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system parameter dynamics from
time series using reservoir
computing
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Introduction: Nonlinear and non-stationary processes are prevalent in various

natural and physical phenomena, where system dynamics can change

qualitatively due to bifurcation phenomena. Machine learning methods have

advanced our ability to learn and predict such systems from observed time series

data. However, predicting the behavior of systems with temporal parameter

variations without knowledge of true parameter values remains a significant

challenge.

Methods: This study uses reservoir computing framework to address this

problem by unsupervised extraction of slowly varying system parameters from

time series data. We propose a model architecture consisting of a slow

reservoir with long timescale internal dynamics and a fast reservoir with short

timescale dynamics. The slow reservoir extracts the temporal variation of system

parameters, which are then used to predict unknown bifurcations in the fast

dynamics.

Results: Through experiments on chaotic dynamical systems, our proposed

model successfully extracted slowly varying system parameters and predicted

bifurcations that were not included in the training data. Themodel demonstrated

robust predictive performance, showing that the reservoir computing framework

can handle nonlinear, non-stationary systems without prior knowledge of the

system’s true parameters.

Discussion: Our approach shows potential for applications in fields such as

neuroscience, material science, and weather prediction, where slow dynamics

influencing qualitative changes are often unobservable.

KEYWORDS

chaos, nonlinear dynamics, bifurcation (mathematics), reservoir computing, slow - fast

dynamics

1 Introduction

Nonlinear, non-stationary processes are abundant in various natural and physical

phenomena. For instance, the dynamics of neurons are known to be strongly dependent

on the state of the brain, determined by varying levels of attention, arousal, anesthesia,

and sleep depth, as well as on different behavioral patterns such as movement (Steriade

et al., 1993; Buzski, 2002; Tokuda et al., 2019; Vohryzek et al., 2020). Similarly, the

response of physical systems can qualitatively change due to bifurcation phenomena as
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sample properties or experimental conditions vary (Bnard, 1901;

Ertl, 1991; Itoh and Kimoto, 1996; Raab et al., 2023). Various

mathematical frameworks have been proposed to model non-

stationary dynamics (Waddington, 1961; Kaneko and Tsuda, 2003;

Rabinovich et al., 2001; Katori et al., 2011; Patel et al., 2021). One

plausible and simple depiction is that system parameters vary over

time or in different contexts (Patel et al., 2021).

Consider either a discrete nonlinear dynamical system:

x(n+ 1) = f (x(n); λ), (1)

or a continuous dynamical system:

dx

dt
= f (x; λ), (2)

where x ∈ R
n represents the dynamical variable expressing

fast dynamics, and λ is a parameter of function f whose value

can potentially lead to bifurcation in the dynamics of x. In the

context of modeling static nonlinear systems with a fixed value

of λ, recent advancements in machine learning have enabled

the rules governing the underlying system to be extracted and

learned from observed time series data with much higher accuracy

than before. In particular, by learning from time series data,

reservoir computing has facilitated the creation of autonomous

dynamical systems within the model that can generate time series

resembling those of the target system, achieving high accuracy

even in challenging problems such as learning chaotic systems.

Furthermore, recent studies have demonstrated the prediction of

unobserved bifurcations that are not present in the learning data

(Kong et al., 2021; Patel et al., 2021; Kim et al., 2021; Itoh, 2023).

In their settings, they have succeeded in predicting unknown

bifurcations that occur when the parameter λ takes values other

than those used when generating the observed data. For example,

Patel et al. addressed the bifurcation parameter λ of a chaotic

dynamical system not as static value but as a variable changing

very slowly over time, and learned the time series generated by

this system. After learning the one-step-ahead prediction task, they

added a feedback loop to the reservoir, creating a closed-loop

model that can generate time series as an autonomous dynamical

system. They showed that, although learning the time series of

x using the conventional reservoir computing framework alone

does not predict unobserved bifurcations, successful learning can

be achieved by separately providing the reservoir with the true

value of the parameter at each moment as an additional input.

When the parameter values inputted during the prediction phase

were different from those during learning, the model was able to

predict bifurcations not included in the training data. Kim et al.

demonstrated that the emergence of a Lorenz attractor not present

in the training data could be predicted by first inputting time

series generated from the Lorenz equations along with the true

bifurcation parameter values into the reservoir, then forming a

closed-loop model to create an autonomous dynamical system, and

finally changing the input parameter values. These studies indicate

that predicting unknown bifurcation phenomena is possible by

additionally inputting the value of the bifurcation parameter

into the reservoir. This suggests that the reservoir computing

framework is capable of learning not just specific dynamical

systems but families of dynamical systems, suggesting the potential

to predict the emergence of system states qualitatively different

from those observed in real data. However, these prior studies

assume that the true value of the parameter is known, which is

not the case in most real-world scenarios, including in brain data

observation. Therefore, the question arises whether the behavior of

non-stationary systems with temporal parameter variations can be

predicted solely from observed time series data.

Various methods, including recurrence plots (Marwan and

Kraemer, 2023), supervised learning (Zhai et al., 2024), slow feature

analysis (Wiskott and Sejnowski, 2002; Antonelo and Schrauwen,

2012), and hierarchical structures (Yonemura and Katori, 2021;

Katori, 2019; Gallicchio et al., 2017; Tamura et al., 2019), have been

reported for extracting the slowly moving components of system

dynamics. In this study, we leverage the reservoir computing

framework to address this problem. Our central idea is based on the

following consideration: in a typical scenario, a reservoir receives

a signal derived from a nonlinear dynamical system, such as one

variable of the state vector x — e.g., x1 —, in one step and predicts

its value in the next time step. Previous studies have indicated

that establishing generalized synchronization between the reservoir

and the original system generating the input signal is crucial

for achieving accurate predictions (Rulkov et al., 1995; Carroll,

2020; Lu et al., 2018; Lu and Bassett, 2020), where generalized

synchronization refers to the condition that the listening reservoir’s

state, u(t), is a continuous function, 9(x), of the state of the

original system, x. Especially, if the function 9(x) is invertible,

the reservoir’s state u(t) has all the information about x. It is

reasonable to predict the value of another element — e.g., x2
—, from partial observation of the system — e.g., only x1 —,

if generalized synchronization is established between the original

system and the reservoir (Lu et al., 2017). Now, considering the

parameter λ varies slowly over time as expressed in Equation 2, the

following system can be formulated:















dx

dt
= fx(x; λ)

dλ

dt
= fλ(x, λ)

