestures, nods, and verbal affirmations, including

smiles, to bolster user engagement and cultivate a conducive

training atmosphere.

The agent’s dynamism lies in its adaptability, seamlessly

tailoring its behavior according to the user’s physiological

and affective cues. These cues, processed in real-time by a

signal interpretation framework, enhance the agent’s therapeutic
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FIGURE 6

Socially interactive agent, Lydia.

FIGURE 7

Words and phrases that portrays the agent as warm and competent.

relevance (Charamel, 2023). In the context of neurorehabilitation,

metrics such as attention and pain are crucial. Hence, an empathic

agent capable of identifying attention and pain contributes to

the establishment of a rehabilitation environment that minimizes

stress, proving essential for sustaining patient motivation. The

interactive agent receives affective cues regarding stress, attention,

and pain directly from the SSI pipeline into the VSM (Figure 8).

If the value of any of these social cues exceeds its threshold, the

agent is programmed to empathetically inform the user about their

current state.

Hardware-wise, the interactive agent runs on a PC running

MS Windows 10TM and operates autonomously in a web

browser, interacting via social cues (Charamel, 2023), showing

the agent at a realistic size. It uses the CereProc Text-To-Speech

system for voice outputs (CereProc, 2023). Lydia, the agent, can

execute 36 diverse conversational gestures (Schneeberger et al.,
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FIGURE 8

Flow chart showing how the a�ective signals are utilized in executing di�erent scenarios in VSM.

2021). Additionally, 14 facial expressions, including Ekman’s basic

emotions, further its expressiveness (Ekman, 1992). All agent

behaviors are streamlined through the VSM toolkit, ensuring

dynamic and user-relevant content.

The agent engages with the system through a graphical user

interface. Additionally, it proactively monitors users’ affective

signals (attention, pain, and stress) during the session. If,

during the session, any of these social signals are detected, the

agent empathically informs the user and suggests measures to

mitigate the issue in the future (e.g., recommends taking a

break). Following each session, Lydia delivers a comprehensive

performance deviation index summary, subtly encouraging users

to improve their future engagement (Figure 8).

3.5.1 Ethical approval
The study has been conducted according to the guidelines of the

Declaration of Helsinki and approved by Commissione per l’Etica

e l’Integritá nella Ricerca of the National Research Council of Italy

(protocol n. 0085720/2022 of 23/11/2022). All 18 participants were

briefed about the study and the details of data treatment before

signing an informed consent from which they can withdraw at

any point.

4 Results

The primary aim of the study was to evaluate our

proposed framework. Specifically, we examined the effect of

an interactive agent during therapy sessions on user engagement

and gathered preliminary feedback on interaction quality for

potential refinement.

Figure 9 illustrates the performance deviation index of all

participants in the training game. The y-axis represents the

performance deviation index scores recorded during the training

sessions (refer Section 3.3). The term “performance deviation

index” is assessed based on three main criteria: (1) It is defined

as the deviation of the actual path followed by the participant

from the ideal path and is inversely proportional to the user’s

performance (2) the total distance traveled, and (3) the elapsed
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FIGURE 9

Flow chart showing how the a�ective signals are utilized in executing di�erent scenarios in VSM.

FIGURE 10

Participant agreement with statements regarding the socially interactive agent Lydia.

time. Figure 9 specifically utilizes the performance deviation index

to compare the performance of all participants. Excluding two

notable outliers from Figure 9, there’s a consistent downward trend

in participants’ overall performance deviation index throughout

the study’s duration. This suggests participants effectively adapted

to the device, and the inclusion of the avatar did not negatively

impact their performance. In other words, the avatar did not serve

as a distraction to the participants during the training sessions.

Additionally, the lower the performance deviation index, the better

the performance. Therefore, in Figure, we see that the majority of

the participants perform better in the third session, which means

the performance deviation index is the lowest (i.e., close to zero)

for the third session.

In addition to these results of the training game, participants

were administered a post-training questionnaire, yielding further

insights into their experiences. The results from our pilot study,

conducted with 18 healthy participants, provide compelling

statistical evidence that the presence of the socially interactive

agent, Lydia, significantly enhanced user engagement without

acting as a distraction. The study involved quantitative assessments

of participants’ engagement in the training session.

The findings indicate that all participants (100%) found

Lydia to be engaging, with 50% of respondents completely

agreeing with the statement, 33.33% agreeing, and 16.67% rather

agreeing (Figure 10). Overall engagement was also rated highly,

with 94.4% of participants assigning ratings of 4 or 5 to the

agent’s effect on their overall engagement during the sessions

(Figure 11). Crucially, the study also assessed whether the agent

had any negative impact on participants’ performance. The

results revealed that 94.4% of participants reported no negative

impact, with 72.2% selecting the lowest possible rating (1 on

the scale) for negative impact (Figure 12). This result strongly

supports the conclusion that Lydia did not distract from the

participants’ performance but instead contributed positively to

their experience.

The pilot experiment also allowed us to identify a series of

technical difficulties and limitations that are listed here to ease the

reproducibility of the study:
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FIGURE 11

Participants’ ratings of the agent’s e�ect on overall engagement in training sessions.

FIGURE 12

Participants’ perception of the agent’s impact on performance.

• The Polar chest band needs to be in the right position and in

direct contact with the participant’s skin. For this reason, some

time is spent in wearing the device and making sure data is

collected correctly which increases the time to be allocated for

each session to preliminary activities.

