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Many industries utilize deep learning methods to increase e�ciency and

reduce costs. One of these methods, image segmentation, is used for object

detection and recognition in localization and mapping. Segmentation models

are trained using labeled datasets; however, manually creating datasets for

every application, including deep-level mining, is time-consuming and typically

expensive. Recently, many papers have shown that using synthetic datasets

(digital recreations of real-world scenes) for training produces highly-accurate

segmentation models. This paper proposes a synthetic segmentation dataset

generator using a 3D modeling framework and raycaster. The generator was

applied to a deep-level mining case study and produced a dataset containing

labeled images of scenes typically found in this environment, therefore removing

the requirement to create the datasetmanually. Validation showed high accuracy

segmentation after model training using the generated dataset (compared to

other applications that use real-world datasets). Furthermore, the generator can

be customized to produce datasets for many other applications.
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1 Introduction

Many economies are in various stages of Industry 4.0 adoption. The Industry 4.0

paradigm can be described as the digitization of complex industrial systems through

the implementation and integration of advanced technologies (Prinsloo et al., 2019).

This enables initiatives such as predictive maintenance, remote real-time monitoring and

control, and process optimization, which are the value drivers for the adoption of Industry

4.0 (Stark et al., 2019).

The South African deep-level mining industry is in the process of shifting toward

Industry 4.0 to utilize these value drivers (Prinsloo et al., 2019; Stark et al., 2019; Dhamija,

2022). Digital twins (DTs), one of the technologies enabling these value drivers, are digital

representations of physical systems with cyber-physical connections (Aheleroff et al.,

2021).

DTs enable access to sensormeasurement data and systemmetadata within the system’s

three-dimensional (3D) context (Aheleroff et al., 2021). However, DTs are time-consuming

to create manually and existing semi-automatic generation methods, e.g., light detection

and ranging (LiDAR), which are typically expensive and require specialized equipment

(Baek et al., 2022).
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Localization and mapping is the process of capturing

information about the surrounding area such that a digital map is

created (Wei and Akinci, 2019). This technique has been used to

generate DTs instead of creating them manually. However, simply

using a 360◦ camera to capture all the tunnels in a deep-level mine is

not feasible, as even a short 10-minute recording using this type of

camera can result in large data storage requirements (Bidgoli et al.,

2020).

In recent years, deep learning methods have shown promising

results in the shift toward the Industry 4.0 paradigm (Radanliev

et al., 2022; Ahmad et al., 2022; Khayyam et al., 2020). One of

these deep learning methods, namely image segmentation, has

been used for localization and mapping problems (Manettas et al.,

2021). Image segmentation is a method used to divide images into

smaller regions to locate and identify certain objects of interest

(Minaee et al., 2022). Utilizing image segmentation, the required

data storage size can be reduced for localization and mapping.

Segmentation can identify whether an image contains valuable

information, determining whether an image needs to be stored.

Deep learning image segmentation models require labeled

datasets to be trained. The higher the quality of the dataset, the

better the chance of high-accuracy segmentation. Dataset quality

is typically determined by factors such as size, label accuracy, and

variance (to avoid overfitting) (Duan et al., 2022). However, these

labeled datasets are almost always created manually (Lee et al.,

2022).

Manual creation of these labeled datasets is an extremely time-

consuming process and, typically, expensive as many people are

often employed to parallelize its creation (Lee et al., 2022). At

the time of this research, no labeled dataset for deep-level mining

applications could be found, and manually creating it would be

inefficient in terms of time and cost. Recently, the creation and use

of synthetic datasets (digital recreations of real-world scenes which

are automatically labeled) for the training of deep learning models

have shown promising results (Manettas et al., 2021; Greff et al.,

2022).

Much research has been invested into image segmentation, as

can be seen in the paper by Minaee et al., where they surveyed

over 100 recent papers (Minaee et al., 2022). Most of these papers

focused on applications containing bicycles, people, vehicles, fire

hydrants, and other objects found in typical street scenes. Many

of these papers applied the technology for object identification and

localization in self-driving vehicles, which require the identification

of common objects, for which many datasets already exist. It is

more challenging to find datasets for uncommon scenarios, and in

some cases, they do not even exist, as was the case for deep-level

mines at the time of this study.

