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Robust deep-learning based 
refrigerator food recognition
Xiaoyan Dai *

Advanced Technology Research Institute, Kyocera Corporation, Yokohama, Japan

Automatic food identification utilizing artificial intelligence (AI) technology in smart 
refrigerators presents an innovative solution. However, existing studies exhibit 
significant limitations. Achieving consistent high performance in recognition across 
varying camera distances and diverse real-world conditions remain a formidable 
challenge. Current approaches often struggle to accurately recognize items in 
scenarios involving occlusions, variable distortions, and complex backgrounds, 
thereby limiting their practical applicability in household environments. This study 
addresses these deficiencies by enhancing the Feature Pyramid Network (FPN) 
of YOLACT with an additional layer designed to capture nuanced information. 
Furthermore, we propose a two-stage data augmentation method that simulates 
diverse conditions including distortion and occlusion, to generate images that 
reflect various backgrounds and handheld scenarios. Comparative analyses with 
previous research and evaluations on our original dataset demonstrate that our 
approach significantly improves recognition rates for both typical and challenging 
real-world images. These enhancements contribute to more effective food waste 
management in households and indicate broader applications for automatic 
identification systems.
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1 Introduction

Artificial intelligence (AI)-driven food recognition is an emerging technology aimed at 
identifying and classifying various types of food from images or videos. This technology 
leverages advanced AI and computer vision techniques, and can be  used in various 
applications, such as dietary tracking, healthcare, and smart appliances.

Food waste is one of the most pressing challenges in contemporary society, carrying 
significant environmental, economic, and social implications. Alarmingly, approximately 30% 
of global food production is not consumed, resulting in the waste of valuable resources, 
increased greenhouse gas emissions, supply chain disruptions, and financial burdens for 
consumers. Many people unintentionally over-purchase food due to incomplete awareness of 
their refrigerator contents, often shopping without a well-organized list. To address this issue, 
smart refrigerators equipped with Internet of Things (IoT) technology offer a promising, cost-
effective solution for more effective food inventory management.

This low-cost solution utilizes a single webcam to automatically recognize food items as 
they are placed into or taken out of the refrigerator. As illustrated in Figure 1, this solution has 
the potential to reduce unintentional over-purchasing, thereby minimizing food waste in 
household management.

A lot of research has been conducted on food recognition in smart refrigerators, which 
can be  broadly categorized into scanning, sensing, and AI-driven approaches. Barcode 
scanning technology, as noted by Loh and Let (2004), Hong et  al. (2007), Hossain and 
Abdelgawad (2018), and Dong et al. (2020), involves scanning the barcode tag of stored items 
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to retrieve information. Radio Frequency Identification (RFID) 
scanning technology, highlighted by Shariff et al. (2019), Nejakar 
et al. (2020), and Jaipriya et al. (2021), employs identity tags attached 
to items. Sensing technologies, as demonstrated by Kale et al. (2015) 
and Goeddel et al. (2017), Nasir et al. (2018), Rezwan et al.  (2018), 
Ahmed and Rajesh (2019), Kore et al. (2020), Huh et al. (2024), Gull 
and Bajwa (2021), Fakhrou et al. (2021), Banoth and Murthy (2024), 
employ weight, odor, or light sensors to provide real-time status 
updates on stored items. AI technologies, including machine 
learning, image recognition, and voice recognition, empower 
machines to emulate human decision-making processes. Various AI 
models have been employed in food recognition tasks, with 
Convolutional Neural Networks (CNNs) playing a crucial role in 
achieving accurate image-based classification. For example, Mezgec 
and Korouić (2017) demonstrated the effectiveness of CNNs in 
categorizing food images, and Lubura et  al. (2022) used them to 
distinguish similar food types. Among CNNs, ResNet addresses 
challenges in deep networks, such as the vanishing gradient problem, 
and has been used successfully for food classification with complex 
datasets, as shown by Saha et  al. (2020) and Bolya et  al. (2021). 
Inception V3, another CNN architecture, efficiently captures spatial 
details, making it ideal for food recognition, as shown by Huang et al. 
(2019). YOLO, designed for real-time detection, is well-suited for 
dynamic food tracking in applications like restaurant ordering 
systems, as demonstrated by Xiao et al. (2023) and Rejin and Sambath 
(2024). MobileNet, optimized for mobile devices, enables food 
recognition by minimizing computational demands while retaining 
high accuracy, as shown by Sandler et al. (2018), Sahu et al. (2023), 
and Abiyev and Adepoju (2024).