• The face recognition algorithm only produces a valid output

when the participant’s face is fully visible within the frame. In

our experience, this can become a problem in two situations:

either the participant moves around enough to cause the face

to be out of frame or the participant’s hair is styled in such

a way that partially covers the face (e.g., loose long hair). To

mitigate this it is necessary to make sure that the camera angle

is wide enough to allow the participant for a certain degree of

movement and to restyle the hair so that it does not cover the

face, again adding some time to the preliminary activities.

5 Discussion

The observed steady decline in participants’ performance

deviation index during the therapy sessions, as shown in Figure 9,

underscores the potential effectiveness of our framework. This

is particularly noteworthy given the novelty of introducing an

interactive agent in such contexts. The data indicates a swift

adaptation of participants to the device, and importantly, the

presence of the interactive avatar did not act as a distraction,

which counters some concerns previously raised in literature

about interactive agents in therapeutic settings. However, it’s

imperative to approach these findings with a degree of caution,

acknowledging the inherent limitations such as the sample size and

study duration. These factors necessitate further extensive research

to comprehensively understand the long-term impact and efficacy

of such systems in rehabilitation outcomes.

Building upon the current preliminary results, we can say

that the work carried out in works such as Cho et al. (2017);

de Sousa and Balbino (2018); Gümüslü et al. (2021), is promising in

providing clearer and more realistic visual feedback to the patients,

therefore enhancing their engagement and their ability to auto-

correct themselves. However, this approach does not address the

foreseen issue of a lack of social interaction with the therapist in a

future scenario where the therapy is performed remotely. On this

topic, promising results are presented in Schneeberger et al. (2021),

which provided inspiration for the development of the presented

concept and feasibility study, but only explored the approach in a

stress management application regarding job interviews.

Future research could be done to explore ways to test and refine

the system in clinical settings. One proposed direction involves

conducting a comparison study with two groups: one using the

interactive agent and one without, to isolate the agent’s impact

on therapy outcomes. Additionally, we plan to test the system

with two types of interactive agents’ one supportive and the other

demanding. The demanding agent would be introduced when

patients are provided with activities of higher complexity, allowing

us to assess patient reactions to varying motivational approaches.

Moreover, future studies should involve actual patients in

clinical settings, which would provide deeper insights into the

system’s efficiency and applicability in real-world rehabilitation.
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Integrating natural language processing would enable patients to

communicate with the agent through speech rather than relying

on typing or clicking, thereby enhancing user interaction. Another

crucial aspect is the ability to configure the agent’s behavior

in advance based on patient preferences, allowing for a more

personalized therapeutic experience.

To further refine the system, we aim to incorporate automatic

adaptation of exercise difficulty based on patient performance,

ensuring that the therapeutic challenges remain appropriately

tailored. Additionally, generating detailed reports for medical

supervisors would enhance the system’s utility in clinical practice

by providing healthcare professionals with comprehensive insights

into patient progress.

Another aspect from Figure 2 that require further research is

generating explanations. As mentioned before, the agent behavior

is aimed to establish trust. Incorporating explanations for agent’s

decisions can improve trust in the system and increase acceptance

of the technology. Visual (e.g., highlighting deviations from ideal

path) and audio (e.g., agent explaining predictions through its

speech), and textual (e.g., displaying summary) explanations are

avenues to be explored in future research.

Our pilot study serves as a foundational step for more in-

depth exploration in this domain. The encouraging results from

this preliminary assessment underscore the importance of refining

the interactive agent’s features to enhance user engagement and

exploring its applicability in various therapeutic contexts. As we

continue to bridge the gap between technology and human-centric

care, the integration of feedback from healthcare professionals

will be pivotal in enhancing the system’s efficacy and ensuring its

alignment with clinical practices.

In addition to our preliminary findings, insights from

interviews with three neurorehabilitation experts provided both

validation of our system’s potential and a roadmap for further

development and refinement. The experts emphasized that for

the system to be effective in a domestic rehabilitation setting,

it must be compact, easy to install, and adaptable to various

home environments, as well as intuitive enough for use by both

patients and caregivers especially those dealing with cognitive

disabilities. They also highlighted the importance of embedding

exercises within a narrative driven, gamified context, allowing

the avatar to support the patient by playing a meaningful role

in the rehabilitation scenario. This narrative approach, experts

agreed, could significantly enhance patient engagement, especially

among kids, by fostering a sense of connection and continuity

in the therapeutic process. However, the experts cautioned that

compliance with prescribed therapy can often be inconsistent at

home, particularly for kids. This limitation emphasizes the need for

therapist involvement to monitor the correct execution of exercises

and track patient progress, as fully autonomous therapy might risk

non-compliance or improper exercise execution.

The experts found the proposed system highly relevant within

the field of neurorehabilitation, noting that, if implemented

robustly, it could fill a gap in the market. Still, they stressed the

need for careful tuning of the avatar’s behavior to match each

patient’s preferences, possibly considering the patient’s familiarity

with video games. In some cases, a supportive, guiding agent is

preferable, while in others, a more challenging approach could

motivate patients to push their limits. The ability to switch

between these behavioral modes is essential for tailoring therapy

to individual needs. Another practical limitation lies in the need

for the virtual avatar to be perceived as comparable to commercial

gaming platforms. Experts suggested that high-quality design and

activities, along with elements like “wrong feedbacks” that allow

patients to self-correct, would enrich engagement, fostering a sense

of accomplishment and autonomy.

Despite the promising use of robotics and gamification in

supporting repetitive therapeutic movements, experts pointed to a

limitation in the system’s effectiveness for functional therapy tasks.

Activities essential for daily living, such as dressing or pouring

water, rely on proprioceptive learning that is best achieved with

real-world objects. This gap highlights an area for improvement

in extending the system’s applicability to a broader spectrum of

therapeutic needs.