Minaee et al. (2022) also summarized the most well-known

metrics used for image segmentation models, in order of proven

resulting performance, such as Pixel Accuracy (PA), Intersection

over Union (IoU), and the Dice coefficient (also known as the F1

score).

Pixel Accuracy (PA) is simply a measurement of the

proportion of correctly- to incorrectly-labeled pixels. This rather

simple metric, unfortunately, suffers from the class imbalance

problem. Intersection over Union (IoU) considers the overlapped

segmentation area versus the total area of the predicted and ground

truth labels. It circumvents the class imbalance issue and provides

better entity distinction in instance segmentation, making it widely

used in various papers (Wang et al., 2023; He et al., 2021). The

Dice coefficient, or F1 score, assesses twice the overlap of predicted

and ground truth labels against their total area (Minaee et al.,

2022). Valued for its balanced measure and insensitivity to global

differences, it does not skew based on object class frequencies or

object sizes (Wu et al., 2021; Milletari et al., 2016).

Cheng et al. (2020) considered anothermetric, Panoptic Quality

(PQ), for their segmentationmodel named Panoptic-Deeplab. They

used the Cityscapes (Cordts et al., 2016), Mapillary Vistas (Neuhold

et al., 2017), and COCO (Lin et al., 2014) datasets for training and

validation. All of these are real-world datasets of objects typically

found in traffic images and other common scenarios.

PQ, originally proposed by Kirillov et al. (2019), is the average

IoU over each class, divided by the sum of the true positive and

false positive matches. The class imbalance problem is avoided

by averaging the IoU and giving each class equal weight, while

incorrect labels are penalized by dividing by the false matches.

Kirillov et al. proposed this metric to combine semantic and

instance segmentation approaches to create panoptic segmentation,

as shown in Figure 1. Semantic segmentation (Figure 1b) groups

all pixels in an image together in classes represented by one

color per class, instance segmentation (Figure 1c) identifies unique

instances of objects and assigns each a different color, and panoptic

segmentation (Figure 1d) is a combination of the two.

Kirillov et al. (2023) introduced the Segment Anything Model

(SAM) in a more recent study. Their study aimed to create a

model capable of segmenting any image. Their model has been

shown to segment a wide variety of images. However, object classes

not present in their dataset are only labeled as generic objects.

Therefore, it is not suitable for segmenting and labeling objects of

interest when they are uncommon and not present in the training

dataset they used.

Zanella et al. (2021) proposed a synthetic dataset generator

for the semantic segmentation of cable-like objects. They utilized

domain randomization to create datasets that are generalisable

across different environments. Domain randomization consists of

creating images of the objects of interest with many different

backgrounds. However, this generalisability has been shown to

reduce segmentation performance for specific problems not well

represented in the generated dataset (Choi et al., 2021). They

utilized the Dice coefficient for the evaluation of their proposed

generator.

Kong et al. (2020) produced a synthetic dataset for urban

environments. However, their study focused on high-resolution

satellite imagery for building footprint segmentation. They

combined their synthetic labeled dataset with the limited real-world

datasets available to train their models. This combination resulted

in high-accuracy segmentation performance. Kong et al. used IoU

to evaluate the performance of their segmentation model, which is

a sensitive evaluation metric compared to PQ (Kirillov et al., 2019).

Greff et al. (2022) recently introduced a dataset generator using

Blender (a 3D computer graphics tool), which can be used to

generate synthetic scenes of many different types of real-world

scenarios. Their framework, however, includes features such as

depth mapping, optical flow, segmentation, and surface normals.
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a. Example image. b. Semantic segmentation.

c. Instance segmentation. d. Panoptic segmentation.

FIGURE 1

Segmentation techniques (Kirillov et al., 2019). (a) Example image. (b) Semantic segmentation. (c) Instance segmentation. (d) Panoptic segmentation.

This causes the generator to require significant computational

power to generate the synthetic dataset as it computes many other

properties of the synthetic scenes.

Many papers have discussed the reality gap when using

synthetic data to train deep learning models (Wang et al., 2022).

The reality gap is the real-world effects that are not represented

in the synthetic data because it would be so complex to model

that creating the dataset becomes unfeasible. Some examples of

these real-world effects are object deformation, foggy weather, and

complex lighting conditions (Wu et al., 2021).