Despite these advancements, challenges remain in food recognition 
technology. Current methods using barcode scanning cannot identify 
items without barcodes, such as fruits. RFID technology requires 
considerable manual effort for labeling, and sensing technologies often 
struggle with accurate differentiation of food items based solely on weight 
or odor. Although AI significantly enhances food recognition capabilities, 
many existing approaches are limited to recognizing items within a distance 
range of approximately 30 to 60 cm from the camera, which is considerably 
shorter than the typical usage distance in smart refrigerator applications. 
Furthermore, these methods often require frontal and close-up images, 
which do not account for the varied conditions encountered in real-world 
scenarios where items may be held at different angles and positions.

This research addresses these gaps and contributes to the 
advancement of AI-driven food recognition in practical applications. 
The key contributions include:

 • The proposal of Feature Pyramid Network (FPN) designed to 
achieve high recognition performance across a broader range of 
camera distances, catering especially to small-sized products.

 • The proposal of a novel data augmentation technique designed 
to enhance recognition performance in real-world images, even 
under conditions of distortion, occlusion, and variations in 
holding position, orientation, and background.

The remainder of this paper is organized as follows: Section 2 
presents the proposed FPN and the data augmentation technique. 
Section 3 demonstrates the effectiveness of the proposed methods 
through extensive experimental evaluations. Finally, Section 4 
concludes the paper and discusses potential future work.

FIGURE 1

Images of a smart refrigerator with camera input.
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2 Materials and methods

In this section, we  will describe the proposed deep learning 
approach for automatic food recognition in smart refrigerators using 
camera input. We will first explain the proposed FPN and then discuss 
data augmentation.

2.1 AI model

We utilize YOLACT as the base of our object recognition model. 
YOLACT, an abbreviation for “You Only Look at Coefficients,” is a 
one-stage deep learning network designed to achieve real-time 
instance segmentation and object detection independently (Bolya 
et al., 2021). The YOLACT model’s training process uses a backbone 
network (e.g., ResNet) to extract image features, generates prototype 
masks, and combines them with learned coefficients to create 
instance-specific masks. It calculates the loss to update weights and 
minimize errors, optimizing through iterations and adjusting based 
on validation performance. We adopt this network and customize it 
to expand its capabilities. We  have named our proposed model 
BroadFPN-YOLACT, as it combines YOLACT with our new FPN. The 
term ‘Broad’ highlights the network’s ability to capture features across 
a wide range of levels, emphasizing its comprehensive nature. This 
name will be used throughout the following sections.

2.1.1 Architecture of BroadFPN-YOLACT
The backbone network of BroadFPN-YOLACT is illustrated in 

Figure 2. It comprises three main components: Feature Backbone, 
FPN and Class Prediction Model. ResNet-101 (He et  al., 2016) is 
employed as the default Feature Backbone, optimized for a base image 
resolution of 550 × 550 pixels. The Feature Backbone is responsible for 

extracting hierarchical features from input images, initiating with 
low-level features such as edges and textures and advancing to high-
level semantic features such as object parts and categories. The FPN 
further refines these hierarchical features by capturing information at 
multiple scales, constructing a pyramid-like structure (from P3 to P7) 
where upper layers contain coarser features, while lower layers focus 
finer, detailed features. The Class Prediction Model is responsible for 
predicting the class label of the input image.