Furthermore, the experts emphasized the critical differences in

motivational needs between adults and kids. While adults may have

intrinsic motivation to complete therapy exercises, kids, especially

younger ones, may not. For kids, gamification and a compelling

narrative could make therapy more engaging, but the experts

also noted that the physical presence of a therapist might still be

necessary in certain cases to ensure compliance. Systems where AI

plays an important role, such as the one proposed in this paper, are

indeed promising; however, kids represent a particularly complex

challenge. When training an AI model to understand the state of

a patient, it often relies on the patient’s subjective self-evaluation

to label the dataset effectively. In the case of cognitive disabilities,

especially with kids, this ability is often lacking, and recent research

suggests that the most viable approach is to base labeling on the

opinion of a therapist who knows the patient well after years of

working together–a solution that remains challenging to replicate

in autonomous systems.

6 Conclusions and future works

In conclusion, our innovative AI-based system stands as a

transformative approach in the realm of neurorehabilitation,

offering a viable solution to the scarcity of specialized care

professionals. By harnessing the capabilities of a socially interactive

agent integrated within a robotic framework, we have successfully

demonstrated the potential to replicate the critical social

interaction and motivation factors found in traditional therapy

settings. The system’s flexibility allows promoting at-home

rehabilitation with less dependency on professional availability.

Qualitative feedback from participants underscored the user

interface and the virtual coach’s anthropomorphic attributes

as pivotal in maintaining engagement, with users reporting a

heightened sense of companionship and support that spurred

consistent use. Additionally, insights gathered from interviews

with neurorehabilitation experts provided valuable perspectives

on both the system’s strengths and limitations. The experts

validated the potential of our approach, particularly for domestic

rehabilitation, but emphasized the need for therapist oversight,

adaptability in diverse home environments, and careful tuning of

the avatar’s behavior for different patient profiles. This feedback
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not only affirms the direction of our study but also offers a

clear path for refining the system’s design and addressing key

challenges in future iterations. The encouraging outcomes

of our feasibility study with healthy patients, showcasing

their adaptability to the system and heightened engagement

without distraction, lay the groundwork for further research.

Looking forward, we intend to expand the scope of our research

by conducting extensive trials with real patients suffering

from neuromotor dysfunctions. These future studies will not

only allow us to validate the efficacy of our framework in a

clinical setting but will also enable us to perform a comparative

analysis of rehabilitation outcomes with and without the

presence of the interactive agent. This will offer a clearer

understanding of the agent’s impact on patient engagement

and recovery. Additionally, to ensure the robustness and

generalizability of our findings, we plan to increase our sample size,

providing a more comprehensive understanding of the system’s

effectiveness across a diverse patient demographic. Through these

endeavors, we aspire to refine and validate our system, making

a significant contribution to the field of neurorehabilitation

and providing a path toward more accessible and personalized

patient care.
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Acı, ,̧C. İ., Kaya, M., and Mishchenko, Y. (2019). Distinguishing mental attention
states of humans via an eeg-based passive bci using machine learning methods. Expert
Syst. Appl. 134, 153–166. doi: 10.1016/j.eswa.2019.05.057

Bazarevsky, V., Kartynnik, Y., Vakunov, A., Raveendran, K., and Grundmann, M.
(2019). Blazeface: Sub-millisecond neural face detection onmobile gpus. arXiv preprint
arXiv:1907.05047.

Ben Aoun, N. (2024). A review of automatic pain assessment
from facial information using machine learning. Technologies 12:92.
doi: 10.3390/technologies12060092

Benrud-Larson, L. M., and Wegener, S. T. (2000). Chronic pain in
neurorehabilitation populations: prevalence, severity and impact. NeuroRehabilitation
14, 127–137. doi: 10.3233/NRE-2000-14302

Bickmore, T., Gruber, A., and Picard, R. (2005). Establishing the computer-patient
working alliance in automated health behavior change interventions. Patient Educ.
Couns. 59, 21–30. doi: 10.1016/j.pec.2004.09.008

Bickmore, T. W., Pfeifer, L. M., and Paasche-Orlow, M. K. (2009). Using computer
agents to explain medical documents to patients with low health literacy. J. Am. Med.
Inform. Assoc. 16, 160–165. doi: 10.1016/j.pec.2009.02.007

Blank, A., French, J., Pehlivan, A., andO’Malley,M. (2014). Current trends in robot-
assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy.
Curr. Phys. Med. Rehabilit. Rep. 2, 184–195. doi: 10.1007/s40141-014-0056-z

Bonney, E., Jelsma, L. D., Ferguson, G. D., and Smits-Engelsman, B. C. M. (2017).
Learning better by repetition or variation? Is transfer at odds with task specific training?
PLoS ONE 12, 1–17. doi: 10.1371/journal.pone.0174214

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2024.1441955
https://doi.org/10.1016/j.eswa.2019.05.057
https://doi.org/10.3390/technologies12060092
https://doi.org/10.3233/NRE-2000-14302
https://doi.org/10.1016/j.pec.2004.09.008
https://doi.org/10.1016/j.pec.2009.02.007
https://doi.org/10.1007/s40141-014-0056-z
https://doi.org/10.1371/journal.pone.0174214
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Arora et al. 10.3389/frai.2024.1441955

Castelnuovo, G., Giusti, E. M., Manzoni, G. M., Saviola, D., Gatti, A., Gabrielli, S., et
al. (2016). Psychological treatments and psychotherapies in the neurorehabilitation of
pain: evidences and recommendations from the italian consensus conference on pain
in neurorehabilitation. Front. Psychol. 7:115. doi: 10.3389/fpsyg.2016.00115

CereProc (2023). Cereproc text-to-speech. (accessed January 13, 2023).