Synthetic datasets also tend to suffer from overfitting, which

occurs when the dataset does not have enough variance to produce

a segmentation model that performs well on unseen real-world

data (Hosna et al., 2022). Recently, authors have utilized transfer

learning during the training phases to overcome this reality gap.

Transfer learning is the process of training a deep learning

model using real-world datasets to gain knowledge about the real

domain and then fine-tuning the model to the specific application

by training it in a second phase using the synthetic dataset

(Manettas et al., 2021). Transfer learning has been shown to

produce highly-accurate segmentation models (Wu et al., 2021;

Wang et al., 2022).

In their paper, Manettas et al. (2021) utilized transfer learning

in computer-vision tasks in manufacturing. They initialized their

model’s weights using amodel pre-trained on the ImageNet dataset.

The ImageNet dataset, at the time of their study, contained

1.2 million real-world labeled images. After initialization, they

trained the model on their relatively small synthetic dataset (300

labeled images per class) and achieved segmentation performance

comparable to models trained using a real-world dataset created

specifically for the application and even outperformed some.

Wu et al. (2021) improved commodity segmentation using

transfer learning. They used the weights of the ResNet model to

initialize their model and then used a dataset they createdmanually,

consisting of 2,800 labeled commodity images, to fine-tune for

their application. A significant improvement was found when they

compared the segmentation accuracy of the model, which was

trained using transfer learning, to one trained without transfer

learning. Wu et al. (2021) utilized IoU and the Dice coefficient to

analyze performance.

For this paper, instance segmentation will be used, as only the

predefined classes of interest are regarded as regions of interest. The

IoU and PQmetrics will be used during the validation of the dataset

generator proposed in the following section. The IoU metric was
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chosen as it circumvents the class imbalance problem prevalent in

metrics such as PA (Wang et al., 2023). The Dice coefficient was

not chosen, as it is very similar to the IoU metric. The PQ metric

was chosen as it improves upon the IoU metric by considering

the true positive and false positive matches (Kirillov et al., 2019).

However, both will still be used for comparison purposes during

the validation process.

Digital twins, a technology enabling the value drivers of

Industry 4.0, are time-consuming to create manually, and existing

semi-automatic generation methods are typically expensive and

require specialized equipment (Baek et al., 2022). Localization and

mapping applications can be used to generate DTs. One of the

methods used in localization and mapping is image segmentation.

However, the manual creation of the datasets used for the training

of image segmentation deep learning models is time-consuming

and typically expensive (Lee et al., 2022).

Existing papers have explored the use of synthetic datasets for

image segmentation. However, none of them focused on the cost-

efficient automatic generation of instance segmentation datasets

(Greff et al., 2022; Manettas et al., 2021; Zanella et al., 2021).

Therefore, there is a need for a method to automatically generate

synthetic, labeled datasets in a cost-efficient manner for many

different applications. This paper proposes a synthetic dataset

generator using a 3D-modeling framework and raycaster. A South

African deep-level mining case study is then used to verify the

proposed generator.

2 Synthetic segmentation dataset
generator

This section is split into three parts. First, the synthetic scene

creation process will be proposed. Then, the automatic labeling

process using a raycaster will be proposed. Finally, the strategy that

will be used to validate the generator will be discussed.

2.1 Synthetic scene generation

2.1.1 Elements in a scene
A real-world scene and the elements (objects and phenomena)

within it must be analyzed before the scene can be synthetically

recreated. It is unfeasible in most applications to precisely model

every aspect of a real-world scene due to the reality gap (Wang et al.,

2022). Therefore, elements of interest must be chosen to synthesize

the real-world scene accurately enough for the relevant application

(Greff et al., 2022).

The elements of interest and the required accuracy with which

real-world elements must be modeled depend on the application

and constraints. The object classes which should be recognized

in the trained segmentation model are the highest priority. Other

fundamental parts of the real-world scene, such as the walls and

floors in a corridor when considering an indoor environment,

should also be included as elements of interest.

The object classes (the first category of elements previously

mentioned) must be defined before creating the segmentation

dataset. Some examples of object classes are ladders, vehicles,

windows, and doors. More detailed object classes may be chosen,

such as different vehicle types or door shapes. The level of detail for

the chosen classes must be based on the specific application.

