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Introduction: In the intricate realm of enzymology, the precise quantification of 
enzyme efficiency, epitomized by the turnover number (kcat), is a paramount yet 
elusive objective. Existing methodologies, though sophisticated, often grapple 
with the inherent stochasticity and multifaceted nature of enzymatic reactions. 
Thus, there arises a necessity to explore avant-garde computational paradigms.

Methods: In this context, we introduce “enzyme catalytic efficiency prediction 
(ECEP),” leveraging advanced deep learning techniques to enhance the previous 
implementation, TurNuP, for predicting the enzyme catalase kcat. Our approach 
significantly outperforms prior methodologies, incorporating new features 
derived from enzyme sequences and chemical reaction dynamics. Through 
ECEP, we  unravel the intricate enzyme-substrate interactions, capturing the 
nuanced interplay of molecular determinants.

Results: Preliminary assessments, compared against established models like 
TurNuP and DLKcat, underscore the superior predictive capabilities of ECEP, 
marking a pivotal shift in silico enzymatic turnover number estimation. This 
study enriches the computational toolkit available to enzymologists and lays the 
groundwork for future explorations in the burgeoning field of bioinformatics. 
This paper suggested a multi-feature ensemble deep learning-based approach 
to predict enzyme kinetic parameters using an ensemble convolution neural 
network and XGBoost by calculating weighted-average of each feature-based 
model’s output to outperform traditional machine learning methods. The 
proposed “ECEP” model significantly outperformed existing methodologies, 
achieving a mean squared error (MSE) reduction of 0.35 from 0.81 to 0.46 and 
R-squared score from 0.44 to 0.54, thereby demonstrating its superior accuracy 
and effectiveness in enzyme catalytic efficiency prediction.

Discussion: This improvement underscores the model’s potential to enhance 
the field of bioinformatics, setting a new benchmark for performance.
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Introduction

The intricate tapestry of cellular metabolism is orchestrated by enzymes and 
bio-catalysts that expedite and modulate a plethora of biochemical reactions essential for 
life (Robinson, 2015). Central to understanding an enzyme’s catalytic prowess is the 
turnover number, kcat, a metric that quantifies the maximal number of substrate molecules 
an enzyme can convert to product per active site per unit time (Sánchez et  al., 2017; 
Khodayari and Maranas, 2016). This parameter, emblematic of enzymatic efficiency, serves 
as a linchpin in the realm of enzymology, underpinning quantitative studies that span from 
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cellular physiology to biotechnological applications (Ebrahim et al., 
2016; Davidi et al., 2016). Accurate kcat values are indispensable for 
deciphering the kinetic intricacies of individual enzymes and are 
foundational in constructing and refining large-scale metabolic 
models that seek to emulate the holistic metabolic dynamics of 
organisms (Saa and Nielsen, 2017). Furthermore, with the 
burgeoning interest in synthetic biology and metabolic engineering, 
precise knowledge of kcat values becomes pivotal in designing 
enzymes with tailored functionalities (Strutz et al., 2019).

Despite the undeniable significance of kcat, the landscape of its 
experimental determination is fraught with challenges. High-
throughput experimental assays for kcat remain conspicuously absent, 
rendering acquiring these values for most enzymatic reactions a labor-
intensive and costly endeavor (Rives et al., 2021). Consequently, a 
substantial chasm exists between the number of biochemically 
characterized enzymes and those with empirically determined kcat 
values (Rao et al., 2019). This paucity of experimental data has spurred 
the development of computational methodologies aimed at predicting 
kcat values. However, extant prediction frameworks, while pioneering, 
often grapple with the multifarious and stochastic nature of enzymatic 
reactions, leading to predictions that, albeit insightful, are occasionally 
imprecise or bereft of quantified uncertainties (Detlefsen et al., 2022; 
Smallbone et al., 2013). Traditional methods, relying predominantly 
on deterministic algorithms, often fall short of capturing the nuanced 
interplay of molecular determinants governing enzymatic turnover 
(Goldman et al., 2022).

Artificial intelligence (AI) has significantly advanced in various 
fields, particularly machine learning (ML) and deep learning 
techniques. In medicine, deep learning, especially convolutional 
neural networks (CNN), has revolutionized medical detection 
systems, especially in analyzing medical images (Salas-Nuñez et al., 
2024; Feehan et al., 2021). These developments hold great promise 
for early diagnosis, detection, and treatment of various diseases, 
demonstrating the potential of AI to tackle complex real-world 
problems, particularly in image analysis and computer vision (Du 
and Swamy, 2014; Pereira and Borysov, 2019). These developments 
hold great promise for the early diagnosis, detection, and treatment 
of various diseases, demonstrating the potential of AI to tackle 
complex real-world problems, particularly enzyme turnover 
number (kcat) prediction (Robinson et al., 2020). In this process, 
CNNs are used to predict the enzymatic turnover by process input 
data, such as protein and substrate molecular structures. By 
learning hierarchical representations from input data, CNNs can 
capture complex patterns and relationships within enzyme-
substrate systems, improving prediction performance. Moreover, 
CNNs provide scalability and efficiency in managing extensive 
datasets, rendering them invaluable for expediting enzymatic 
turnover prediction and streamlining enzyme engineering 
endeavors across diverse biotechnological applications (Upadhyay 
et al., 2023; Mittal et al., 2021; Ge et al., 2023). The integration of 
AI into enzyme engineering has led to significant advancements, 
particularly in tailoring methods for optimizing lipase production 
and properties such as catalytic activity, stability, and substrate 
specificity. This progress involves using optimized network models 
and algorithms to predict and enhance lipase performance. Li et al. 
(2020) explored various AI-based approaches and their applications 
in lipase modification, discussing both their benefits and 
limitations. The author highlights the application of various neural 

networks and algorithms to optimize lipase production and predict 
molecular variations affecting its properties. Additionally, they 
emphasize the need to explore these research gaps and outline 
future perspectives for AI applications in enzyme engineering, 
particularly for lipases.