Charamel (2023). Charamel. (accessed January 13, 2023).

Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V., Tsouroukdissian, A. R.,
Bohren, J., et al. (2017). ros_control: a generic and simple control framework for ROS.
J. Open Source Softw. 2, 456–456. doi: 10.21105/joss.00456

Cho, W., Heilinger, A., Xu, R., Zehetner, M., Schobesberger, S., Murovec, N., et al.
(2017). Hemiparetic stroke rehabilitation using avatar and electrical stimulation based
on non-invasive brain computer interface. Int. J. Phys. Med. Rehabilit. 5, 10–4172.
doi: 10.4172/2329-9096.1000411

Coleman, D., Sucan, I., Chitta, S., and Correll, N. (2014). Reducing the barrier to
entry of complex robotic software: a moveit! case study. arXiv preprint arXiv:1404.3785.

Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q.,
et al. (2011). Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609.
doi: 10.1093/brain/awr039

Crocker, T., Forster, A., Young, J., Brown, L., Ozer, S., Smith, J., et al. (2013). Physical
rehabilitation for older people in long-term care. Cochr. Datab. System. Rev. 2013:111.
doi: 10.1002/14651858.CD004294.pub3

Damian, I., Dietz, M., and André, E. (2018). The ssj framework: augmenting
social interactions using mobile signal processing and live feedback. Front. ICT 5:13.
doi: 10.3389/fict.2018.00013

de Sousa, H., and Balbino, S. (2018). “Development of immersive virtual reality
interface for lower-limb robotic rehabilitation,” in 2018 Latin American Robotic
Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on
Robotics in Education (WRE), 124–128. doi: 10.1109/LARS/SBR/WRE.2018.00031

Dillon, R., Teoh, A. N., Dillon, D. (2022). Voice analysis for stress detection and
application in virtual reality to improve public speaking in real-time: a review. arXiv
preprint arXiv:2208.01041.

Ekman, P. (1992). An argument for basic emotions. Cogn. Emot. 6, 169–200.
doi: 10.1080/02699939208411068

Epley, N., Waytz, A., and Cacioppo, J. T. (2007). Seeing human: why and how
attributions of a mind occur. Trends Cogn. Sci. 11, 37–39.

Erdogan, A., and Patoglu, V. (2012). “Slacking prevention during assistive
contour following tasks with guaranteed coupled stability,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IEEE), 1587–1594.
doi: 10.1109/IROS.2012.6386099

Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F. I., Perry, J. C., and Keller,
T. (2008). “Improving patient motivation in game development for motor deficit
rehabilitation,” in Proceedings of the 2008 International Conference on Advances in
Computer Entertainment Technology, ACE ’08 (New York, NY, USA: Association for
Computing Machinery), 381–384. doi: 10.1145/1501750.1501839

Gebhard, P., Baur, T., Damian, I., Mehlmann, G., Wagner, J., and André, E. (2014).
“Exploring interaction strategies for virtual characters to induce stress in simulated job
interviews,” in Proceedings of the 2014 International Conference on Autonomous Agents
and Multi-Agent Systems, 661–668.

Gebhard, P., Mehlmann, G. U., and Kipp, M. (2012). Visual scenemaker: a
tool for authoring interactive virtual characters. J. Multim. User Interf. 6, 3–11.
doi: 10.1007/s12193-011-0077-1

Gedam, S., and Paul, S. (2021). A review on mental stress detection using
wearable sensors and machine learning techniques. IEEE Access 9, 84045–84066.
doi: 10.1109/ACCESS.2021.3085502

Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simantiraki, O., Roniotis, A., and
Tsiknakis, M. (2019). Review on psychological stress detection using biosignals. IEEE
Trans. Affect. Comput. 13, 440–460. doi: 10.1109/TAFFC.2019.2927337

Giraud, T., Ravenet, B., Dang, C. T., Nadel, J., Prigent, E., Poli, G., et al.
(2021). “Can you help me move this over there?: Training children with ASD to
joint action through tangible interaction and virtual agent,” in TEI ’21: Fifteenth
International Conference on Tangible, Embedded, and Embodied Interaction, Online
Event / Salzburg, Austria, February 14–19, 2021, eds. R. Wimmer, M. Kaltenbrunner,
M. Murer, K. Wolf, and I. Oakley (New York: ACM), 1–27. doi: 10.1145/3430524.34
40646

Gkikas, S., and Tsiknakis, M. (2023). “A full transformer-based framework
for automatic pain estimation using videos,” in 2023 45th Annual International
Conference of the IEEE Engineering in Medicine Biology Society (EMBC) (IEEE), 1–6.
doi: 10.1109/EMBC40787.2023.10340872

Gümüslü, E., Erol Barkana, D., and Köse, H. (2021). “Emotion recognition using
eeg and physiological data for robot-assisted rehabilitation systems,” in Companion
Publication of the 2020 International Conference on Multimodal Interaction, ICMI ’20
Companion (New York, NY, USA: Association for Computing Machinery), 379–387.
doi: 10.1145/3395035.3425199

Haas, J. K. (2014). A history of the unity game engine. Technical Report.