The number of chosen object classes should be restricted.

Segmentation performance has been shown to degrade when the

number of object classes to identify passes a certain threshold

(Wang et al., 2022). This threshold is determined by the available

computational resources and training time available.

Phenomena (the second category of elements) should also be

analyzed, such as object interaction and ambient lighting in real-

world scenes. This can be done by posing questions such as (1)

is the scene well-lit, (2) are there objects moving throughout the

scene, and (3) is it expected that solid objects cross each other’s

boundaries?

An answer to the last question could be that solid objects solely

occupy their own space, but there are situations where, for example,

a pipe has been placed such that it passes through a wall from

one room to another. Another phenomenon to consider is the

perspective of one moving through the real-world scenes, as the

recreation of it should replicate the real scenario as accurately as

possible.

These are only a few examples of phenomena that should

be analyzed as they introduce some of the nuances of the real-

world scene into the synthetic scene, therefore increasing the

possibility of high-performance segmentation. Phenomena that do

not significantly increase the similarity of the synthetic scene to the

real-world scene should be ignored. The generation of the synthetic

scenes can begin once the analysis of the real-world scenes has been

completed.

2.1.2 3D modeling framework
Many open-source 3D models exist for various object classes

(pipes, compressors, doors, stairways, etc.). These 3D models can

be utilized to digitally represent small parts of real-world scenes,

which removes the requirement to create them manually and may

increase modeling accuracy (if the open-source model is a more

realistic representation of the real-world object in comparison to

a 3D model that can be created manually in a reasonable amount

of time).

These open-source models are typically used in 3D modeling

frameworks and computer graphics engines to create virtual scenes,

such as the visual aspect of DTs and augmented reality experiences

(Lv et al., 2022). These 3D models are stored in many different data

formats, such as the stereolithography (STL) and Wavefront OBJ

formats. The modeling framework selection method where these

3D models will be utilized is discussed next.

A 3D modeling framework should be chosen based on the

combination of outcomes from the analysis of each relevant

category described in Table 1. A category is considered irrelevant

when it does not significantly affect the application.

Once the modeling framework has been chosen, the synthetic

scenes can be designed and generated. Creating the synthetic scenes

comprises implementing the phenomena and placing the objects

previously identified in real-world scenes. The full implementation

method has been abstracted into the flow diagram shown in

Figure 2 to be relevant for many applications and modeling

frameworks.

The implementation method is based on the Plan, Do, Check,

Act (PDCA) cycle, which forms part of the ISO 9001 standard
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(Dentch, 2016). The first step is to select the unimplemented

object or phenomenon that would change the scene most

significantly. After it has been selected, the object or phenomenon

is implemented in the previously chosen 3D modeling framework.

Implementing the object consists of importing the object’s

geometry into the virtual scene and applying a texture to represent

the object’s surface. The object’s geometry is imported from the

open-source file obtained in the chosen format, such as STL or

OBJ. The choice of the texture to show on the surface of the object

depends on what type of object is being loaded. However, many

open-source textures (typically stored as 2D images) are available.

The loaded object is then rendered into the scene, and its scale

is updated to ensure a realistic representation of the real-world

TABLE 1 Categories for analyzing 3D modeling frameworks for an

application.

Category Description

3D model imports and

exports

The import and export of 3D models in

various formats to increase generation

productivity.

Raycasting The outline of visible objects in each

perspective should be identifiable to

create the labeled dataset.

Usability and flexibility Does the framework have

comprehensive documentation, an

active community, and can generate

various scenes?

Advanced physics and

simulation

Does the framework support object

interactions that aim to mimic

real-world phenomena, such as water

flow?

Scalability and hardware

requirements

How complex can the scene become

while balancing the hardware

requirements to be feasible for the

application?

Licensing and cost Is the framework free to use?

scene. Following this, the performance of the resulting scene is

then analyzed to determine whether the newly implemented object

or phenomenon should be simplified. Once the performance is

satisfactory, the nextmost significant object or phenomenon should

be implemented.

This process continues until the synthetic scene is populated

with as many objects and phenomena present in the real-world

scene as possible, such that the performance enables feasible dataset

creation times. The objects in the synthetic scenes should not be

placed exactly as seen in the real world; otherwise, the training

would be prone to overfitting. Placement should rather be pseudo-

random (within certain constraints) to increase the dataset variance

and different perspectives of the objects.