While existing models such as TurNuP and DLKcat have made 
significant progress in kcat prediction, there remains a critical need for 
methods that predict and quantify the uncertainty inherent in these 
predictions (Zhou et  al., 2020). The biological realm is full of 
variability and stochasticity, and any model that ignores this inherent 
uncertainty risks oversimplification and possible misinterpretation 
(Davidi et al., 2016; Mittal et al., 2021). The enzyme catalytic efficiency 
prediction (ECEP) seeks to enhance the performance of existing 
models. It improves predictive accuracy and incorporates a CNNS 
deep learning algorithm, enabling it to surpass the capabilities of 
TurNuP and DLKcat. Additionally, we introduce new features derived 
from enzyme sequences and chemical reaction information, which 
further enhance performance. By refining the ensemble technique, 
we achieve significant improvements over current methodologies.

While previous implementations such as TurNuP employed 
simple mean averaging for ensemble predictions, assigning equal 
weight to each Kcat prediction, these approaches often failed to account 
for the varying predictive power of individual models. In this study, 
we  introduce a novel methodology that improves upon this by 
utilizing a weighted mean approach for ensemble predictions. By 
optimizing the weights assigned to each model based on their 
performance, our method ensures that more accurate models have a 
greater influence on the final prediction. This refinement not only 
enhances predictive accuracy but also provides a more robust 
framework for enzyme catalytic efficiency prediction (see Figure 1).

Background

Enzyme performance prediction using deep learning models has 
become the cornerstone of contemporary bioinformatics. Kroll et al. 
(2023) presented a study highlighting TurNuP, a new computational 
method designed for accurately predicting turnover numbers (kcat) for 
enzymatic reactions, which are important for cellular biological 
activities. Contrary to current models that are limited to specific 
organisms or are restricted to enzymes closely resembling those in their 
training data, TurNuP is a generalized model capable of accurately 
predicting turnover rates for a wide range of enzymes in their natural 
reactions. TurNuP surpasses previous models and generalizes enzymes 
different from those in its training set. Incorporation of TurNuP-kcat 
values into metabolic models heightens predictions of proteome 
allocation. Li et al. (2022) highlighted DLKcat, a deep learning model 
that helps in the prediction of the turnover number (kcat) of enzymes. 
Unlike conventional methods, DLKcat demands less elaborate input 
characteristics, focusing mainly on information about the amino acid 
sequence of the enzyme and one of the reaction substrates. The model 
is intended to deliver accurate predictions of kcat especially when 
experimental data for closely related enzymes are lacking. DLKcat is 
imagined to have wide application in various enzymatic reactions. 
However, its efficiency drops significantly for enzymes that differ from 
those in the training dataset. This shortcoming highlights the 
significance of training deep learning models on dissimilar and 
representative datasets to guarantee vigorous performance across a 
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broad range of enzyme types. Nevertheless, DLKcat is assumed as a 
tool to predict kcat values, especially in scenarios where experimental 
data for the respective enzymes are lacking.

Heckmann et  al. (2020) demonstrated the potency of machine 
learning in the estimation of catalytic turnover numbers (kcat) of enzymes 
in Escherichia coli (E. coli). In particular, the study discovered novel 
protein structures corresponding to catalytic turnover, enlightening 
previously unexplored aspects of enzyme kinetics. The forecasting 
models developed in this research have broader implications. These 
models surpass previous methods, resulting in significantly better 
accuracy in predicting quantitative proteome data. They provide a 
powerful tool for investigating the complexities of cellular metabolism, 
helping to elucidate growth rates, proteome composition, and organismal 
physiology. Consequently, these developments offer a valuable tool for 
comprehensively understanding metabolism and the proteome at the 
genome-scale. Wendering et al. (2023) analyzed that turnover numbers 
are the main descriptors of enzyme activity. Integrating them into 
constraint-based metabolic modeling holds the promise of improving 
the prediction accuracy of various cellular properties. Despite efforts to 
integrate in vitro and in vivo turnover data, current methods provide 
inadequate predictions of condition-dependent growth rates in E. coli 
and Saccharomyces cerevisiae (S. cerevisiae), especially when considering 
protein abundance. The authors propose a new method that combines 
proteomic and physiological data to estimate turnover rates, leading to 
better predictions of growth rates under specific conditions. This 
approach not only increases accuracy but also offers a way to catalog the 
catalytic efficiency of other organisms, thereby advancing our 
understanding of cellular metabolism.