Hancock, J. T., Thom-Santelli, J., and Ritchie, T. (2004). “Deception and design:
the impact of communication technology on lying behavior,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI ’04), 129–134.
doi: 10.1145/985692.985709

Hassan, T., Seuß, D., Wollenberg, J., Weitz, K., Kunz, M., Lautenbacher, S., et al.
(2019). Automatic detection of pain from facial expressions: a survey. IEEE Trans.
Pattern Anal. Mach. Intell. 43, 1815–1831. doi: 10.1109/TPAMI.2019.2958341

Heimerl, A., Prajod, P., Mertes, S., Baur, T., Kraus, M., Liu, A., et al. (2023).
Fordigitstress: a multi-modal stress dataset employing a digital job interview scenario.
arXiv preprint arXiv:2303.07742.

Kashevnik, A., Shchedrin, R., Kaiser, C., and Stocker, A. (2021). Driver distraction
detection methods: a literature review and framework. IEEE Access 9, 60063–60076.
doi: 10.1109/ACCESS.2021.3073599

King, D., Delfabbro, P., and Griffiths, M. (2010). Video game structural
characteristics: a new psychological taxonomy. Int. J. Ment. Health Addict. 8, 90–106.
doi: 10.1007/s11469-009-9206-4

Koceska, N., Koceski, S., and Simonovska, B. (2021). Review of stress
recognition techniques and modalities. Balkan J. Appl. Mathem. Inform. 4, 21–32.
doi: 10.46763/bjami

Kunz, M., Seuss, D., Hassan, T., Garbas, J., Siebers, M., Schmid, U., et al. (2017).
Problems of video-based pain detection in patients with dementia: a road map to an
interdisciplinary solution. BMC Geriatr. 17, 1–8. doi: 10.1186/s12877-017-0427-2

Kwakkel, G., Kollen, B. J., and Krebs, H. I. (2008). Effects of robot-assisted therapy
on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair
22, 111–121. doi: 10.1177/1545968307305457

Larradet, F., Niewiadomski, R., Barresi, G., Caldwell, D. G., and Mattos, L.
S. (2020). Toward emotion recognition from physiological signals in the wild:
approaching the methodological issues in real-life data collection. Front. Psychol.
11:1111. doi: 10.3389/fpsyg.2020.01111

Lee, K. M., Jung, Y., Kim, J.-H., and Kim, S. R. (2006). Are physically
embodied social agents better than disembodied social agents? The effects of physical
embodiment, tactile interaction, and people’s loneliness in human–robot interaction.
Int. J. Hum. Comput. Stud. 64, 962–973. doi: 10.1016/j.ijhcs.2006.05.002

Lefter, I., Burghouts, G. J., and Rothkrantz, L. J. (2015). Recognizing stress using
semantics and modulation of speech and gestures. IEEE Trans. Affect. Comput. 7,
162–175. doi: 10.1109/TAFFC.2015.2451622

Lequerica, A., Donnell, C., and Tate, D. (2009). Patient engagement in rehabilitation
therapy: physical and occupational therapist impressions.Disab. Rehabilit. 31, 753–760.
doi: 10.1080/09638280802309095

Lopez-Martinez, D., and Picard, R. (2018). “Continuous pain intensity estimation
from autonomic signals with recurrent neural networks,” in 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC) (IEEE), 5624–5627. doi: 10.1109/EMBC.2018.8513575

Lucey, P., Cohn, J., Prkachin, K., Solomon, P., and Matthews, I. (2011). “Painful
data: the UNBC-McMaster shoulder pain expression archive database,” in 2011 IEEE
International Conference on Automatic Face& Gesture Recognition (FG) (IEEE), 57–64.
doi: 10.1109/FG.2011.5771462

Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., and Leonhardt, S.
(2014). A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil.
11:3. doi: 10.1186/1743-0003-11-3

Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang,
Z., et al. (2017). Smart homes for elderly healthcare–recent advances and research
challenges. Sensors 17:2496. doi: 10.3390/s17112496

Malosio, M., Caimmi, M., Cottini, M. C., Crema, A., Dinon, T., Mihelj, M.,
et al. (2016). An affordable, adaptable, and hybrid assistive device for upper-
limb neurorehabilitation. J. Rehab. Assist. Technol. Eng. 3:2055668316680980.
doi: 10.1177/2055668316680980

Marchal-Crespo, L., and Reinkensmeyer, D. J. (2009). Review of control strategies
for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6:20.
doi: 10.1186/1743-0003-6-20

Mayetin, U., andKucuk, S. (2022). Design and experimental evaluation of a low cost,
portable, 3-dof wrist rehabilitation robot with high physical human-robot interaction.
J. Intell. Robot. Syst. 106:65. doi: 10.1007/s10846-022-01762-6

Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., and Xie, S. S. (2015). Recent
development of mechanisms and control strategies for robot-assisted lower limb
rehabilitation.Mechatronics 31, 132–145. doi: 10.1016/j.mechatronics.2015.04.005

Molaei, A., Foomany, N. A., Parsapour, M., and Dargahi, J. (2022). A portable low-
cost 3D-printed wrist rehabilitation robot: design and development. Mechan. Mach.
Theory 171:104719. doi: 10.1016/j.mechmachtheory.2021.104719

Mollahosseini, A., Hasani, B., and Mahoor, M. H. (2017). Affectnet: a database
for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect.
Comput. 10, 18–31. doi: 10.1109/TAFFC.2017.2740923

Morone, G., Iosa, M., Calabró, R. S., Cerasa, A., Paolucci, S., Antonucci, G., et
al. (2023). Robot-and technology-boosting neuroplasticity-dependent motor-cognitive
functional recovery: Looking towards the future of neurorehabilitation. Brain Sci.
13:1687. doi: 10.3390/brainsci13121687

Nahum, M., Lee, H., and Merzenich, M. M. (2013). “Chapter 6 - principles of
neuroplasticity-based rehabilitation,” in Changing Brains, volume 207 of Progress in