(3)

Let X be a concatenation of x and λ, defined as X = t
(

tx, λ
)

,

then this system can be represented as a single ordinary differential

equation (ODE):

dX

dt
= F(X). (4)

We assume that the signal is generated from the trajectory of

this concatenated system’s attractor. When the signal originating

from x is input into the reservoir and invertible generalized

synchronization between the reservoir state u and X is achieved,

the reservoir’s state has full information about λ. While above

discussion is speculative, previous studies have shown that by

adjusting the reservoir’s timescale and structure, the reservoir

can successfully extract the slow dynamics of the signal source

system (Manneschi et al., 2021; Jaeger, 2008; Gallicchio et al.,

2017; Tanaka et al., 2022; Yonemura and Katori, 2021). The

extraction of such slow or static system states within the reservoir

computing framework, where internal couplings are not altered

during learning, suggests that unsupervised extraction of such

information is possible using reservoirs. We first aim to verify
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whether it is possible to extract the true variation of parameter

λ’s by simply extracting the slowly varying variables within the

reservoir (Section 3.1 Experiment 1).

Patel et al. (2021) have demonstrated that predicting the time

series of the concatenated system X cannot be achieved by a

simple single reservoir. The challenges addressed in this paper are

twofold: (1) estimating the unobservable slowly varying parameter

values (Section 3.1 Experiment 1), and (2) predicting unknown

bifurcations in the fast dynamics under the variation of such

parameters (section 3.2 Experiment 2). While the second challenge

has been tackled by Patel et al. and Kim et al. in scenarios where

the true parameter value is known, in this study, we explore

the possibility of learning from observational data generated by

nonlinear systems and predicting unknown bifurcations without

the knowledge of true parameter values. We allow the bifurcation

parameter values to change over time but assume these changes

occur on a significantly longer timescale compared to the system’s

fast dynamics. Previous studies suggest that extracting the slowly

changing parameter values from time series observations in an

unsupervised manner may allow us to substitute the true parameter

value with an estimated one.

The architecture of the model proposed in this study comprises

two types of reservoirs stacked in layers: a slow reservoir with

long timescale internal dynamics and a fast reservoir with short

timescale dynamics. Assuming a nonlinear system with a very

slowly changing bifurcation parameter value as the signal source,

we input observational data obtained from the fast dynamics into

these reservoirs. We found that when the variables that change

slowly are extracted from the internal state of the slow reservoir,

they trace the temporal variation of the system’s parameter.

Although the variables extracted from the slow reservoir differ

in amplitude scale from the true parameter values, we show that

adding these variables and the observational time series to the

fast reservoir allows for the prediction of unknown bifurcations,

resembling the true parameter values provided in prior studies.

2 Materials and methods

2.1 Problem setting

Consider the following nonlinear differential equations:















dx

dt
= fx(x; λ)

dλ

dt
= fλ(λ, t)

(5)

As implied by this equation, the parameter λ is assumed to vary

over time. However, in this paper, we sometimes do not explicitly

define fλ and, instead, assume λ is simply a function of t. In either

case, the temporal change of λ is assumed to be significantly slower

than that of x. Herein, we consider concrete examples of fx by

examining numerical computations derived from the Lorenz and

Rössler equations.

We assume the observation time series y is given as a function

of the fast variable x, as follows:

y(n) = g(x(1t · n))) (6)

where g(x(t)) is a function of x(t). We assume g to be well-

behaved, such as a smooth and differentiable function, but without

including the full observation of the state x, i.e., dim y < dim x. In

this paper, we use

g(x) = x1, (7)

where x1 is the first element of the vector x. We naturally

suppose that the time series are obtained by temporally discretizing

the continuous signal with a specific time step, 1t. The problem

we address here is whether detecting changes in the slowly varying

parameter λ and predicting unknown bifurcations is possible based

on the observed y(n).

2.2 Model architecture

In this study, we conduct two experiments: (1) estimating

the unobservable slowly varying parameter values (Section 3.1

Experiment 1), and (2) predicting unknown bifurcations in the

fast dynamics under the variation of such parameters (Section 3.2

Experiment 2). In Experiment 1, as shown in Figure 1, we input

time series observations generated from the attractor trajectory

of a nonlinear dynamical system into a reservoir with a slow

time constant and observe the internal state of the reservoir. We

check whether there are nodes in the internal state that exhibit

fluctuations similar to the slow movement of the parameter of the

dynamical system generating the data. The experimental setup is

shown in Figure 1. We refer to this reservoir with a slow time

constant as the slow reservoir. In Experiment 2, we test whether

the movements of the parameters extracted from the slow reservoir

and the observed time series can be used as inputs to predict

bifurcations in the attractor. We refer to this downstream reservoir

as the fast reservoir. The model architecture is shown in Figure 2. In

Experiment 2, during the training phase, the model learns from the

time series, and afterwards, by introducing feedback, it operates as a

fully autonomous system. Themodel must predict both the changes

in the slow-moving parameter and the values of the fast dynamical

variables. Therefore, the model includes a third reservoir, called the

slow dynamics predictor, which predicts the time series output of the

slow reservoir (Figure 2). In the test phase after training, both the

slow dynamics predictor and the fast reservoir are provided with

feedback from their outputs, forming a closed-loop model.