The resolution of each feature extraction layer of the FPN can 
be represented in the following Equation,

 l
HResolution at layer l
2

=

where H represents the input image size, and l denotes the layer 
index. The formula illustrates that layers closer to the network’s input 
preserve higher spatial resolution, allowing them to capture fine-
grained details of objects, while deeper layers capture more abstract, 
high-level features, though at a lower resolution. In our object 
detection task, especially when dealing with small objects, it is critical 
that the network can capture fine details. Lower layers retain higher 
resolution features, which are particularly useful for this purpose. The 
formula mathematically justifies the spatial resolution differences 
between layers, showing a practical need to generate higher-resolution 
features from these lower layers to maintain both fine detail and 
broader context in object detection. To enhance the detection of small 
objects, we modified the FPN by adding a feature extraction layer, P2. 
This layer leverages high resolution features from earlier layers to 
improve detection accuracy for small objects. This modification, 
highlighted in pink in Figure 2, ensures that fine details crucial for 
detecting small objects are retained in the feature map, even if the 
input image is low resolution.

FIGURE 2

AI model structure.
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2.1.2 Detail of BroadFPN-YOLACT
Figure  3 illustrates the details of BroadFPN-YOLACT, 

highlighting an enhanced feature extraction layer P2, depicted in 
pink. The feature extraction layer of ResNet-101 consists of 101 
layers organized into multiple stages. The initial convolutional 
layer, Conv1, employs a 7 × 7 filter with a stride of 2 and outputs 
64 channels, primarily capturing fundamental edges and textures. 
Max-pooling subsequently reduces the spatial dimensions by half, 
down-sampling the feature maps. Thereafter, stages Conv2_x 
through Conv5_x produce feature maps at progressively different 
spatial resolutions, outputting 256, 512, 1,024, and 2048 channels 
respectively, with Conv5_x exhibiting the most abstract features 
and the smallest spatial resolution. These feature maps are then 
subjected to 1 × 1 convolutions, marking the starting points for 
the contraction of FPN.

Within the FPN, the top-down pathway progressively 
reconstructs higher-resolution feature maps by up-sampling from 
higher pyramid levels (e.g., C5) and merging them with lower-
level feature maps (e.g., C4, C3, C2). Through lateral connections, 
the bottom-up pathway reinforces this top-down process, 
resulting in multi-scale feature maps (P3 to P7) that effectively 
incorporate high-level semantic and fine-grained spatial details 
across each scale.

To establish the additional layer P2, a 1 × 1 convolutional layer is 
added to the C2 feature map to reduce channel dimensions, and the 
top-down pathway is extended to reach the C2 layer. The P3 feature 
map is then up sampled and merged with the processed C2 feature 
map, thus creating P2. This enhanced multi-scale representation 
supports finer detail capture for smaller features, expands the range of 
effective scales and strengthens the network’s capacity for recognizing 
objects or features across varying sizes.

2.2 Data augmentation

Training deep learning models requires large datasets with ground 
truth annotations that closely resemble real-world scenarios. For food 
recognition in a smart refrigerator, various inputs need to 
be considered. As shown in Figure 4A, when placing or removing food 
from the refrigerator, users may handle it in different ways, potentially 
obscuring some parts of the food or altering its orientation relative to 
the camera. Additionally, as illustrated in Figure  4B, parts of the 
background, such as the refrigerator or the user’s body, may also 
be captured along with the food. These background elements can 
be variable.

In traditional data augmentation techniques, transformations 
such as scaling, rotation, color adjustments, and cropping are applied 
to the data to increase the dataset’s diversity. However, these 
augmentations often do not reflect the complexities of real-world 
environments accurately. This mismatch between artificially 
augmented data and actual, real-world data can limit the model’s 
performance, as the trained model may not generalize well to real-
world scenarios.

Our proposed data augmentation approach is designed to bridge 
this gap by generating data that closely mimics real-world scenarios. 
We named our data augmentation Simu-Augmentation to suggest 
realistic, scenario-based transformations, combining the words 
‘simulation’ and ‘augmentation’. This name will be used throughout the 
following sections.