Tachibana et al. (2023) applied the Bayesian algorithm to enhance 
enzyme-catalyzed reactions, rooted in the probabilistic interpretation 

of knowledge, it has witnessed a renaissance in the field of 
bioinformatics and computational biology. Unlike frequentist 
approaches, which offer static point estimates, Bayesian methodologies 
provide a probabilistic framework, allowing for the incorporation of 
prior knowledge and the quantification of uncertainty in predictions 
(Shields et  al., 2021; Braconi, 2023). This is particularly salient in 
enzymology, where data scarcity often impedes robust predictions. By 
leveraging prior distributions and updating them with new data 
through Bayes’ theorem, Bayesian methods offer a dynamic and 
adaptive approach to knowledge synthesis (Wang et al., 2023).

The ECEP methodology utilizes convolutional neural networks 
(CNNs), a sophisticated deep learning algorithm, to predict enzymatic 
turnover rates. CNNs are adept at autonomously extracting and 
learning complex feature patterns from intricate datasets (Memon 
et  al., 2020). In this context, the input data consists of enzyme 
sequences and chemical reaction information. Through the analysis 
of these inputs, CNNs discern hidden features and patterns essential 
for comprehending enzymatic activities. These extracted features 
empower the model to precisely predict enzymatic turnover values, 
offering significant insights for biochemical research and applications 
(Gao et al., 2019). This approach harnesses the capabilities of CNNs 
in managing high-dimensional biological data, establishing it as a 
potent tool for enzymatic prediction tasks (Sikander et al., 2021).

Materials and methods

We incorporated TurNuP, which involves preprocessing data for 
model training, including the generation of datasets through the 
utilization of chemical reaction information.

FIGURE 1

Shows the flowchart and pipeline of the main idea of the method.
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Data sources

In our research, we employed the kcat dataset synthesized from the 
integration of multiple databases, thereby facilitating the development 
of advanced machine-learning models aimed at predicting enzyme 
turnover numbers. This dataset was deposited in Zenodo, ensuring 
public accessibility to uphold the principles of transparency and 
reproducibility inherent in our findings. The primary dataset 
amalgamated for this study underwent meticulous curation, drawing 
from three bioinformatic repositories.

 • BRENDA: Renowned as a comprehensive enzyme information 
system, BRENDA furnishes intricate enzyme and metabolic data 
meticulously extracted from the primary literature. Its 
indispensability lies in the facilitation of biochemical pathway 
reconstruction and enzyme characterization (Schomburg 
et al., 2017).

 • UniProt: A global repository of protein sequences and functional 
data. UniProt serves as a pivotal resource for associating protein 
sequences with functional insights, thus proving instrumental in 
elucidating the biochemical roles of the enzymes (The UniProt 
Consortium, 2018).

 • Sabio-RK: Specialized repositories focusing on enzyme kinetics. 
Sabio-RK offers curated kinetic data about enzyme-catalyzed 
reactions, providing critical parameters, such as reaction rates 
and environmental conditions (Wittig et al., 2018).

The collaborative integration of these databases bolsters the 
robustness of our dataset, thereby empowering precise predictions of 
enzymatic activity through the application of sophisticated machine-
learning methodologies. For comprehensive elucidation and access to 
the dataset, we refer to its deposition on Zenodo and its associated 
publication in Nature Communications.

This will give us a training set with 3,391 entries, and a testing set 
with 874 entries.

Preprocessing steps

We adopted an approach similar to that outlined in the 
TurNuP paper, with the addition of generating new features 
derived from the substrate and product components of 
chemical reactions.

 • Data integration: Information sourced from the aforementioned 
repositories was amalgamated based on enzyme commission 
(EC) numbers and protein identifiers, thereby facilitating 
seamless fusion of enzyme sequences with their corresponding 
kcat values.

 • Feature extraction: Pertinent attributes for each enzyme were 
abstracted, encompassing the conversion of amino acid 
sequences into numerical representation by utilizing the 
pre-trained ESM1b model and its fine-tuned version. 
Additionally, binary numerical representations of chemical 
reactions were computed using three methodologies: 
structured fingerprinting, difference fingerprinting, and 
the DRFP.

 • Data cleaning: Instances with missing, duplicate, or outlier values 
were removed to ensure data integrity.

 • Normalization: Numerical features were normalized to ensure 
uniform scaling by employing the Z-score normalization  
technique.

 • Train/test splitting: The dataset was partitioned into a training 
set, utilized for model training, and a test set, employed for 
unbiased evaluation of the model performance post-training. 
This approach ensures the model’s ability to generalize effectively 
to new, unseen data, thereby upholding the reliability and 
robustness of the predictive models.

Final useful features

Upon the conclusion of preprocessing, we acquired the final train 
and test pickles, highlighting notable features embedded within 
this dataset.

A critical component of the ECEP model’s success is the detailed 
feature engineering process. Below, we  outline the steps taken to 
extract and process features from raw data:

 1 Data integration: We amalgamated enzyme sequence data with 
their corresponding kcat values from BRENDA, UniProt, and 
Sabio-RK databases.

 2 Sequence representation: Enzyme sequences were converted 
into numerical vectors using the ESM-1b, and ESM_1b_ts 
models which provided 1,280-dimensional feature vectors for 
each sequence.