2.3 Reservoir model

2.3.1 Slow reservoir
We employed a reservoir consisting of leaky integrator neurons

with long time constants to extract the slow variables of the

system (Jaeger et al., 2007). Namely, the leak rate, α, is set close

to 1. To ensure that the reservoir dynamics arising from neuron

interactions also exhibit long time constants, we adjust the spectral

radius of the recurrent connection strength, Ws ∈ R
Ns×Ns

to be

equal to one. The dynamics of the slow reservoir are defined by the
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FIGURE 1

Schematic diagram of the numerical examination discussed in Section 3.1. The observation signal y(n) is generated by a nonlinear system

dx/dt = fx(x; λ). The slow reservoir consists of leaky neuron models with a very long leak rate, and the spectral radius of the recurrent connection is

set to 1.

FIGURE 2

Schematic diagram showing the open-loop training phase and the closed-loop prediction phase. (A) In the training phase, observation y(n) is fed to

both the slow and fast reservoirs. The output of the slow reservoir is also input to the fast reservoir. Additionally, the output of the slow reservoir is

input to the “slow dynamics predictor” reservoir. After the training phase, the output weights of both the slow dynamics predictor and the fast

reservoir are optimized to conduct one-step-ahead prediction of their own inputs. (B) In the prediction phase, feedback loops are added to the slow

dynamics predictor and the fast reservoir to make the whole system a single autonomous dynamical system that can predict time series of y(n).

following equation:

us(n+ 1)

= αus(n)+ (1− α) tanh(Wsus(n)+Ws
in · y(n)+ bs) (8)

where us = (us1, u
s
2, . . . , u

s
Ns )T is the internal state of the

reservoir, bs ∈ R
Ns

is the bias term,Ws ∈ R
Ns×Ns

is the recurrent

connection strength, Ws
in ∈ R

Ns×1 is the input connection

strength, α is the leak rate, tanh(x) = e2x−1
e2x+1

is the hyperbolic

tangent, Ns is the number of neurons in the reservoir, and y(n) ∈

R is a one-dimensional time series observation derived from the

data generation models mentioned earlier. The elements ofWs are

drawn from an i.i.d. Gaussian normal distribution, and then Ws

is normalized by multiplying a constant factor so that the spectral
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radius ρ(Ws) satisfies ρ(Ws) = 1. The elements in the input

connection matrix Ws
in and in vector bs are drawn from an i.i.d.

uniform distribution over intervals [−χ s
in, χ s

in] and [−χ s
b
, χ s

ib
],

respectively. The parameter values used are Ns = 500 and α =

0.995. When applying the Lorenz system as the data generation

model, we used χ s
in = 0.5 and χ s

b
= 5, whereas when applying

the Rössler model, we set χ s
in = 15 and χ s

b
= 150. To determine the

slow dynamics of the target system, we extracted slowly changing

elements of the internal state us, which were heuristically selected

using the following procedure:

• For each i, calculate a moving average of the time series usi (n)

using a time window nwindow with a specific width, where usi (n)

is the ith element of the internal state us. Let usi (n) denote this

moving average:

usi (n) =

∑nwindow−1
k=0

usi (n− k)

nwindow
(9)

• For each i, calculate the fluctuation around its own moving

average during the training phase using the standard deviation

SD
[

usi (n)− usi (n)
]

.

• Choose the elements with the lowest fluctuation. In this study,

the top 10%, namely 50 nodes, were selected. Let S10%
slow

= {i |

usi is in the slowest 10% of nodes} denote this set.

• Calculate the instantaneous average of the absolute values of

the selected elements:

ũs(n) =
1

|S10%
slow

|

∑

i∈S10%
slow

|usi (n)|, (10)

where ũs(n) denotes the extracted slow feature, and |S10%
slow

|

is the cardinality of the set S10%
slow

. The absolute value of each

node is taken because some nodes exhibit changes that follow

the same pattern as the parameter changes, while others show

changes that are the inverse. Simply averaging these values

would cancel them out, resulting in a near-zero ũs(n). By

taking the absolute value before averaging, we ensure that the

contributions of all selected nodes are positively accounted

for, avoiding this cancellation effect due to the central

symmetry of the tanh function and the distribution of each

weight element.

In the numerical experiment with the closed-loop model

discussed in Section 3.2, the extracted slow feature is further

smoothed by a linear filter before being fed to the downstream

reservoirs (namely, fast reservoir and the slow dynamics predictor)

to stabilize the learning process. The filtering is described by the

following linear dynamics:

h(n+ 1) = (1−
1

τf
)h(n)+

ũs(n)

τf
, (11)

where τf is the time constant of the filter. This equation is

derived from the following linear dynamics:

τf
h(n+ 1n)− h(n)

1n
= −h(n)+ ũs(n) (12)

Equation 11 is obtained by substituting1n = 1. The parameter

value used is τf = 200. The application of a linear filter does

not significantly alter the shape of the time series; it is used

solely for removing high-frequency components and smoothing

(Supplementary Figure S1).

2.3.2 Fast reservoir
In addition to the slow reservoir described above, which is

employed to extract the slow components of the dynamics, we

utilize another reservoir to capture the evolution laws of the fast

dynamics of the target system (Figure 2). The model is almost same

as Equation 8 but with two inputs and different parameter values:

uf(n+ 1) = αuf(n)+ (1− α) tanh(Wfuf(n)+Wf
in · y(n)

+Wparam · Ifast(n)+ bf) (13)

where uf = (u1, u2, . . . , uNf )T is the internal state of the

reservoir, bf ∈ R
Nf

is the bias term, Wf ∈ R
Nf×Nf

is the recurrent

connection strength, Wf
in ∈ R

Nf×1 is the input connection

strength, tanh(x) = e2x−1
e2x+1

is the hyperbolic tangent, and Nf is

the number of neurons in the reservoir. As in previous studies

(Patel et al., 2021; Kim et al., 2021), a slowly changing parameter

value that acts as the bifurcation parameter is also fed to the

reservoir, as expressed by the termWparam ·Ifast(n) in the RHS of the

equation, where Wparam ∈ R
Nf×1 is the input connection strength

and Ifast(n) is the additional input to the fast reservoir receiving

the slow component. Unlike previous studies, Ifast(n) is not the

true parameter value of the target system but the output of either

one of other reservoirs, the slow reservoir or the slow dynamics

predictor described below (Figure 2). A sparse matrix is used for

Wf, such that randomly chosen 2% of the edges are assigned non-

zero values, whereas the rest are set to zero. The weight values of

the 2% edges are drawn from an i.i.d. uniform distribution over

the interval [0 1], andWf is normalized so that the spectral radius

ρ(Wf) satisfies ρ(Wf) = 0.95. The elements in Wf
in,Wparam, and

bf are drawn from an i.i.d. uniform distribution over intervals

[−χ f
in, χ f

in], [−χ f
param, χ f

param], and [−χ f
b
, χ f

b
], respectively. The

parameter values used are Nf = 2000, χ f
in = 0.75, χ f

param = 0.15,

χ f
b
= 15, and α = 0.8.