With Simu-Augmentation, we aim to create a dataset that not only 
enhances model performance during training but also improves the 
model’s robustness when handling real-world input. The augmentation 
process, visualized in Figure 5, consists of two key stages. Each stage 
addresses different aspects of the image data to comprehensively 

FIGURE 3

Details of BroadFPN-YOLACT.
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enhance both object diversity and environmental variety, thus creating 
a dataset that more accurately represents realistic conditions.

 1 Object-level augmentation: In the first stage, the focus is on 
creating variations within the objects themselves. This involves 
applying a range of transformations to simulate various object 
appearances with varying scales, distortions, blurs, lighting, 
orientations, and more. The stage generates a wide array of 
objects with diverse visual characteristics, ensuring that the 
dataset includes objects as they might appear in varied settings.

 2 Scene-level augmentation: In the second stage, we incorporate 
these augmented objects into various simulated real-world 
scenes. Here, we  position objects in different contexts and 
conditions to create a range of images that mimic handheld 
scenarios. This includes:

 • Background variation: Placing objects against different 
backgrounds to reflect the diverse environmental contexts in 
which the model will encounter these objects.

 • Handheld conditions: Simulating various handheld positions 
to account for natural variations in how users might capture or 
view objects in real-world situations.

 • Compositional adjustments: Layering objects in realistic 
placements within the scene, ensuring consistency in lighting, 
relative object positioning, or else.

The final output of Simu-Augmentation is a set of images that not 
only contains a wide variety of object types and appearances but also 
contextual backgrounds that mirror realistic scenarios. This enriched 
dataset is then utilized for model training, helping the model 
generalize more effectively and achieve improved performance when 
applied to real-world data.

Figure 6 illustrates examples of Simu-Augmentation. Panel (A) 
presents an original image. Panel (B) presents examples of Object-
level augmentation, and Panel (C) demonstrates examples of Scene-
level augmentation.

3 Results and discussion

In this section, we conduct a series of experiments to evaluate the 
effectiveness and robustness of the proposed approach for automatic 
food recognition in smart refrigerators. Our objective is to achieve 
high recognition accuracy for food items when they are placed in or 
removed from the refrigerator. As noted, objects may vary in size, the 

FIGURE 4

Image samples for food recognition in smart refrigerators. (A) Examples with different holding positions and sides; (B) Examples with different 
backgrounds.

FIGURE 5

Processing flow for Simu-Augmentation.
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distances from the camera, and may exhibit distortions, reflections, or 
appear on various surfaces depending on how they are held. Since 
there is currently no existing dataset that encompasses these diverse 
conditions, we have developed a custom assessment dataset to reflect 
a wide range of input scenarios.

Three experiments were conducted to assess the performance of 
the proposed approaches, BroadFPN-YOLACT and Simu-
Augmentation. Experiment 1 evaluates the recognition accuracy of 
BroadFPN-YOLACT in identifying objects that appear in low 
resolution due to small size or greater distance from the camera. 
We refer to this experiment as Recognition of objects in low resolution 
hereafter. Experiment 2 examines the effectiveness of Simu-
Augmentation for enhancing recognition under diverse real-world 
conditions. We refer to this experiment as Recognition of objects 
under various conditions. Experiment 3 investigates the combined 
robustness of BroadFPN-YOLACT and Simu-Augmentation for 
recognizing a variety of food items under different conditions, 
including variations in object size, distance, lighting, handling 
orientation, and background complexity. We refer to this experiment 
as Recognition of various food items under different conditions. In the 
experiments, we  employed a Full HD web camera (1920 × 1,080 
pixels) with a 78° field of view to capture input images, and a 
GPU-equipped PC to perform recognition. Each time the refrigerator 
door is opened, the camera begins capturing video footage, sending 
images to the PC for AI-based food recognition. The identified 
information is then stored for future reference. We trained the model 
on an NVIDIA RTX 3090 GPU with 16GB of memory, using the 
PyTorch framework on the dataset over 50 epochs. The batch size was 
8, and the initial learning rate was set to 0.0001, which was gradually 
reduced throughout the training. For object detection and recognition 
tasks, Precision, Recall, and F1-score are helpful metrics for assessing 
detection quality, while mean Average Precision (mAP) is widely used 
to evaluate the precision-recall trade-off, providing a comprehensive 
summary of performance. In our experiment, we use these metrics for 
evaluation, calculating mAP at a 50% Intersection over Union (IoU) 
threshold.