After all feasible information has been added to the synthetic

scene, a randomization process is used to create new unique

scenes within the rules defined during the analysis phase. The

automatic labeling process of these pseudo-random variations of

the synthetically created scene is proposed in the following section.

2.2 Automatic labeling using a raycaster

All 3D modeling frameworks have a method of visualizing

the scenes generated (Greff et al., 2022). This visualization is

typically implemented using a camera object with a predefined

location within and perspective of the scene. Now, consider a

person walking down a street, their perspective can be mimicked

by placing a camera in a synthetic scene at the height of an average

person. Altering the camera’s location would thenmimic the person

walking through the scene while altering the camera’s pitch, roll,

and yaw would mimic head rotation.

This imitation of the change of perspective will be used to

generate multiple different images from one scene variation.

Consequently, multiple scene variations will be produced,

increasing the potential size of the generated dataset. Deep learning

datasets are required to contain many different variations of inputs

FIGURE 2

Synthetic scene implementation method.
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FIGURE 3

Camera perspective example.

FIGURE 4

Raycasting matrix from the camera’s perspective.

and expected outputs to the problem that needs to be solved. A

dataset that is too small may result in overfitting, while a dataset

that is too large may result in over-generalization during training.

The automatic labeling will be applied to each perspective

sampled in the synthetic scenes. This process will determine the

outlines (polygons) of all the objects visible within the current

perspective. The perspective of a camera object is shown with lines

indicating the extremes of the perspective in Figure 3. Objects (a

pyramid, cylinder, and cuboid) have also been added to the scene

for illustration purposes.

The automatic labeling process starts by defining the limits of

the camera perspective (each corner represented by an (xi, yi, zi)

value in Figure 3) and then capturing the current camera’s

perspective as a 2D image. Therefore, the generated 3D scene is

converted to a 2D image of the current perspective of the scene.

After the 2D image has been captured, the current camera

perspective is divided into an M × N matrix for raycasting.

Raycasting is the process of tracing a straight line sent from the

origin of the camera’s perspective toward a chosen coordinate to

find the first object in its path. Figure 4 represents a simplified

example of the raycasting matrix for visualization.

Each element in this matrix, represented by a vector with its

origin at the camera’s location, is raycast iteratively to identify what,

if any, object is present. ThisM×N matrix is then converted to sets

of polygons (segmentation labels for irregularly shaped objects, i.e.,

not squares or circles) using Algorithm 1.

The raycast result matrix is iterated from top-left to bottom-

right to identify all the individual instances of each predefined

object class. When an element in the matrix matches an

object class, the elements around it are tested in a clockwise

approach (starting from the element directly to the right of

it) to determine if their raycast result matches the same

object class and ID (to differentiate between instances of

object classes).

This process continues until the full outline of the current

object is completed. Once all matrix elements are identified as part

of an outline or do not contain the desired object classes, we convert

these outlines into sets of (x, y) coordinates.

Data: φ ∈M×N : Raycast matrix result

y ∈P : Object classes of interest

Result: x̂ ∈S×T : Instance segmentation polygons

identified

initialize η = all unique objects in φ for all y

initialize σ = edges of objects to be found

for rowIndex inM& colIndex in N do

if object at φ[rowIndex][colIndex] in η then

set origin = φ[rowIndex][colIndex]

set edgesOfObject = [origin]

set edge = next edge of object found in a

clockwise search from origin

while edge != origin do

edge = next edge of object found in a

clockwise search from edge

add edge to edgesOfObject__

add edgesOfObject to σ

clear elements in φ encapsulated by

edgesOfObject____

convert all edges in σ to desired dataset format

Algorithm 1. M × N raycast matrix result to polygon labels.
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These coordinate sets and the 2D perspective image are then

added to the dataset. The labeling format should integrate well

with the selected 3D framework and model training software,

as described in Section 2.1.2. Repeating this process for all

perspectives and scene variations will yield a synthetic instance

segmentation dataset for the desired application. Increasing the

scene variations and perspectives will expand the final dataset.