2.3.3 Slow dynamics predictor
In Section 3.2, we demonstrate the construction of a closed-

loop model capable of predicting unobserved bifurcations without

requiring an observation signal as its input (Figure 2). Typically,

in reservoir computing, a closed-loop model can be established

by simply adding a feedback loop, using the reservoir’s output

as its input at the next time step. This approach is applied to

the fast reservoir (Figure 2). However, due to the extraction of

slow dynamics from the observation of fast dynamics using the

slow reservoir, the output of the slow reservoir exhibits different

temporal properties and cannot be used as feedback to substitute

the input at the next time step. Therefore, to construct a closed-

loop model, we introduce the slow dynamics predictor, which is

an additional reservoir that predicts the evolution of the slow

component of the target dynamics. In the training phase, the slow
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component Ifast(n) in the RHS of Equation 13 originates from

the output of the slow reservoir, namely, Ifast(n) = h(n). In

the prediction phase, the slow dynamics predictor works as an

autonomous system by adding the closed loop, and we substitute

Ifast(n) in the RHS of Equation 13 with the prediction of this slow

dynamics predictor, namely, Ifast(n) = h̃(n). We use a standard

echo state network for this reservoir (Jaeger and Haas, 2004). The

model is almost the same as Equation 13 but with slightly different

parameter values and without the input y(n) and leak term. The

dynamics of the slow dynamics predictor during the training phase

is described as follows:

usdp(n+ 1)

= tanh(Wsdpusdp(n)+Wparam · h(n)+ bsdp). (14)

The parameter values used are Nsdp = 500 and χ
sdp
param =

χ
sdp
b

= 5× 10−3.

2.4 Training

Figure 2 describes the model architecture used for the one-

step-ahead prediction task. Training is conducted using “teacher

forcing,” where, during the training phase, the observation time

series to be predicted serves as the external force that drives the

reservoir (Figure 2A). To train the fast reservoir, the sum of squared

output errors in one-ahead-prediction and the regularization term

is minimized with respect toWf
out:

∑

n

(

y(n+ 1)−
(

Wf
outu

f(n+ 1)+ b
f
out

))2
+ β|Wf

out|fro (15)

where |Wf
out|fro is the Frobenius norm of matrixWf

out, β is the

regularization coefficient, Wf
out is the output connection strength.

Here, the Frobenius norm ‖A‖fro of a matrix A = (aij) refers to

the square root of the sum of the absolute squares of its elements as

follows:

‖A‖fro =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2. (16)

The analytic solution is for this minimization is given by the

following calculation:







Wout

b
f
out






= (UUT + βI)−1Uy, (17)

where the left hand side of the equation represents the

concatenation of Wout and b
f
out in a vertical manner, y =

(y(2), y(3), · · · , y(n+ 1))T is the vector of observation time series,

and

U =

(

uf(1) uf(2) · · · uf(n)

1 1 · · · 1

)

(18)

is the matrix whose ith column is the vertical concatenation of

the internal state of the reservoir the input vector at time i, uf(i),

and 1.

Similarly, to train the slow dynamics predictor, the sum

of squared output errors in one-ahead-prediction and the

regularization term is minimized with respect toW
sdp
out :

∑

n

(

h(n+ 1)−
(

W
sdp
outu

sdp(n+ 1)+ b
sdp
out

))2
+ β|W

sdp
out |fro.(19)

where b
sdp
out is the scalar bias term.

The training of the fast reservoir and the slow dynamics

predictor take place parallel after the training phase.

2.5 Closed-loop model

Following the training phase, feedback loops are incorporated

into the slow dynamics predictor and the fast reservoir,

transforming the entire system into a single autonomous dynamical

system capable of generating predictions for the time series y(n)

(Figure 2B). The fast reservoir with the feedback loop is described

by the following equations:







uf(n+ 1) = tanh(Wfuf(n)+Wf
in · ỹ

f(n)+Wparam · h̃(n)+ bf)

ỹf(n+ 1) = Wf
outu

f(n+ 1)+ b
f
out

(20)

where h̃(n) is the external input whose evolution is governed by

the slow dynamics predictor model described as follows:







usdp(n+ 1) = tanh(Wsdpusdp(n)+Wparam · h̃(n)+ bsdp)

h̃(n+ 1) = W
sdp
outu

sdp(n+ 1)+ b
sdp
out

(21)

Equations 20, 21 collectively form the autonomous dynamical

system capable of independently generating a time series.

2.6 Largest Lyapunov exponent estimation

After the training phase, the largest Lyapunov exponent (LLE)

is computed for the fast reservoir with feedback (Equation 20).