 3 Reaction fingerprinting: Chemical reactions were represented 
using three fingerprinting methodologies:

 o Structural fingerprinting: Captured physical and chemical 
properties (length: 4,096 binary values).

 o Differential fingerprinting: Encoded differences between 
reactants and products (length: 2,048 binary values).

 o Difference fingerprinting: Quantified alterations in chemical 
reactions (length: 2,048 binary values) (see Table 1).

TABLE 1 List of features used in ECEP.

Feature name Description

ESM_1b model representation Numerical vector representation of 

enzyme sequences

ESM_1b_ts model representation Numerical vector representation of 

enzyme sequences

ESM combined (used only for CNN) ESM_1b vector multiplied by ESM_1b_

ts vector

Structural fingerprint Binary representation of structural 

attributes

Differential fingerprint Binary encoding of reactant-product 

differences

Difference fingerprint Quantification of reaction alterations
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Enzyme sequence representation

Enzyme sequences, initially presented as extensive strings of 
capitalized characters in fasta file format, necessitate conversion into 
a numerical format conducive to machine learning models. Leveraging 
the ESM-1b model, a transformer-based protein language model 
trained through unsupervised methods on vast protein sequences, 
these sequences are transformed into numeric vectors of length 1,280. 
The initial iteration of ESM-1b yields a standard numeric 
representation, while its fine-tuned counterpart, ESM-1b_ts, furnishes 
an adjusted numeric vector tailored to specific sequence intricacies. 
Both representations serve as instrumental components for the deep 
learning models deployed in the study, facilitating the effective 
prediction of enzyme characteristics.

Reaction fingerprinting

Utilizing the same approach employed for reaction fingerprinting 
in chemical reaction representation, the process entails converting 
reactions into numerical representations. Three distinct fingerprinting 
methodologies are elucidated: structural fingerprinting, differential 
fingerprinting, and difference fingerprinting. Each methodology 
adopts a unique perspective on analyzing and representing chemical 
reactions in numeric or symbolic formats to facilitate diverse 
computational tasks.

 • Structural fingerprinting: This methodology primarily 
concentrates on capturing the structural attributes of molecules 
engaged in reactions. It typically entails encoding the physical 
and chemical properties of each molecule, culminating in a 
detailed representation conducive to tasks such as similarity 
assessment and machine learning modeling. The structural 
fingerprint spans a length of 4,096, comprising binary values 
of 0 or 1.

 • Differential fingerprinting: Differential fingerprinting extends 
beyond individual characteristics of reactants and products by 
explicitly encoding disparities between them. This approach 
proves particularly advantageous in predictive modeling 
scenarios, where the objective is to discern how alterations in 
reactant structures manifest in product configurations. The 
differential fingerprint spans a length of 2,048, featuring binary 
values of 0 or 1.

 • Difference fingerprinting: Analogous to differential 
fingerprinting, this methodology focuses on delineating 
alterations occurring throughout a reaction. However, it often 
employs more complex algorithms to dissect and quantify the 
precise nature of these alterations, thereby providing deeper 
insights into reaction mechanics. This encompasses 
transformations of chemical groups, bond formation or cleavage, 
and other significant changes during the reaction process. The 
difference fingerprint spans a length of 2,048.

kcat predictions

Our predictive models for kcat values encompass both traditional 
machine learning and deep learning approaches.

XGBoost

XGBoost, a prominent algorithm in our research arsenal, is 
celebrated for its exceptional precision in handling regression tasks, 
including kcat value prediction. Operating within a gradient-boosting 
framework akin to its implementation in TurNuP, XGBoost constructs 
decision trees sequentially, iteratively refining predictions by 
addressing prior errors.

This algorithm incorporates regularization techniques to mitigate 
overfitting, employs tree pruning to enhance model simplicity, and 
leverages parallel processing for expedited computation. Moreover, its 
intrinsic support for cross-validation and adaptable loss functions 
enables tailored model optimization, rendering it highly adept at 
accommodating the intricacies of our expansive biochemical datasets 
(see Figure 2).

Convolution neural network

Convolutional neural networks (CNNs) represent a class of deep 
learning algorithms traditionally employed for image recognition and 
classification tasks. However, their adaptability extends to regression 
problems, including the prediction of enzyme kinetics such as kcat 
values. In our study, CNNs are harnessed to glean patterns and 
features from input data, comprising structural or sequence data about 
enzymes alongside numerical representations of chemical reactions 
(see Figure 3).

CNN architectures are characterized by multiple layers, including 
convolutional layers, pooling layers, and fully connected layers. 
Initially, the train and test datasets are loaded, essential features are 
filtered, and these features are vertically concatenated to form a 
multidimensional array, sequentially traversing each layer of the 
CNN. Convolutional layers apply filters to the input data, capturing 
local patterns and features, while pooling layers serve to reduce the 
spatial dimensions of the resultant feature maps, thereby mitigating 
computational complexity and curbing overfitting. Subsequently, fully 
connected layers amalgamate the features gleaned from preceding 
layers to facilitate predictions.

Training a CNN entails furnishing it with labeled data—
comprising enzyme sequences, numerical representations of chemical 
reactions, and their corresponding kcat values—and optimizing its 
parameters, namely weights and biases, via methodologies such as 
backpropagation and gradient descent.