The proposed method of synthetic scene generation and

automatic labeling comprises the overarching methodology

for creating synthetic segmentation datasets designed to be

broadly applicable. The validation strategy is discussed in the

following section.

2.3 Validation strategy: image
segmentation using transfer learning

A methodology has been proposed for synthetic dataset

generation. However, its effectiveness in segmentation performance

must be evaluated using a validation strategy. This strategy involves

applying a transfer learning approach to train a segmentation

model on the generated dataset and then using evaluation metrics

to assess performance. Transfer learning leverages pre-trained

models, freezing inner layers to retain learned features while

modifying the final layer’s weights using the new dataset. It

circumvents the time-consuming and typically costly process of

training a model from scratch.

The segmentation performance of the trained models will be

analyzed using the evaluationmetrics discussed in the introduction,

namely, Intersection over Union (IoU) and Panoptic Quality (PQ).

IoU is calculated as the area of overlap of the ground truth labels

(A) and the predicted labels (B) divided by the area of the union

of the ground truth labels and the predicted labels for each object

instance, as shown in Equation 1.

IoU =
|A ∩ B|

|A ∪ B|
(1)

PQ, shown to be a more stable metric than IoU (Mao et al.,

2023), is calculated as the sum of the IoU for each object instance

divided by the sum of the true positive (TP), false positive (FP), and

false negative (FN) matches as shown in Equation 2.

PQ =

∑
IoU

|TP| + 1
2 |FP| +

1
2 |FN|

(2)

This validation strategy will be used to determine whether

applying the proposed methodology creates datasets that, when

used in a transfer learning approach, show increasing IoU and PQ

performance metrics over each validation epoch. The results of

applying the methodology and validation strategy are discussed in

the following section.

3 Results and discussion

A methodology was proposed in the previous section for a

synthetic segmentation dataset generator using a 3D modeling

framework and raycaster. This section will present and discuss

each major result of the methodology’s application to a deep-level

mining case study. The results from the methodology’s validation

will be presented at the end of this section.

3.1 Synthetic scenes

The first part of the proposed synthetic scene creation is the

analysis of the case study’s real-world scenes. Figure 5 shows two

images captured in the case study deep-level mine during the

analysis phase. The analysis of these and other sample images

showed that the objects typically found are pipes, valves, and

various pumps and compressors. It was also found that inconsistent

lighting conditions are present.

The 3D modeling framework chosen to be used in the

generation of the synthetic scenes was Three.js (referred to

hereafter as “the framework”). The framework was chosen due to its

characteristics in each category described in Table 1, with the results

listed below.

• 3Dmodel imports and exports: the framework supports many

different import formats.

• Raycasting: the framework includes a camera and raycasting

class to efficiently perform the required changing of

perspectives and raycast analysis.

• Usability and flexibility: comprehensive documentation and

an active community ensure high usability. The framework is

an abstraction of the WebGL API (used to render interactive

3D graphics in most web browsers), which decreases the

implementation time of the synthetic scene generation while

still ensuring flexible customization.

• Advanced physics and simulation: these are supported by the

framework but are not relevant to the current application and,

therefore, are not considered.

• Scalability and hardware requirements: as the framework is an

abstraction of the WebGL API, the scalability and hardware

are mostly affected by implementation efficacy. The choice

in this category is not affected by costly computations of

advanced physics and simulations as they are not required.

• Licensing and cost: The open-source framework aligns with

the low-cost requirement of the application.

Popular alternatives to the framework are Unity and Blender.

These include highly-advanced physics and simulation features.

However, these features (amongst others) are not required by the

current application and would only increase the computational

requirements. Unity also requires the purchase of costly licenses.

The next step in the method is to find 3D models that can

represent the real-world objects in the scene. As discussed in the

analysis of the scenes in Section 2.1, some of the objects of interest

include pipes, valves, and centrifugal pumps. Open-source 3D

models for each of these object types are shown in Figure 6.

The final stage of scene generation uses the flow diagram in

Figure 2, the chosen 3D modeling framework, and open-source 3D

models. During the “Act” stage, an oversimplification that could

compromise valuable training information should be avoided. The

fidelity of a 3D model, typically defined by the count of triangular

faces representing its surface, impacts the complexity of the raycast
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FIGURE 5

Real-world images of the case study deep-level mine.