In Experiment 2, both during the training and prediction phases,

the fast reservoir receives the time-varying output, namely the

smoothed output of the slow reservoir, h(n), or the output of the

slow dynamics predictor, h̃(n), as its input Ifast(n). Here we calculate

the LLE of the fast reservoir by fixing the value of Ifast(n). Namely,

the LLE of the fast reservoir with the parameter n is defined by the

LLE of the following dynamical system:







uf(k+ 1) = tanh(Wfuf(k)+Wf
in · ỹ

f(k)+Wparam · Ifast(n)+ bf)

ỹf(k+ 1) = Wf
outu

f(k+ 1)+ b
f
out

(22)

where k denotes the time step and n is regarded as a constant

value. Substituting the second expression of Equation 22 into

the first one yields the autonomous dynamical system with the

parameter Ifast(n) as follows:

uf(k+ 1) = tanh(Wfuf(k)+Wf
in ·

(

Wf
outu

f(k)+ b
f
out

)

+Wparam · Ifast(n)+ bf). (23)
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The calculation of the LLE follows the standard approach using

continuous Gram-Schmidt orthonormalization of the fundamental

solutions to the linearized differential equation along the trajectory

(Shimada and Nagashima, 1979), which is given by:

δu(k+ 1) = J · δu(k), (24)

where J is the Jacobian matrix of Equation 23, expressed as:

J =
∂uf(k+ 1)

∂uf(k)
. (25)

Let r(k) be the argument of the hyperbolic tangent function in the

RHS of Equation 23:

r(k) = Wfuf(k)+Wf
in ·

(

Wf
outu

f(k)+ b
f
out

)

+Wparam · Ifast(n)+ bf. (26)

Then, the Jacobian matrix can be described as follows:

∂uf(k+ 1)

∂uf(k)
=

(

E− diag
[

tanh2
(

r(k)
)

])

·

(

Wf +Wf
in ·W

f
out

)

.

(27)

2.7 Data generation models and
observation

We generated time series to train the reservoir model using a

nonlinear differential equation whose solutions were computed by

numerical integration and discretized at specific time intervals 1t,

with characteristic values for each model.

2.7.1 Lorenz equation
As an example of the function fx described in the problem

setting, we used the Lorenz 63 model to define a non-stationary

signal source:































dx1

dt
= a(x2 − x1)

dx2

dt
= −x2 + x1(λ − x3)

dx3

dt
= −bx3 + x1x2

(28)

where a and b are parameters, and λ is considered to change

slowly over time. The observation time series y(n) is given by:

y(n) = x1(1t · n) (29)

where n ∈ N is the index of the discretized time steps. We

set the parameter values to a = 10 and b = 8/3, which are

commonly employed, and discretized the time series with a time

step of 1t = 0.05.

2.7.2 Rössler equation
The Rössler equation was also utilized as a data generation

model:































dx1

dt
= −x2 − x3

dx2

dt
= x1 + ax2

dx3

dt
= λ + x3(x1 − c)

(30)

where a and c are static parameters, and λ is considered

to change slowly over time. The observation time series is

y(n) = x1(1t · n) as in the case of the Lorenz system,

and the parameter values are set to a = 0.2, c = 5.7,

and 1t = 0.7.

3 Results

3.1 Experiment 1: extraction of slow
features from time series using the slow
reservoir

Initially, we investigated the feasibility of observing parameter

dynamics within a reservoir by feeding observed time series data

from a nonlinear system with slowly changing parameter values

into a reservoir characterized by a slow time constant. A schematic

overview of the numerical computations performed in this study

is depicted in Figure 1. The response of the slow reservoir to time

series generated from the Lorenz system is illustrated in Figure 3,

with a more detailed view provided in Figure 4 using a shorter

time scale. In the Lorenz system described by Equation 28, the

parameter λ varies slowly over time, following a triangular wave

pattern between λ = 64 and λ = 100 (Figure 3A). Notably,

the period of change in the parameter λ is 10,000 steps, which

is two orders of magnitude larger than the typical timescale of

the Lorenz attractor (≈ t = 1, which is equivalent to 20 steps

with 1t = 0.05). The time series of the variable x1 reflects these

variations in parameter values, as shown in Figures 3B, C. Figure 4

presents the same data as Figure 3 but with a modified horizontal

axis scale. At approximately t = 10, 000, an abrupt change in the

parameter value leads to a significant alteration in the shape of

the x1 time series, as indicated in Figures 4B, C. Upon examining

the internal state of the slow reservoir, we observed that certain

nodes exhibited rapid temporal fluctuations (Figures 3D, 4D),

while others displayed slower activities characterized by minimal

high-frequency components (Figures 3E, 4E).

Our objective is to extract patterns of parameter fluctuations

from the internal state of the slow reservoir in an unsupervised

manner, assuming that the parameter’s fluctuation is slower than

the typical timescale of the time series. To accomplish this,

we identified nodes exhibiting slow changes (see Materials and

Methods). The nodes with the ten highest SD values are depicted in

Figures 3D, 4D, while those with the five lowest values are shown

in Figures 3E, 4E. Furthermore, we selected the 10% of nodes, i.e.,

50 nodes, with the smallest SD values and calculated the negative

mean of their absolute values, as illustrated in Figures 3F, 4F

(see Materials and methods for details). As shown in Figure 3F,
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FIGURE 3

Response of the slow reservoir to time series generated by the Lorenz system in the Experiment 1. (A) True parameter value λ of the Lorenz system

slowly changing from λ = 64 to λ = 100. (B) Variable y(n) = x1(1t · n), representing the first element of the state of the Lorenz system used as the

input to the reservoir. (C) Local minima and maxima of the trace shown in (B). (D, E) Values of the internal states, xi, of the slow reservoir

characterized by rapid and slow temporal fluctuations, respectively. (F) Extracted slow dynamics calculated as the average of the absolute values of

internal nodes exhibiting slow behavior. (A–F) are plotted against time in the horizontal axis.

the average activity of the extracted slow nodes follows a trend

similar to the temporal variation of the parameter λ. Given that

approximately half of the nodes exhibit an inverted pattern, we

took the absolute values of each node’s values before averaging

to ensure consistent directionality. The negative value of the final

values is presented for easier comparison with the parameter

λ’s fluctuation pattern. It’s important to note that this process

of taking the negative value, which relies on knowledge of the

true parameter value, is unnecessary for predicting the unknown

bifurcation presented in Subsection 3.2.

Figures 5, 6 show results of a similar analysis using the time

series generated from the Rössler equation as input. Although the

extracted slow dynamics in the Rössler attractor do not distinctly

exhibit parameter variations as in the Lorenz attractor, the shape

of the parameter variations remains observable, as demonstrated in

Figures 5F, 6F.