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2024.1441955
https://doi.org/10.3389/fpsyg.2016.00115
https://doi.org/10.21105/joss.00456
https://doi.org/10.4172/2329-9096.1000411
https://doi.org/10.1093/brain/awr039
https://doi.org/10.1002/14651858.CD004294.pub3
https://doi.org/10.3389/fict.2018.00013
https://doi.org/10.1109/LARS/SBR/WRE.2018.00031
https://doi.org/10.1080/02699939208411068
https://doi.org/10.1109/IROS.2012.6386099
https://doi.org/10.1145/1501750.1501839
https://doi.org/10.1007/s12193-011-0077-1
https://doi.org/10.1109/ACCESS.2021.3085502
https://doi.org/10.1109/TAFFC.2019.2927337
https://doi.org/10.1145/3430524.3440646
https://doi.org/10.1109/EMBC40787.2023.10340872
https://doi.org/10.1145/3395035.3425199
https://doi.org/10.1145/985692.985709
https://doi.org/10.1109/TPAMI.2019.2958341
https://doi.org/10.1109/ACCESS.2021.3073599
https://doi.org/10.1007/s11469-009-9206-4
https://doi.org/10.46763/bjami
https://doi.org/10.1186/s12877-017-0427-2
https://doi.org/10.1177/1545968307305457
https://doi.org/10.3389/fpsyg.2020.01111
https://doi.org/10.1016/j.ijhcs.2006.05.002
https://doi.org/10.1109/TAFFC.2015.2451622
https://doi.org/10.1080/09638280802309095
https://doi.org/10.1109/EMBC.2018.8513575
https://doi.org/10.1109/FG.2011.5771462
https://doi.org/10.1186/1743-0003-11-3
https://doi.org/10.3390/s17112496
https://doi.org/10.1177/2055668316680980
https://doi.org/10.1186/1743-0003-6-20
https://doi.org/10.1007/s10846-022-01762-6
https://doi.org/10.1016/j.mechatronics.2015.04.005
https://doi.org/10.1016/j.mechmachtheory.2021.104719
https://doi.org/10.1109/TAFFC.2017.2740923
https://doi.org/10.3390/brainsci13121687
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Arora et al. 10.3389/frai.2024.1441955

Brain Research, eds. M. M. Merzenich, M. Nahum, and T. M. Van Vleet (New York:
Elsevier), 141–171. doi: 10.1016/B978-0-444-63327-9.00009-6

Nass, C., and Moon, Y. (2000). Machines and mindlessness: social responses to
computers. J. Soc. Issues 56, 81–103. doi: 10.1111/0022-4537.00153

Neumann, I., Käthner, I., Gromer, D., and Pauli, P. (2023). Impact of perceived
social support on pain perception in virtual reality. Comput. Hum. Behav. 139:107490.
doi: 10.1016/j.chb.2022.107490

Novak, D., Mihelj, M., Ziherl, J., Olensek, A., and Munih, M. (2011).
Psychophysiological measurements in a biocooperative feedback loop for upper
extremity rehabilitation. IEEE Trans. Neural Syst. Rehabilit. Eng. 19, 400–410.
doi: 10.1109/TNSRE.2011.2160357

Othman, E., Werner, P., Saxen, F., Al-Hamadi, A., and Walter, S. (2019). “Cross-
database evaluation of pain recognition from facial video,” in 2019 11th International
Symposium on Image and Signal Processing and Analysis (ISPA) (IEEE), 181–186.
doi: 10.1109/ISPA.2019.8868562

Philip, N. Y., Rodrigues, J. J., Wang, H., Fong, S. J., and Chen, J. (2021).
Internet of things for in-home health monitoring systems: current advances,
challenges and future directions. IEEE J. Selected Areas Commun. 39, 300–310.
doi: 10.1109/JSAC.2020.3042421

Prajod, P., Al Owayyed, M., Rietveld, T., van der Steeg, J.-J., and Broekens, J. (2019).
“The effect of virtual agent warmth on human-agent negotiation,” in Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems, 71–76.

Prajod, P., and André, E. (2022). “On the generalizability of ECG-based stress
detection models,” in 2022 21st IEEE International Conference on Machine Learning
and Applications (ICMLA) (IEEE), 549–554. doi: 10.1109/ICMLA55696.2022.00090

Prajod, P., Huber, T., and André, E. (2022). “Using explainable ai to identify
differences between clinical and experimental pain detection models based on facial
expressions,” in International Conference onMultimediaModeling (Springer), 311–322.
doi: 10.1007/978-3-030-98358-1_25

Prajod, P., Lavit Nicora, M., Malosio, M., and André, E. (2023). “Gaze-based
attention recognition for human-robot collaboration,” in Proceedings of the 16th
International Conference on PErvasive Technologies Related to Assistive Environments,
140–147. doi: 10.1145/3594806.3594819

Prajod, P., Mahesh, B., and André, E. (2024a). Stressor type matters!-exploring
factors influencing cross-dataset generalizability of physiological stress detection. arXiv
preprint arXiv:2405.09563.

Prajod, P., Schiller, D., Don, D. W., and André, E. (2024b). Faces of experimental
pain: transferability of deep learned heat pain features to electrical pain. arXiv preprint
arXiv:2406.11808.

Prajod, P., Schiller, D., Huber, T., and André, E. (2021). “Do deep neural networks
forget facial action units?–Exploring the effects of transfer learning in health related
facial expression recognition,” in International Workshop on Health Intelligence
(Springer), 217–233. doi: 10.1007/978-3-030-93080-6_16

Qassim, H.M., andWanHasan,W. Z. (2020). A review on upper limb rehabilitation
robots. Appl. Sci. 10:6976. doi: 10.3390/app10196976

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source Software
(Kobe, Japan), 5.