FIGURE 6

Open-source 3D models for objects of interest.

computation. Therefore, it is important to find a balance between

model fidelity and raycast performance.

The images in Figure 7 show the result of applying the flow

diagram using the chosen 3D modeling framework and open-

source 3D models. The first image in Figure 7 shows the tunnel

length generated (with textured walls) and the 3D models placed

at pseudo-random positions. The second image shows a different

perspective of the same generated synthetic scene.

Certain informed assumptions were required to increase

the likelihood that the generated synthetic dataset produces

performant segmentation results by avoiding unnecessarily high

levels of variance (Greff et al., 2022). Datasets are typically

created for a specific application, as this ensures that they

contain the required information for efficient segmentation

model training (Minaee et al., 2022). Although this limits the

generalizability of the specific dataset created, the proposed

generation method is generalizable for many applications. This can

be seen in the first steps of the proposed method, where the specific

application’s real-world scenes are analyzed. Therefore, the chosen

scene can be varied as required.
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FIGURE 7

Two di�erent perspectives of a generated synthetic scene.

3.2 Automatic labeling

This process was implemented using the framework’s

camera and raycast functionality. Once each perspective

was generated, it was divided into a 256 × 256 matrix as

shown in Figure 4, and each element was raycast to obtain

the object present. Once all the elements in the matrix were

raycast, the polygon edges were determined using Algorithm 1.

Figures 8a, c show images from the generated dataset and

Figures 8b, d the labeled images from the automated raycasting

process.

Three pipes, a ladder, an induction motor, and a centrifugal

pump have been automatically segmented and labeled in

Figure 8b. A centrifugal pump, induction motors, pipes,

and a ladder were automatically segmented in Figure 8d.

This and other similar generated and labeled perspectives

will be used in the transfer learning process to train

the deep learning segmentation model in the following

section.

3.3 Validation results

The dataset created contains six object classes: valves, pipes,

ladders, induction motors, heat exchangers, and centrifugal pumps.

The dataset consists of 329 automatically-labeled images. Two of

the labeled images in the dataset are shown in Figure 8.

Figures 9a–c shows the analysis of the content of the dataset in

terms of the total count per class, the total area per class, and finally,

the average area per class. The dataset is unbalanced regarding the

total segmentation count and total segmentation area. The pipe

class has the highest count in the dataset by a margin of 444 against

the average of the other classes. The pipe class has the largest total

area by a margin of 67226.3 pixels against the average of the other

classes. Figure 9c does, however, show amore balanced distribution

for the average area of the segmentations per class. The unbalanced

dataset was caused by the conclusion drawn from the analysis of

the real-world scenes, shown in Figure 5. The analysis showed that

pipes are the most common objects in the images.

The deep-learning model chosen to use for instance

segmentation is the improved Mask-RCNN with a ResNet-

50-FPN backbone (Li et al., 2021) due to its instance segmentation

performance in transfer learning approaches. The model was

initialized from pre-trained weights using the COCO dataset.

The weights for the backbone layers of the model were frozen to

leverage the features learned from pre-training on the real-world

dataset. A stochastic gradient descent (SGD) optimizer was

combined with a decreasing learning rate each epoch as it yields

competitive results in transfer learning approaches (Szegedy et al.,

2016).

The performance metrics chosen for this study were the IoU

and PQ metrics. IoU, as shown in Equation 1, was chosen as it

circumvents the class imbalance problem of other metrics. PQ was

chosen as it extends IoU to include true positives, false positives,

and false negatives in the calculation, as shown in Equation 2. These

reasons increase the likelihood of training a high-performing image

segmentation model. The higher the IoU and PQmetric values, the

better the segmentation performance.

The training was done for five epochs on 300 of the synthetic

dataset images (the remaining 29 images were used during

evaluation) with a learning rate of 0.004 and a weight decay of

0.0002. The training was done on a computer utilizing an NVIDIA

GeForce GTX1650 GPU with 4GB dedicated memory. The average

loss value steadily decreased until the final epoch. Additional

training did not show a significant decrease in loss; therefore,

the number of epochs was not increased beyond five to avoid

overfitting, resulting in a final training time of 16 minutes.