Figure 7 illustrates the effect of varying the leak rate, α, on the

performance of the slow reservoir in extracting slow dynamics.

Figure 7A shows the true time-varying parameter λ, which is used

as a reference for comparison. Figures 7B–D show the extracted

slow dynamics ũs(n) for three different leak rates: α = 0.5, α =

0.99, and α = 0.999, respectively. When the value of α is too small

compared to 1, the time constant of the slow reservoir becomes

shorter than the time scale of the fluctuation of the parameter

to be extracted, and it fails to reflect the true variation of the

parameter Figure 7B. On the other hand, when α = 0.9999 (i.e.,

when − log10(1 − α) = − log10(0.0001) = 4), the time constant

of the reservoir becomes much longer than the time scale of the

fluctuation of the parameter, as indicated by the relaxation behavior

of the extracted slow dynamics (Figure 7D). Among Figures 7B–D,

the correlation with the original time series of λ is highest when

α = 0.99 as shown in Figure 7C. This suggests that there is an

optimal value for α in terms of the correlation. Figure 7E examines

the correlation between the parameter λ and the extracted slow

dynamics as the value of α is varied, demonstrating the existence

of this optimal value.

Within the framework of reservoir computing, regression to

the training data from the internal states of the reservoir is a

common practice. Based on the obtained results, it is clear that

supervised learning regression can be applied to the time series of

the parameter λ from the internal state of the slow reservoir (the

results of supervised fitting are shown in Supplementary Figure S2,

where very small RMSE is established). However, even without

such supervised learning, if one can assume foresightedly that “the

parameter variations have a much slower timescale than the typical

timescale of the observed time series, allowing for the separation

of timescales,” then, as demonstrated in this study, it might be

possible to estimate the pattern of parameter variations simply by

observing the activity of slowly moving nodes within the reservoir’s

internal state.
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FIGURE 4

Response of the slow reservoir to time series generated by the Lorenz system in the Experiment 1 with an expanded time axis. This figure shows the

same data as in Figure 3 but with an expanded time scale. (A) True parameter value λ of the Lorenz system. (B) Variable y(n) = x1(1t · n), representing

the first element of the state of the Lorenz system used as the input to the reservoir. (C) Local minima and maxima of the trace shown in (B). (D, E)

Values of the internal states, xi, of the slow reservoir characterized by rapid and slow temporal fluctuations, respectively. (F) Extracted slow dynamics

calculated as the average of the absolute values of internal nodes exhibiting slow behavior. (A–F) are plotted against time in the horizontal axis.

3.2 Experiment 2: prediction of unobserved
bifurcation from time series data

As demonstrated in the previous subsection, extracting time

series of slowly-varying elements from the slow reservoir allows us

to unsupervisedly reveal the underlying slow parameter dynamics

of the target system. As discussed in the Introduction, Patel et al.

(2021) and Kim et al. (2021) have shown that by concurrently

inputting the time series of actual parameter values into the

reservoir, it is possible to predict bifurcations in the system’s

attractors, even if these bifurcations are not present in the training

data. In this case, we present a scenario where the slow dynamics,

unsupervisedly extracted by the slow reservoir, are fed into the

reservoir separately from the observations of the fast dynamics,

enabling the prediction of bifurcations in the target system that are

not contained in the training data. Our model, depicted in Figure 2,

consists of three reservoirs: the slow reservoir, the slow dynamics

predictor, and the fast reservoir. The slow reservoir is characterized

by long time constants in its leaky units and a spectral radius equal

to 1, specifically engineered to extract the slowest-moving dynamics

by calculating the mean absolute values of the 10% most slowly

changing elements. The slow dynamics predictor receives outputs

from the slow reservoir and learns its dynamics. The output from

this slow reservoir is smoothed through a linear filter before being

sent to the two downstream reservoirs (Methods). Meanwhile, the

fast reservoir receives both the fast dynamics directly observed

from the target system and the slow dynamics extracted by the

slow reservoir, predicting the subsequent state of y(n). We use

time series data generated from the Lorenz attractor with a slowly

varying parameter as the target system to learn. Figure 8 illustrates

the results of learning by the model.

Figure 8 illustrates the results of the model’s learning process.

In this numerical experiment, the parameter λ changes linearly and

gradually over time (Figure 8) under a scenario where bifurcations

occur in the fast dynamics leading to the disappearance of the

chaotic attractor (Figure 8). Beyond n = 7, 500, the Lorenz

system develops a stable fixed point characterized by two complex

conjugate eigenvalues. As shown in Figure 8B, chaotic oscillations

occur prior to n = 7, 500, but suddenly cease at a specific

point. After n = 7500, the system converges toward one of

the two stable fixed points. Figure 8C depicts the value of the

LLE for the Lorenz system when the parameter value displayed

in Figure 8A remains constant over time. Note that this LLE is

computed for each point along the horizontal axis with a fixed

value of λ, unlike in a system with a temporally varying λ. As

shown in Figure 2A, the model operates as an open-loop model

from n = 0 to n = 5500, driven by the external input y(n)

depicted in Figure 8B. The slow dynamics extracted from the

reservoir after smoothing by the linear filter are presented in

Figure 8D. The model undergoes a transient phase up to n =

1, 000, but then exhibits nearly linear behavior resembling the

true parameter variations shown in Figure 8A. Starting at n =
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FIGURE 5

Response of the slow reservoir to time series generated by the Rössler equation. (A) True parameter value λ of the Rössler equation. (B) Variable

y(n) = x1(1t · n), representing the first element of the state of the Rössler equation used as the input to the reservoir. (C) Local minima and maxima of

the trace shown in (B). (D, E) Values of the internal states, xi, of the slow reservoir characterized by rapid and slow temporal fluctuations, respectively.

(F) Extracted slow dynamics calculated as the average of the absolute values of internal nodes exhibiting slow behavior. (A–F) are plotted against

time in the horizontal axis.

5, 500, the slow dynamics predictor is changed to a closed-loop

model, generating h̃(n), the prediction of h(n). At this point, the

internal state of the reservoir, determined by the external force

during the training phase, remains unchanged; only the input is

instantaneously replaced by the feedback from its own output.