Schmidt, P., Reiss, A., Duerichen, R., and Van Laerhoven, K. (2018). “Introducing
wesad, a multimodal dataset for wearable stress and affect detection,” in Proceedings
of the 20th ACM International Conference on Multimodal Interaction, 400–408.
doi: 10.1145/3242969.3242985

Schneeberger, T., Sauerwein, N., Anglet, M., and Gebhard, P. (2021). “Stress
management training using biofeedback guided by social agents,” in Proceedings
of the 26th International Conference on Intelligent User Interfaces, 564–574.
doi: 10.1145/3397481.3450683

Sellner, J., Thiam, P., and Schwenker, F. (2019). “Visualizing facial expression
features of pain and emotion data,” inMultimodal Pattern Recognition of Social Signals
in Human-Computer-Interaction: 5th IAPR TC 9 Workshop, MPRSS 2018, Beijing,
China, August 20, 2018, Revised Selected Papers 5 (Springer International Publishing),
101–115. doi: 10.1007/978-3-030-20984-1_9

Smets, E., De Raedt, W., and Van Hoof, C. (2018). Into the wild: the challenges of
physiological stress detection in laboratory and ambulatory settings. IEEE J. Biomed.
Health Inform. 23, 463–473. doi: 10.1109/JBHI.2018.2883751

Smith, P., Shah, M., and da Vitoria Lobo, N. (2003). Determining driver
visual attention with one camera. IEEE Trans. Intell. Transport. Syst. 4, 205–218.
doi: 10.1109/TITS.2003.821342

Souza, R. H. C., e. and Naves, E. L. M. (2021). Attention detection in
virtual environments using eeg signals: a scoping review. Front. Physiol. 12:727840.
doi: 10.3389/fphys.2021.727840

Stein, J. (2012). Robotics in rehabilitation: technology as destiny. Am. J. Phys. Med.
Rehabilit. 91, S199–S203. doi: 10.1097/PHM.0b013e31826bcbbd

Takagi, A., Kambara, H., and Koike, Y. (2018). Reduced effort does not imply
slacking: Responsiveness to error increases with robotic assistance. IEEE Trans. Neural
Syst. Rehabilit. Eng. 26, 1363–1370. doi: 10.1109/TNSRE.2018.2836341

Teasell, R., Bitensky, J., Salter, K., and Bayona, N. A. (2005). The role of
timing and intensity of rehabilitation therapies. Top. Stroke Rehabil. 12, 46–57.
doi: 10.1310/ETDP-6DR4-D617-VMVF

Tseng, K. C., Wang, L., Hsieh, C., and Wong, A. M. (2024). Portable robots for
upper-limb rehabilitation after stroke: a systematic review and meta-analysis. Ann.
Med. 56:2337735. doi: 10.1080/07853890.2024.2337735

Turner-Stokes, L., Rose, H., Ashford, S., and Singer, B. (2015). Patient engagement
and satisfaction with goal planning: Impact on outcome from rehabilitation. Int. J.
Ther. Rehabilit. 22, 210–216. doi: 10.12968/ijtr.2015.22.5.210

Velana,M., Gruss, S., Layher, G., Thiam, P., Zhang, Y., Schork, D., et al. (2017). “The
senseemotion database: a multimodal database for the development and systematic
validation of an automatic pain-and emotion-recognition system,” in IAPR Workshop
on Multimodal Pattern Recognition of Social Signals in Human-Computer Interaction
(Springer), 127–139. doi: 10.1007/978-3-319-59259-6_11

Vos, G., Trinh, K., Sarnyai, Z., and Azghadi, M. R. (2023). Generalizable machine
learning for stress monitoring from wearable devices: a systematic literature review.
Int. J. Med. Inform. 173:105026. doi: 10.1016/j.ijmedinf.2023.105026

Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., and André, E. (2013).
“The social signal interpretation (SSI) framework: multimodal signal processing and
recognition in real-time,” in Proceedings of the 21st ACM International Conference on
Multimedia, 831–834. doi: 10.1145/2502081.2502223

Walter, S., Gruss, S., Ehleiter, H., Tan, J., Traue, H. C., Werner, P., et al. (2013).
“The biovid heat pain database data for the advancement and systematic validation
of an automated pain recognition system,” in 2013 IEEE International Conference on
Cybernetics (CYBCO), 128–131. IEEE. doi: 10.1109/CYBConf.2013.6617456

Wang, F., Xiang, X., Liu, C., Tran, T., Reiter, A., Hager, G., et al. (2018).
“Regularizing face verification nets for pain intensity regression,” in 2017
IEEE International Conference on Image Processing (ICIP) (IEEE), 1087–1091.
doi: 10.1109/ICIP.2017.8296449

Wang, J., Spicher, N., Warnecke, J. M., Haghi, M., Schwartze, J., and Deserno, T.
M. (2021). Unobtrusive health monitoring in private spaces: the smart home. Sensors
21:864. doi: 10.3390/s21030864

Washabaugh, E. P., Guo, J., Chang, C.-K., Remy, C. D., and Krishnan, C. (2018). A
portable passive rehabilitation robot for upper-extremity functional resistance training.
IEEE Trans. Biomed. Eng. 66, 496–508. doi: 10.1109/TBME.2018.2849580