By leveraging CNNs for kcat value prediction, we capitalize on their 
innate capacity to autonomously extract pertinent features from input 
data, potentially encapsulating intricate relationships between enzyme 
structures or sequences and their catalytic efficacy. This affords the 
prospect of achieving more precise predictions vis-à-vis traditional 
regression techniques, particularly when confronted with high-
dimensional or nonlinear datasets (see Figure 4).

Model evaluation and validation

In order to gauge the efficacy and resilience of both the convolutional 
neural network (CNN) and XGBoost models, stringent evaluation 
protocols were implemented. The dataset underwent partitioning into 
distinct training, validation, and test sets, ensuring exposure of the 
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model to a diverse array of enzymatic reactions throughout both the 
training and evaluation phases. For XGBoost, Cross-validation, a 
methodology involving further division of the training set into multiple 
folds, was employed to furnish a more intricate assessment of the 
model’s performance. This iterative procedure, wherein various folds are 
designated as validation sets in each iteration, provides an exhaustive 
perspective on the model’s capacity for generalization.

Hyperparameter tuning

The process of selecting optimal hyperparameters is paramount, 
as it intricately refines the configuration of the trained model, 
ensuring optimal performance across diverse datasets and tasks. 
Through systematic adjustment of these parameters, we augment 
the model’s capacity to discern intricate patterns and correlations 
within the data, thereby enhancing predictive accuracy and 
generalization capability. This iterative procedure entails 
experimenting with various hyperparameter combinations and 
assessing their impact on the model’s performance, with the aim of 
striking a delicate balance between model complexity and predictive 
prowess. The chosen hyperparameters wield significant influence 
over the model’s behavior and efficacy, underscoring the critical 
nature of their selection within the machine learning pipeline.

XGBoost hyperparameter tuning

In our XGBoost implementation, we harnessed the capabilities of 
the hyperOpt package in Python to streamline the selection of optimal 
hyperparameters. This sophisticated tool automates the intricate 
process of hyperparameter tuning, allowing us to systematically 
explore the hyperparameter space and pinpoint configurations that 
yield superior model performance. Building upon the methodology 
detailed in the previous implementation elucidated in the TurNuP 
paper, we  conducted a rigorous search for the most appropriate 
combination of hyperparameters.

This endeavor entailed defining a comprehensive search space 
encompassing a multitude of hyperparameters, including but not 

limited to learning rate, tree depth, and regularization terms. Through 
iterative evaluation of diverse parameter configurations and 
meticulous assessment of their impact on model performance, our 
objective was to identify settings that optimize predictive accuracy 
and generalization capability. This meticulous approach ensures that 
our XGBoost model is finely attuned to the nuances of our dataset, 
thereby augmenting its efficacy in predicting enzyme kcat values. 
Table 2 indicates the detail of the hyperparameter tuning search space.

Convolutional neural network 
hyperparameter tuning

In our pursuit of optimal CNN performance, we  embraced a 
randomized approach within the defined search space for 
hyperparameter selection. This expansive search space encapsulated a 
spectrum of parameters, including the number of filters, kernel 
dimensions, neurons in the fully connected layer, choice of optimizer, 
batch size, and dropout rate. Furthermore, we incorporated callback 
functions to dynamically adjust the learning rate and establish early 
stopping criteria, thus mitigating concerns related to overfitting. 
Acknowledging the intrinsic variability in deep learning outcomes 
stemming from random weight initialization and data shuffling, 
we  implemented an ensemble learning strategy to bolster 
model robustness.

Specifically, we amalgamated the predictions from three distinct 
models utilizing a weighted averaging technique. This methodology 
allocates greater weights to the predictions of well-performing models, 
thereby magnifying their impact within the final prediction ensemble. 
Through the utilization of this ensemble approach, our aim was to 
alleviate the inherent variability in deep learning models and bolster 
the reliability of our predictions. Table 3 indicates the detail of the 
hyperparameter tuning search space.

Results

The fruition of any research undertaking, particularly within the 
realm of computational biology and machine learning, culminates in the 

FIGURE 2

XGBoost trained model predicts kcat value.

FIGURE 3

CNN trained model predicts kcat value.
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presentation of results. Within the scope of the “ECEP” model, crafted 
to forecast enzymatic turnover numbers, the results serve as more than 
mere evidence of the model’s effectiveness; they symbolize its potential 
to catalyze advancements within the broader scientific community.

The advent of the “ECEP” model ushers in a new era of enzymatic 
turnover prediction. Our implementation techniques, encompassing 
both XGBoost and the newly introduced CNN deep learning 
approach, have surpassed the performance benchmarks set by 
previous methodologies.

XGBoost

Through enhancements to the previous XGBoost results, we have 
attained the following updated outcomes. Employing an ensemble 
technique, we amalgamated the results from all trained models using 
a weighted average mean. This comprehensive approach resulted in 
refined predictions, further elevating the model’s performance and 
predictive accuracy.

Table 4 indicates XGBoost results were notably enhanced with 
only previous features within a single model, as well as by 
ensembling the predictions from the best-performing models. This 
dual strategy yielded a significant improvement in predictive 
performance, underscoring the efficacy of feature augmentation 
and ensemble methodologies in refining model outcomes (see 
Figure 5).

Convolution neural network

Convolutional neural networks (CNNs) have markedly enhanced 
the predictive performance of our model. Not only we have optimized 
the performance of existing features from the TurNuP methodology, 
but we have also elevated model efficacy by incorporating new features 
derived from enzyme sequences and chemical reactions. The ensuing 
tables delineate the outcomes achieved with and without the 
integration of these new features (see Figure 6 and Table 5).