Figure 8E shows the output from the fast reservoir. The results of

fitting y(n) (the time series shown in Figure 8B) from n = 1, 500

to n = 5, 500 are marked in red. After n = 5, 500, h̃(n) generated

by the slow dynamics predictor, along with the feedback from its

own output, are fed to the fast reservoir to generate predictions for

y(n). At this stage, the entire system operates as an autonomous

system with no external input. By n = 7, 000, chaotic oscillations

disappear, and the trajectory converges to a stable fixed point, as

shown in Figure 8E.

For each time point along the horizontal axis in Figure 8E, the

LLE of the closed-loop fast reservoir is estimated by fixing the

value of the input h(n) to that at each time point in Figure 8D.

It was found that, during the chaotic oscillations observed in

the fast reservoir’s output before n = 6000, the LLE closely

matches that of the Lorenz system during the learning phase

(Figure 8F). However, the system still does not fully replicate the

slight decreasing tendency of the LLE and the narrow windows

with zero LLE found in the original Lorenz system. After n =

7, 000, the LLE of the fast reservoir takes negative values. Using

the fixed values of the input to the fast reservoir, h̃(n = 6, 000),

the attractor reconstructed by the delay time coordinate shows a

shape akin to that of the Lorenz attractor (Figure 8G). Furthermore,

when using the values of h̃(n) after the oscillations have ceased,

the trajectory converges with rotation around a single stable fixed

point (Figures 8H, I). This suggests that the existence in the original

Lorenz system of a stable fixed point with one real eigenvalue and

two conjugate complex eigenvalues is predicted only by learning

from the chaotic time series as λ decreases. Overall, the results

shown in Figure 8 suggest that, solely by observing the fast variable,

the model successfully learned the dynamical flow of the original

Lorenz system, including the shape of the attractor, its stability, and

its slowly changing vector field.

Figure 9 shows the model’s behavior with different values of

the training data length. We assess the model’s ability to predict

bifurcations in the Lorenz system by varying the lengths of training

data. The experimental setting is the same as in the Figure 8, except

that the lengths of training data are varied. Figure 8A shows the

true parameter λ decreasing linearly over time, while Figures 8B–

E display the model’s prediction performance with training data

of different lengths. In Figure 8B, the model uses 4,000 steps of

training data, which is the same setting as in the main text. In

Figure 8C, we reduce the length of the training data to 2,500

steps. Despite this shorter training phase, the model still captures

the qualitative property of the bifurcation dynamics where it

converges to a stable fixed point with complex eigenvalues after

the bifurcation occurs. In Figure 8D, the length of the training data

is 1,200 steps, and the model still predicts the bifurcation in the

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1451926
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tokuda and Katori 10.3389/frai.2024.1451926

FIGURE 6

Response of the slow reservoir to time series generated by the Rössler equation with an expanded time axis. This figure shows the same data as in fig.

5 but with an expanded time scale. (A) True parameter value λ of the Rössler equation. (B) Variable y(n) = x1(1t · n), representing the first element of

the state of the Rössler equation used as the input to the reservoir. (C) Local minima and maxima of the trace shown in (B). (D, E) Values of the

internal states, xi, of the slow reservoir characterized by rapid and slow temporal fluctuations, respectively. (F) Extracted slow dynamics calculated as

the average of the absolute values of internal nodes exhibiting slow behavior. (A–F) are plotted against time in the horizontal axis.

FIGURE 7

Dependence of the slow reservoir’s performance on the leak rate. (A) Time course of the true parameter value λ. (B–D) The time courses of the

extracted slow dynamics, ũs(n), for α = 0.5, 0.99, 0.999, respectively. (E) The Pearson’s correlation coe�cient between λ and ũs(n).

predicting phase. Finally, in Figure 8E, where only 1,000 steps of

training data are used, the model fails to predict the bifurcation.

The time series output shows that the system continues to remain

in a chaotic regime without transitioning to the stable fixed

point observed in the Lorenz system. These results highlight the

importance of training data length in capturing the full dynamical

behavior of the system, particularly in predicting bifurcations.

While the model can anticipate the bifurcation with relatively

short training data, its precision and accuracy improve with longer

training phases.
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FIGURE 8

Prediction of unobserved bifurcation. This figure presents the time series during consecutive training and predicting phases. (A–C) Time evolution of

the Lorenz system that generates the data to be learned by the model. (A) Slowly varying true parameter value λ of the Lorenz system plotted against

time. (B) Time series generated by the Lorenz system, y(n) = x1(1t · n), where x1(t) is the first variable of the Lorenz system. The time series from

n = 1, 500 to n = 5, 500 is used as training data and fed into the model. Bifurcation occurs around n = 7, 500, where the chaotic oscillation vanishes.

After this point, the trajectory converges to a stable fixed point with one real eigenvalue and two complex conjugate eigenvalues. (C) LLE of the

Lorenz system corresponding to the value of λ shown in (A). The LLE is plotted against time along the horizontal axis, with each value calculated with

a static value of λ corresponding to the same time point in (A). (D–F) Model outputs. From n = 0 to n = 5, 500, the model is driven by the external

input y(n) shown in (B). After n = 5500, the model switches to the closed-loop model depicted in Figure 2. (D) Slow dynamics extracted by the slow

reservoir (n = 0 to n = 5, 500) and prediction of its dynamics by the slow dynamics predictor after n = 5, 500 (blue line). The extracted slow dynamics

before n = 1, 500 are treated as transient dynamics and not used as training data. (E) Output of the fast reservoir. The red line plotted between

n = 1, 500 and n = 5, 500 shows the fitting of the training data shown in (B). The blue line plotted after n = 5, 500 shows the prediction of the data

shown in (B) by the closed-loop model, showing the bifurcation from chaotic oscillation to oscillation death. (F) LLE of the closed-loop fast reservoir,

calculated with a fixed value of the external input p. The value of p is set to the value of h(n) or h̃(n) plotted at the same time point in (D). (G–I)

Reconstructed attractor shape by delay embedding of the fast reservoir output y(n) with the input to the fast reservoir at h̃(n = 6, 000), h̃(7, 000), and

h̃(8, 000). The trajectories converge to a stable fixed point in (H, I).