3.1 Recognition of objects in low resolution

As mentioned, the objective of this experiment is to evaluate 
the effectiveness of BroadFPN-YOLACT, for recognizing objects 
that appear in low resolution due to being far from the camera. 
Evaluation dataset 1 was constructed using over 30 types of small 
food items commonly found in stores, such as yogurt and beverage, 
with more than 100 images captured for each item under varied 
conditions. Given the complexity of the scenario, we employed 
data augmentation to prepare approximately 20,000 images per 
class to ensure diversity across different real-world scenarios. The 
images were split into a 90% training set and a 10% validation set. 
Each image was labeled with bounding boxes and class labels, and 
preprocessing steps included resizing to 550 × 550 pixels and 
normalization with a mean of 0.5 and a standard deviation of 0.5. 
As in prior AI approach, we utilized YOLACT with layers of FPN 
spanning P3 to P7, and YOLOv8, a one-stage object detection 
model that provides improvements in both accuracy and 
processing speed. The existing data augmentation techniques were 
applied in this experiment.

Figure 7 presents sample images used in this experiment. In panel 
(A), three input images of a small beverage are shown at different 
distances from the camera: (A-1) within 20 cm, (A-2) at approximately 
50 cm, and (A-3) at approximately 80 cm. Panel (B) illustrates the 
detection and recognition results of the existing YOLACT, while Panel 
(C) shows the results of the proposed BroadFPN-YOLACT. Blue 
rectangles indicate the detected regions, while white text on blue 
backgrounds represents recognition results, with confidence levels 
displayed as accompanying values. Images with different distortions 
challenge high detection accuracy, with images that were not 
recognized outlined in red rectangles. The results demonstrate that the 
existing approach struggled with recognition at closer and farther 
distances, while BroadFPN-YOLACT successfully recognized objects 
across a broader range of distances from the camera.

Table 1 presents the quantitative comparison results for these 
30 types of small food items. To facilitate analysis, we categorized 

FIGURE 6

Sample of Simu-Augmentation. (A) An original image; (B) Examples of Object-level augmentation; (C) Examples of Scene-level augmentation.
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FIGURE 7

Sample results of Experiment 1. (A) Examples of a small object captured at various distances from the camera; (B) Results using the existing YOLACT 
model; (C) Results using the BroadFPN-YOLACT model.

TABLE 1 Comparison of AI models and data augmentation approaches using dataset 1.