Werner, P., Al-Hamadi, A., Limbrecht-Ecklundt, K.,Walter, S., Gruss, S., and Traue,
H. C. (2016). Automatic pain assessment with facial activity descriptors. IEEE Trans.
Affect. Comput. 8, 286–299. doi: 10.1109/TAFFC.2016.2537327

Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., and Traue, H.
C. (2014). “Automatic pain recognition from video and biomedical signals,” in
2014 22nd International Conference on Pattern Recognition (IEEE), 4582–4587.
doi: 10.1109/ICPR.2014.784

Wynford-Thomas, R., and Robertson, N. (2017). The economic burden of chronic
neurological disease. J. Neurol. 264, 2345–2347. doi: 10.1007/s00415-017-8632-7

Xiang, X., Wang, F., Tan, Y., and Yuille, A. L. (2022). Imbalanced regression for
intensity series of pain expression from videos by regularizing spatio-temporal face
nets. Patt. Recognit. Lett. 163, 152–158. doi: 10.1016/j.patrec.2022.09.022

Yamine, J., Prini, A., Nicora, M. L., Dinon, T., Giberti, H., and Malosio,
M. (2020). A planar parallel device for neurorehabilitation. Robotics 9:104.
doi: 10.3390/robotics9040104

Younesy, H. (2022). Unity robotics hub. Available at: https://github.com/Unity-
Technologies/Unity-Robotics-Hub.git (accessed November 11, 2024).

Zaletelj, J., and Košir, A. (2017). Predicting students’ attention in the classroom
from kinect facial and body features. EURASIP J. Image Video Proc. 2017, 1–12.
doi: 10.1186/s13640-017-0228-8

Zhang, X., Park, S., Beeler, T., Bradley, D., Tang, S., and Hilliges, O. (2020).
“Eth-xgaze: a large scale dataset for gaze estimation under extreme head pose and
gaze variation,” in European Conference on Computer Vision (Springer), 365–381.
doi: 10.1007/978-3-030-58558-7_22

Zhang, X., Yue, Z., and Wang, J. (2017). Robotics in lower-limb rehabilitation after
stroke. Behav. Neurol. 2017, 1–13. doi: 10.1155/2017/6137071

Zimmerli, L., Jacky, M., Lnenburger, L., Riener, R., and Bolliger, M. (2013).
Increasing patient engagement during virtual reality-based motor rehabilitation. Arch.
Phys. Med. Rehabil. 94, 1737–1746. doi: 10.1016/j.apmr.2013.01.029

Frontiers in Artificial Intelligence 18 frontiersin.org

https://doi.org/10.3389/frai.2024.1441955
https://doi.org/10.1016/B978-0-444-63327-9.00009-6
https://doi.org/10.1111/0022-4537.00153
https://doi.org/10.1016/j.chb.2022.107490
https://doi.org/10.1109/TNSRE.2011.2160357
https://doi.org/10.1109/ISPA.2019.8868562
https://doi.org/10.1109/JSAC.2020.3042421
https://doi.org/10.1109/ICMLA55696.2022.00090
https://doi.org/10.1007/978-3-030-98358-1_25
https://doi.org/10.1145/3594806.3594819
https://doi.org/10.1007/978-3-030-93080-6_16
https://doi.org/10.3390/app10196976
https://doi.org/10.1145/3242969.3242985
https://doi.org/10.1145/3397481.3450683
https://doi.org/10.1007/978-3-030-20984-1_9
https://doi.org/10.1109/JBHI.2018.2883751
https://doi.org/10.1109/TITS.2003.821342
https://doi.org/10.3389/fphys.2021.727840
https://doi.org/10.1097/PHM.0b013e31826bcbbd
https://doi.org/10.1109/TNSRE.2018.2836341
https://doi.org/10.1310/ETDP-6DR4-D617-VMVF
https://doi.org/10.1080/07853890.2024.2337735
https://doi.org/10.12968/ijtr.2015.22.5.210
https://doi.org/10.1007/978-3-319-59259-6_11
https://doi.org/10.1016/j.ijmedinf.2023.105026
https://doi.org/10.1145/2502081.2502223
https://doi.org/10.1109/CYBConf.2013.6617456
https://doi.org/10.1109/ICIP.2017.8296449
https://doi.org/10.3390/s21030864
https://doi.org/10.1109/TBME.2018.2849580
https://doi.org/10.1109/TAFFC.2016.2537327
https://doi.org/10.1109/ICPR.2014.784
https://doi.org/10.1007/s00415-017-8632-7
https://doi.org/10.1016/j.patrec.2022.09.022
https://doi.org/10.3390/robotics9040104
https://github.com/Unity-Technologies/Unity-Robotics-Hub.git
https://github.com/Unity-Technologies/Unity-Robotics-Hub.git
https://doi.org/10.1186/s13640-017-0228-8
https://doi.org/10.1007/978-3-030-58558-7_22
https://doi.org/10.1155/2017/6137071
https://doi.org/10.1016/j.apmr.2013.01.029
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Socially interactive agents for robotic neurorehabilitation training: conceptualization and proof-of-concept study
	1 Introduction
	2 Background and related works
	2.1 Neurorehabilitation best practices
	2.2 Control logics
	2.3 Affective signal interpretation
	2.4 Warmth and competence
	2.5 Socially interactive agents as medical coaches

	3 Materials and methods
	3.1 Concept
	3.2 Robot control
	3.3 Graphical user interface
	3.4 Machine learning models
	3.4.1 Attention detection
	3.4.2 Pain detection
	3.4.3 Stress detection

	3.5 Interactive agent
	3.5.1 Ethical approval


	4 Results
	5 Discussion
	6 Conclusions and future works
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