Lastly, we comment on the computational cost of this

model. Using an Apple MacBook Pro 2021 with an M1 Max

processor and 32GB of memory, along with MATLAB, the

computation time for the training phase in the numerical

simulations shown in Figure 8 takes approximately 1 second

or less for the slow reservoir, slow reservoir predictor, and

fast reservoir (all of which are 500-dimensional discrete-time

mapping models). Additionally, the training of the reservoir

outputs is performed using Ridge regression, as shown by the

analytical solution in Equation 17, with a computation time of less

than 0.1 s.

4 Discussion

We have demonstrated that unsupervised extraction of the very

slowly changing parameters of the dynamical system generating the

signals is possible by simply feeding the observation to a reservoir

with a long-time scale and selecting the internal nodes of the

reservoir with slowly varying states. Furthermore, we have shown

this reservoir’s capability to predict bifurcations not present in the

training data, such as the death of chaotic oscillations, by inputting

the extracted slow features and observation signal into another

reservoir. Kim et al. (2021) and Patel et al. (2021) demonstrated
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FIGURE 9

E�ect of training data length on the prediction of bifurcation. (A) Slowly varying true parameter value λ plotted against time. (B–E) The training data

and time series generated by the model using varying lengths of training data. (B) Time series with training data length of 4,000 steps, which captures

the bifurcation occurring after n = 7, 500. The red section shows the training phase, and the blue section shows the predicted time series. (C) Time

series with training data length of 2,500 steps. Similar to (B), the model captures the bifurcation qualitatively. (D) Time series with training data length

of 1,200 steps. The model still predicts the bifurcation, but the accuracy begins to degrade. (E) Time series with training data length of 1,000 steps,

where the model fails to predict the bifurcation.

the prediction of unobserved bifurcations not present in the

training data using a reservoir computing framework. Their work

illustrated the remarkable capability of reservoir computing to

learn the parameter dependencies within dynamical system flows

and to reproduce unknown bifurcations. However, they treated

the parameters as known, which is not the case in real-world

applications, where the values of these parameters often cannot be

observed. In this study, we introduce two reservoirs: a slow feature

predictor that forecasts the movement of these slow features, and

a fast reservoir that predicts the values of the observed time series.

By inputting the slow features resulting from the unsupervised

extraction, we establish a closed-loop model that operates as

a fully autonomous dynamical system during the predicting

phase. This demonstrates the ability to forecast the emergence

of unknown bifurcations without any direct observation of the

parameter value. Nonlinear, non-stationary processes are abundant

in various natural and physical phenomena. Additionally,

numerous scenarios probably exist where slow dynamics inducing

qualitative dynamics changes remain unobservable. The potential

applications of this approach are vast, spanning fields such as

neuroscience (including electrophysiological measurements,

electroencephalography, functional Magnetic Resonance

Imaging, and disease progression with tipping points), material

science (including surface science), and weather prediction

and control.

The main limitation of the current work is the lack of

understanding of the mechanism underlying the phenomenon

wherein the behavior of slowly moving nodes, selected heuristically

from within the slow reservoir, is similar to variations in the

original system’s parameters. As mentioned in the Introduction, the

observations made could be explained if the reservoir can achieve

generalized synchronization with the target system (Carroll, 2020;

Rulkov et al., 1995), including the slow parameter dynamics.

For the results shown in Figure 3, we conducted the same

numerical simulation using a reservoir with linear dynamics by

replacing the activation function in Equation 8 with the identity

map. The results show that a linear reservoir with a slow

time constant does not yield parameter estimation, even with
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supervised training, where the internal state of the reservoir

is fitted to the true parameter value (Supplementary Figure S2).

This suggests that the nonlinearity of the reservoir is crucial

for the current results. However, generalized synchronization

would not fully explain the current results. For example, fast-

moving nodes also exist within the slow reservoir. It is not

trivial that in the internal state of the reservoir, us ∈ R
Ns
,

the directions of fast and slow fluctuations align along axes,

u1, u2, · · · , uNs (i.e., different nodes). In fact, it would not be

surprising if fast and slow fluctuations were superimposed at

all single nodes. Therefore, further investigation is required to

elucidate the logical reason why simply selecting slow-moving

nodes worked well as a heuristic. Conversely, employing a more

sophisticated method to separate the directions of fast and slow

fluctuations might lead to better performance (Antonelo and

Schrauwen, 2012).

Previous works have extensively explored the behavior of

complex systems around tipping points (Dakos et al., 2008;

Veraart et al., 2011; Liu et al., 2013). For instance, the Dynamical

Network Biomarker (DNB) method captures the increase in

temporal fluctuations and the intensified correlation associated

with critical slowing down Liu et al. (2013). Unlike the approach

in the current study, which involves learning the flow of the

dynamical system in a relatively low-dimensional, deterministic,

and strongly nonlinear phase space, the DNB method utilizes the

generic behavior near bifurcation points in very high-dimensional

systems based on linearization around a fixed point. Given

their distinct advantages, combining these methods in the future

might improve the prediction and control of non-stationary,

nonlinear systems.

Kim et al. (2021) the emergence of chaotic attractors in the

Lorenz system by extrapolating the parameter space and learning

in regions without chaotic attractors, where only two stable fixed

points exist. In our research, we have extracted the slowly changing

parameters of the target system by receiving its generated time

series through the reservoir. However, applying our method to

predict the emergence of a chaotic strange attractor by learning

observation from the Lorenz system with stable fixed points is

currently challenging because our method relies on observing

long time series to extract slow features, whereas the target

system does not produce a long time series with oscillations if the

trajectory converges to a fixed point. A new framework would

be necessary to estimate the parameter changes in a system with

stable fixed points, e.g., by introducing external perturbations

to the target system and receiving its response through

the reservoir.
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