AI models
YOLACT YOLOv8n

BroadFPN-
YOLACT YOLACT YOLOv8n

BroadFPN-
YOLACT

Data Augmentation Existing Augmentation Simu-Augmentation

Distance to 

the camera

< 20 cm

Precision 0.91 0.93 0.94 0.92 0.94 0.96

Recall 0.90 0.92 0.93 0.92 0.93 0.95

F1-score 0.91 0.92 0.93 0.92 0.93 0.95

mAP50 92.2% 93.8% 95.0% 93.5% 94.9% 96.6%

20–60 cm

Precision 0.90 0.94 0.94 0.91 0.96 0.97

Recall 0.89 0.93 0.94 0.91 0.95 0.95

F1-score 0.89 0.93 0.94 0.91 0.95 0.96

mAP50 91.7% 95.0% 95.1% 92.8% 96.3% 96.5%

60–100 cm

Precision 0.78 0.88 0.94 0.81 0.91 0.97

Recall 0.75 0.86 0.93 0.78 0.90 0.96

F1-score 0.76 0.87 0.93 0.79 0.90 0.96

mAP50 72.3% 90.0% 95.0% 76.1% 92.4% 96.9%
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the distances from the camera into three ranges: less than 20 cm, 
from 20 to 60 cm, and from 60 to 100 cm. Distances exceeding 
100 cm were not considered, given the typical height of 
refrigerators and humans. Experiments were conducted across 
various iterations to achieve an optimal balance between processing 
time and detection accuracy. The data highlighted in the blue 
rectangle of Table 1 corresponds to the results of Experiment 1, 
with outcomes from both YOLACT and the lightweight version 
YOLOv8n of YOLOv8. While YOLOv8n demonstrated satisfactory 
performance at standard distances (20–60 cm), BroadFPN-
YOLACT yielded superior accuracy across all distance ranges. 
Specifically, in the 60–100 cm range, mAP improved markedly 
from 72.3 to 95.0% compared to YOLACT and from 90.0 to 95.0% 
compared to YOLOv8n. BroadFPN-YOLACT also achieved good 
results in Precision, Recall, and F1-score.

These results highlight the efficacy of BroadFPN-YOLACT for 
capturing finer details in small objects or those positioned farther 
from the camera. This experiment thus validated the model’s 
robustness in recognizing objects across varying distances.

3.2 Recognition of objects under various 
conditions

The objective of this experiment is to evaluate the effectiveness of 
the proposed data augmentation method, Simu-Augmentation, for 
recognizing images under real-world conditions. We utilized the same 
dataset developed for Experiment 1 and compared the performance of 
Simu-Augmentation against traditional data augmentation techniques 
using the same AI model. To isolate the impact of distance variations, 
we assessed performance separately across each distance range.

Figure 8 presents sample images used in this experiment. Panel 
(A) displays six images of the same object captured under various 
conditions: (A-1) represents a normal image, (A-2) shows a rotated 
view, (A-3) features a slightly altered scale, (A-4) is blurred, (A-5) 
shows partial occlusion due to a different holding position, and (A-6) 
displays different sides of the object, revealing an additional surface 
for processing. Panel (B) presents the detection and recognition results 
achieved using Simu-Augmentation. For comparison purposes, 
we refer to the results shown in Panel (B) to elucidate the performance 
of the conventional augmentation. Recognition failures associated 
with the conventional data augmentation are outlined in red. The 
results indicated that while the conventional method can successfully 
recognize images of the object from the same side, as shown in (B-1), 
it struggles with images exhibiting varying holding positions and 
surfaces as shown in (B-2). In contrast, Simu-Augmentation effectively 
recognizes images across these different conditions.

The data highlighted in the black rectangle of Table 1 corresponds 
to the results of Experiment 2. The results demonstrate that recognition 
performance across all AI models improved with Simu-Augmentation 
compared to existing approach across all distance ranges. For instance, 
in the 60 to 100 cm range, mAP of YOLACT increased from 72.3 to 
76.1% with Simu-Augmentation, while BroadFPN-YOLACT showed 
an improvement from 95.0 to 96.9%. Simu-Augmentation also 
achieved good results in Precision, Recall, and F1-score.

These findings indicate that Simu-Augmentation is effective in 
generating training data that closely simulates real-world scenario 
within smart refrigerators. This experiment demonstrates the ability 

of Simu-Augmentation to reliably enhance recognition performance 
across various object appearances and backgrounds.

3.3 Recognition of various food items 
under different conditions

The objective of this experiment is to evaluate the robustness of 
integrating the proposed BroadFPN-YOLACT with the proposed Simu-
Augmentation, for the recognition of various food items. In contrast to 
Dataset 1, which focused on small objects, we curated an evaluation 
image set, Dataset 2, which consists of over 80 types of food items, 
including side dish, soy milk, snacks, and vegetables. Some examples are 
mashed potatoes, Caesar salad, vanilla soy milk, dark chocolate, carrots, 
and more. These items come in various sizes and categories. The dataset 
contains more than 100 images for each item, collected under different 
conditions to capture a diverse range of sizes and types. For comparison 
purposes, we employed a combination of the existing YOLACT model 
with conventional data augmentation technique and YOLOv8n with the 
same augmentation method.