Ensembling

In contrast to the previous TurNuP implementation, where 
ensemble averaging was conducted by simply taking the mean of all 
model predictions which gives equal weightage to each predicted value 
of kcat, we have enhanced our ensemble methodology by employing a 
weighted mean approach. This refined method optimizes weights for 
each model’s predictions by minimizing a loss function against true 
values. It ensures that weights sum to one and are constrained between 
zero and one. By dynamically adjusting weights based on predictive 
performance, more accurate models exert a greater influence on the 
final prediction, thereby enhancing the ensemble’s robustness and 
accuracy compared to simpler averaging methods.

While it is possible to ensemble predictions from all trained 
models, doing so would escalate computational costs. Thus, by 
ensembling only the best-performing model and leveraging 
diverse learning features from this model, we  can mitigate 
computational expenses while still achieving superior 
ensemble performance.

FIGURE 4

Loading the dataset for preprocessing, getting the optimized hyperparameter, used that hyperparameter to train the Model.

TABLE 2 Hyperparameter search spaces for XGBoost algorithm.

Hyperparameter Search spaces

Learning rate Adjusts the step size during each iteration while 

progressing towards minimizing a loss function. 

Range: 0.01 to 1

Max depth Determines the maximum depth of the trees, thus 

regulating overfitting. Range: 4 to 12

Reg lambda Utilizes L2 regularization on weights to control 

overfitting by penalizing complex models. Range: 

0 to 5

Max delta step Sets the maximum delta step allowed for updating 

the weight estimation of each tree. Range: 0 to 5

Min child weight Specifies the minimum sum of instance weight 

(hessian) required in a child to counteract 

overfitting. Range: 0.1 to 15

Number of rounds Denotes the quantity of training rounds or trees to 

construct, influencing the complexity of the 

model. Range: 20 to 200
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Comparative analysis

To truly appreciate the prowess of the “ECEP” model, it’s essential 
to juxtapose its performance against that of its contemporaries. When 
benchmarked against models like DLKCat and TurNuP, “ECEP” 
consistently outperformed in terms of both R2 and mean squared error 
(MSE). Such comparative superiority is not just a testament to 
“ECEP”’s advanced architecture but also its adaptability to the nuances 
of enzymatic data. A deeper dive into the results reveals some 
intriguing insights.

The landscape of enzymatic turnover prediction has been 
punctuated by several innovative models over the years. However, the 
introduction of “ECEP” has stirred the waters, prompting a 
re-evaluation of established methodologies. To truly gauge the 
prowess of “ECEP,” it’s imperative to benchmark it against its 
contemporaries, notably TurNuP and DLKcat. Before embarking on 
the comparative analysis, it’s imperative to delve into the historical 
context. Both TurNuP and DLKcat have established themselves as 
stalwarts in the field, each offering a distinctive approach:

 • TurNuP: Rooted in deep learning architectures, TurNuP 
harnessed the formidable capabilities of neural networks to 
unravel the intricate relationships within enzymatic data. Its 
multi-layered design was crafted to capture both linear and 
non-linear patterns, rendering it a preferred choice among 
researchers for numerous years.

 • DLKcat: In contrast, DLKcat employed a hybrid approach, 
amalgamating traditional regression techniques with machine 
learning algorithms. Its hallmark was its adaptability, with the 

model being meticulously tailored to accommodate various 
enzyme families and experimental conditions.

Performance metrics a side-by-side view

R-squared (coefficient of determination)
 • ECEP: With an R2 value of 0.54, “ECEP” showcased its superior 

predictive capabilities, capturing 55% of the variance in the 
observed kcat values.

 • TurNuP: TurNuP, with its deep learning foundation, achieved an 
R2 value of 0.44. While commendable, it fell short of the 
benchmark set by “ECEP.”

 • DLKcat: DLKcat’s hybrid approach yielded an R2 of 0.44, 
reflecting its balanced methodology but also highlighting areas 
of potential improvement (see Figures 7, 8).

Mean squared error
 • ECEP: “ECEP” demonstrated remarkable precision and reliability 

with an MSE of 0.46, indicative of its superior performance.
 • TurNuP: TurNuP achieved an MSE of 0.81, showcasing 

impressive performance but also highlighting areas for potential 
refinement to enhance accuracy.

 • DLKcat: DLKcat recorded an MSE of 0.87, reflecting the inherent 
challenges associated with its hybrid approach and the need for 
careful balancing of traditional and machine learning techniques 
(see Figures 9–11 and Table 6).

Underlying architectures: strengths and 
limitations

 • ECEP: ECEP represents a significant advancement over previous 
implementations such as TurNuP, leveraging the convolutional 
neural network algorithm to elevate the R2 score from 44% to an 
impressive 55%. Its innovative approach not only enhances 
predictive accuracy but also provides a transparent and 
interpretable framework.

TABLE 3 Hyperparameter search spaces for CNN.