Figure  9 presents sample images utilized in this experiment, 
featuring a variety of foods, including side dishes, drinks, and vegetables. 
These items can be positioned at varying distances from the camera, and 
their appearances were influenced by the way they are held.

Figure 10 illustrates the comparative results of the two approaches. 
Panel (A) shows images of objects varying sizes and distances from 
the camera. Panels (B) and (C) display the results of conventional 
YOLACT approach and the proposed integrated approach, 
respectively. As depicted in Panel (B), the conventional approach 
exhibits challenges in recognizing small food items (A-1) and (A-2) 
and encounters difficulties with partially visible foods, as illustrated in 
(A-3). In contrast, the proposed approach yields satisfactory 
recognition results across all these cases.

We also quantitatively evaluate the improvement in recognition 
performance for these 80 food items across three distance ranges. 
As detailed in Table  2, the proposed approach consistently 
outperformed conventional methods across all distance ranges, 
achieving a maximum improvement of approximately 9.6% 
compared to the combination of YOLACT with the existing 
augmentation, and 2.4% compared to the combination of YOLOv8n 
with the existing augmentation in mAP. The integrated approach 
also achieved good results in Precision, Recall, and F1-score. Since 
the evaluation dataset includes both small and normal-sized 
objects, both the existing and proposed approaches demonstrate 
enhanced recognition performance compared to Experiment 1. 
However, our approach demonstrates superior recognition 
capabilities across a wider variety of objects.

4 Conclusion

Efforts to enable automatic food recognition in smart 
refrigerators have advanced, leveraging barcode scanning 
technology, RFID technology, sensing technologies, and AI-driven 
approaches. However, there are still significant challenges. 
Recognition systems using camera input often suffer from reduced 
accuracy at varying distances, especially for small or occlude 
objects. This is compounded by difficulties in handling real-world 
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scenarios with diverse handholding positions, and 
cluttered backgrounds.

To address these issues, we propose a deep learning solution 
for robust, automatic food recognition using a standard webcam 
placed inside or outside the refrigerator. Unlike traditional sensor-
based systems, our camera-based approach captures and analyzes 
images of items as they are placed into or removed from the 
refrigerator. By using YOLACT as the object detection network 
and enhancing the FPN and data augmentation, our system can 

detect objects at different distances and sizes with 
improved accuracy.

The key Contributions are

 1 Enhanced feature extraction: We modify the FPN to better 
capture fine-grained details for small or distant items.

 2 Novel data augmentation: Our data augmentation method creates 
diverse images simulating real-world distortions, variations in 
handholding, and backgrounds, improving robustness.

FIGURE 8

Sample results of Experiment 2. (A) Examples of an object captured under different conditions; (B) Results of Simu-Augmentation.
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FIGURE 9

Samples images of Experiment 3.

FIGURE 10

Sample results of Experiment 3. (A) Examples of processing images; (B) Results using the existing approach; (C) Results using the proposed integrated 
approach.
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 3 Comprehensive Dataset: Our custom dataset includes a range 
of objects, sizes, and conditions, allowing for more thorough 
testing and training.

Our experiments show that this method surpasses existing 
technologies, accurately recognizing various food items, from small 
to large, and adapting to various distances and positioning scenarios. 
This suggests potential applications in home settings where such 
factors frequently vary.

While promising, our current system focuses primarily on store-
bought products with barcodes. Moreover, it lacks direct functionality 
for interpreting expiry dates, which could be  critical for further 
usability in household food management.

Looking ahead, we  aim to expand recognition capabilities to 
develop algorithms to recognize homemade foods and items without 
barcodes. We  also aim to realize automatic expiry detection by 
incorporating a mechanism to identify expiry dates, further enhancing 
food management and waste reduction.

We believe this approach holds substantial promise for improving 
home food management, reducing food waste, and conserving energy. 
With further development, it could become a versatile technology 
applicable across numerous domains, from home kitchens to 
commercial inventory systems.
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