Hyperparameter Sample spaces

Number of filters in convolutional layers The quantity of filters in convolutional layers escalates progressively across layers to effectively capture intricate features. For the 

initial layer, the filter count ranges from 2 to 15, followed by 4 to 25 for the second layer, and 8 to 35 for the third layer, each 

incremented by 2

Kernel size in convolution layers Kernel size plays a pivotal role in determining the receptive field size, crucial for feature extraction. In the initial layer, the kernel 

size varies from 3 to 19, followed by 5 to 17 for the second layer, and 7 to 15 for the third layer, with increments of 2, ensuring odd 

numbers are utilized

Neurons in fully connected layers The quantity of filters in convolutional layers escalates progressively across layers to effectively capture intricate features. For the 

initial layer, the filter count ranges from 2 to 15, followed by 4 to 25 for the second layer, and 8 to 35 for the third layer, each 

incremented by 2

Optimizers Optimizers play a crucial role in modulating learning speed and minimizing loss. Available options encompass Nadam, Adam, 

and RMSprop, each offering distinct advantages in optimizing model performance

Batch sizes The selection of batch sizes profoundly impacts training stability and speed. Options span from 8 to 128, allowing for flexible 

adjustments to accommodate varying computational resources and training requirements

TABLE 4 XGBoost results with single best model and ensemble by 
utilizing the new features.

Metrices Single best 
model

Ensemble

R2 Score 0.43 0.47

Mean square error 0.77 0.71

Pearson coefficient 0.66 0.68
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 • TurNuP: TurNuP’s deep learning architecture empowers it to 
effectively model complex, non-linear relationships within 
enzymatic data. Its multi-layered neural network excels at 
capturing intricate patterns, making it highly adaptable to diverse 
datasets. However, TurNuP’s reliance on extensive data for 
training and its inherent black-box nature can pose challenges in 
terms of interpretability, limiting its utility in certain applications.

 • DLKcat: DLKcat’s hybrid approach combines traditional 
regression techniques with machine learning algorithms, 
endowing it with the flexibility to adapt to various data types and 
enzyme families. While commendable, this versatility sometimes 
leads to challenges in finding the optimal balance between 
regression and machine learning methodologies. DLKcat’s 
performance highlights its potential for refinement and 
optimization to achieve even greater predictive accuracy.

The introduction of ECEP has set new standards in enzymatic 
turnover prediction. While TurNuP and DLKcat have contributed 
significantly to the field, ECEP emerges as a frontrunner due to its 
blend of accuracy, flexibility, and interpretability. Nonetheless, 

scientific progress thrives on collaboration and the integration of 
insights from diverse methodologies. By amalgamating insights from 
ECEP, TurNuP, and DLKcat, future methodologies can advance even 
further, paving the way for more sophisticated approaches in 
enzymatic turnover prediction.

One of the challenges posed by “ECEP” is its computational 
intensity, especially with large datasets. The complexity of processing 
and analyzing vast amounts of data can lead to significant 
computational demands, which may limit the practical application of 
the model in real-world scenarios. Future research can focus on 
optimizing the model for scalability, ensuring that it remains efficient 
even as the data volume grows. This could involve developing more 
advanced algorithms that reduce computational load, enhancing 
parallel processing capabilities, or leveraging high-performance 
computing resources to manage larger datasets more effectively.

As the field of enzymology evolves, new types of data, from 
molecular dynamics simulations to quantum mechanical 
calculations, emerge. These advancements offer detailed insights 
into enzyme behavior and interactions at unprecedented levels of 
precision. Adapting “ECEP” to incorporate and leverage these 

FIGURE 5

The graph illustrates the relationship between predicted kcat values (obtained by training XGBoost using previous features) and ground truth kcat values. 
The red line represents the ground truth predictions, while the blue dots signify predictions generated by the individual XGBoost-trained models. 
Notably, the predictions from the XGBoost Ensemble model appear to cluster closely around the ground truth predictions, indicating a higher level of 
precision and agreement between the predicted and actual values compared to the predictions from the single XGBoost model.

FIGURE 6

In the graph depicting the relationship between predicted kcat values (obtained through CNN models trained on previous feature only) and ground truth 
kcat values, the red line represents the ground truth predictions, while the blue dots signify predictions generated by the individual CNN-trained models. 
Notably, the predictions from the CNN Ensemble model appear to cluster closely around the ground truth predictions, indicating a higher level of 
precision and agreement between the predicted and actual values compared to the predictions from the single CNN model.
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data types can enhance its predictive capabilities, allowing it to 
provide more accurate and comprehensive analyses. This 
adaptation could involve integrating new computational 
techniques and data sources into the model, as well as refining its 
algorithms to handle the increased complexity and volume 
of information.

Furthermore, collaboration with other scientific disciplines, such 
as bioinformatics and structural biology, may provide additional 
insights and methodologies that can be incorporated into “ECEP.” 
Such interdisciplinary approaches could lead to the development of 
hybrid models that combine the strengths of various computational 
and experimental techniques, thereby improving the overall 
performance and applicability of “ECEP.”

In summary, addressing the computational challenges and 
adapting to emerging data types are crucial for the advancement of 
“ECEP.” By focusing on these areas, future research can enhance the 
model’s efficiency and predictive power, ultimately contributing to 
more precise and reliable enzymological studies.

Discussion

Predicting enzyme turnover numbers is challenging due to 
small and noisy datasets. Bar-Even et  al. (2011) discovered 
discrepancies of up to 20% between BRENDA entries and reference 
papers, possibly due to copying errors and unit replacements. 
Additionally, differences in kcat measurements for identical enzyme 
reaction pairs in different studies can be significant, highlighting the 
challenge of ensuring consistency and accuracy in enzyme data. Our 
“ECEP” has performed remarkably well outperforming previous 
implementations, but it comes with its own set of limitations. The 
utilization of deep learning models demands significant computing 
power for optimizing hyperparameters and processing inferences, 
thereby impacting computational resources and time.

However, the presented results for “ECEP” signify more than just 
numerical values; they underscore the model’s capabilities. An R2 value 
of 0.55 indicates high predictive accuracy, suggesting adept capture of 
underlying enzyme-feature relationships, while a low MSE reinforces 
precision and alignment with observed values. These metrics, along 
with case studies, portray a robust, reliable, and nuanced model 
tailored to enzymology intricacies. In the broader enzymatic turnover 
prediction landscape, “ECEP” stands out not only due to superior 
metrics but also its unique approach. Compared to TurNuP and 
DLKcat, “ECEP” consistently outperforms, especially in complex 
enzyme families, sparse data, or non-linear dynamics scenarios. 
However, acknowledging the contributions of TurNuP and DLKcat is 
essential; they have laid the foundation for advancements in the field.

To further enhance “ECEP,” leveraging convolutional neural 
networks (CNNs) with powerful computing resources for 
hyperparameter optimization, acquiring more datasets, and 
refining feature engineering and extraction could be beneficial. 

TABLE 5 This table illustrates the CNN results attained through the 
utilization of legacy features within a single model, as well as via the 
aggregation of predictions from the most proficient models in an 
ensemble.

Metrices Single best 
model

Ensemble

R2 Score 0.49 0.54

Mean square error 0.51 0.46

Pearson coefficient 0.70 0.73

This dual approach has yielded notable enhancements in predictive accuracy and model 
performance, underscoring the effectiveness of leveraging both individual model predictions 
and ensemble methodologies in refining overall outcomes.

FIGURE 7

The graph below illustrates the R-squared (R2) score obtained by the ECEP model, which was trained using the CNN approach. This depiction 
showcases the model’s performance in capturing the variance in the observed kcat values, thereby providing insights into its predictive capabilities.
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FIGURE 8

The graph illustrates the R-squared (R2) score obtained by the ECEP model, trained using the XGBoost.

FIGURE 9

The mean square error (MSE) obtained by the ECEP model, trained using the convolutional neural network (CNN), was 0.46, underscoring the model’s 
precision and reliability.
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Deep learning models thrive on ample data and sophisticated 
feature representation techniques, which can bolster predictive 
accuracy significantly.

In conclusion, the fusion of XGBoost and CNN Regression in the 
“ECEP” model presents a promising avenue for enzymatic turnover 
prediction. Despite challenges, its advantages and innovative approach 
position it as a transformative force in enzymology research. Its true 
impact will be  realized through real-world applications and its 

contribution to advancing our comprehension of enzymes and their 
intricate dynamics.

Conclusion

The journey of “ECEP” from conception to validation has been 
both enlightening and transformative. As we  reflect on its 

FIGURE 10

The mean square error (MSE) obtained by the ECEP model, trained using the XGBoost algorithm, was 0.69, affirming the model’s precision and 
reliability.

FIGURE 11

Comparison between R-squared, MSE, and Pearson correlation coefficient obtained by ECEP and previous methods; TurNuP, and DLKcat.
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performance, implications, and the road ahead, it’s evident that this 
model represents a significant leap in the realm of enzymatic 
turnover prediction.

 • The introduction of “ECEP” has the potential to redefine the 
benchmarks in enzymatic turnover prediction. Its ability to 
provide nuanced, probabilistic outputs can guide experimental 
designs, risk assessments, and decision-making processes in 
enzyme kinetics research.

 • The insights derived from the model, especially regarding 
feature importance, can pave the way for novel hypotheses, 
experimental designs, and a deeper understanding of 
enzyme dynamics.

 • The model’s adaptability ensures that it remains relevant even as 
new data emerges, making it a valuable tool for ongoing and 
future research in the field.

Building on the foundations laid by models like TurNuP and 
DLKcat, future iterations of “ECEP” can explore hybrid approaches, 
amalgamating the strengths of different models to achieve even higher 
predictive accuracy.

In essence, “ECEP” represents a beacon of progress in the field of 
enzymatic turnover prediction. Its introduction promises not just 
enhanced predictive capabilities but also a deeper understanding of 
the intricate dance of enzymes. As with any scientific endeavor, the 
journey is ongoing, and “ECEP” is poised to lead the way, illuminating 
the path for future research and discoveries in enzyme kinetics.

In conclusion, our proposed methodology represents a significant 
advancement in the field of enzyme catalytic efficiency prediction. By 
shifting from simple mean averaging to a weighted mean approach, 
we address a critical limitation of previous models like TurNuP. Our 
weighted ensemble technique optimizes the contribution of each 
model based on its accuracy, resulting in more reliable and precise 
predictions. This innovative approach not only demonstrates superior 
performance but also offers a scalable and adaptable framework for 
future research in enzymology. Our findings underscore the 

importance of methodological improvements in predictive modeling, 
paving the way for more accurate and effective tools in bioinformatics.
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