Table 2 shows the improvement of performance metrics over

each training epoch. Both metrics increased quickly in the first few

epochs (as all the training data is new and the learning rate is at its

highest). The metrics increased less after the third epoch. The final

epoch produces the best result for both metrics.

A comparison between the produced segmentation results and

existing methods discussed in a recent survey paper (Minaee et al.,

2022) is shown in Table 3. The methods in the survey paper were
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FIGURE 8

Automated labeling results for images in the generated dataset. (a) An image from the generated dataset. (b) Automated labeling result. (c) An image

from the generated dataset. (d) Automated labeling result.

trained on the real-world COCO dataset. The model trained with

the synthetic dataset created from our proposed generator reached

similar performance metric results.

It would not be accurate to claim that the segmentation model

trained with synthetic data outperformed any other model, as

results from the survey paper were obtained using a different real-

world dataset. However, from this comparison, it can be concluded

that training a model using a dataset generated through our

proposed method produces similar performance results.

The model using a ResNet-101 backbone obtained the best

results among the models from the survey paper, as expected, due

to the increased number of layers. However, the increased number

of layers does lengthen the training and final inference time and the

required computational power.

Figure 10a presents an automatically-generated input image,

and Figure 10b shows the segmentation outcome post-final training

epoch. All objects in the test image were segmented with confidence

scores of at least 64.07%. The two pipes were segmented with high

confidence scores (above 91%). However, they were split due to the

ladder being in front of the pipes.

Although also located behind the ladder, the centrifugal pump

was segmented with a 77.16% confidence score, and the bounding

box encompasses almost the entire object. The ladder, although

split into multiple segments, was identified with high confidence

scores (ranging from 64% to 84%). The performance of the

segmentation model in the final round of evaluation was an

IoU and PQ score of 39.35 and 49.16, respectively, as shown

in Table 2.
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FIGURE 9

Generated dataset analysis. (a) Total segmentation count per class. (b) Total segmentation area per class. (c) Average segmentation area per class.

TABLE 2 Improvement of performance metrics over epochs.

Metric Epoch
1

Epoch
2

Epoch
3

Epoch
4

Epoch
5

IoU 18.98 31.26 37.04 38.85 39.35

PQ 21.23 39.24 44.33 47.14 49.16

Figure 11 shows the segmentation results of the real-world case

study images from Figure 5. All segmentations with a confidence

score lower than 40% were ignored. In Figure 11a, almost all the

pipes were correctly segmented and labeled. The top-left valve was

segmented with a confidence score of 68.66% (with a segmentation

discrepancy at the top and the right of the valve).

In Figure 11a, the bottom-left valve’s profile was mostly

segmented with a confidence score of 87.85% (with a discrepancy

at the top of the profile). The railing was identified as a ladder, as it

TABLE 3 IoU results obtained in comparison with recent studies.

Method Backbone IoU

DA-Net ResNet-50 37.9

Our proposed generator ResNet-50 39.35

EMA-Net ResNet-50 39.9

AC-Net ResNet-101 40.1

resembles the shape of a ladder in the training data. Two valves and

three of the pipes were not segmented.

The non-drive end bearing housing in the center of Figure 11b

was segmented but incorrectly labeled as an induction motor with a

confidence score of 86.1% as it resembles the profile of an induction

motor in the synthetic dataset. The profile of the large pump in the

middle of the image was segmented well but was mislabeled as it

resembles a valve in the training dataset. The valve to the top-left of
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FIGURE 10

Evaluation result. (a) Input synthetic image for evaluation. (b) Segmentation result after last epoch.

FIGURE 11

Segmentation results (for the real-world images in Figure 5). (a) Case study segmentation result 1. (b) Case study segmentation result 2.

the image was partially segmented with a score of 43.02%. Various

objects (such as the grate to the bottom left and the railway to the

bottom right) were mislabeled as they resemble the pipes in the

training dataset.

The segmentation performance on the case study images

was obtained by manually creating ground truth segmentations

and calculating the IoU and PQ metrics for the automatically

segmented images. The average IoU and PQ scores achieved on

the case study images were 34.15 and 32.41, respectively, as shown

in Table 4.

TABLE 4 Final segmentation performance.

Segmented content IoU PQ

Evaluation subset of synthetic dataset 39.35 49.16

Case study images 34.15 32.41

The PQ result for the case study images was lower than the IoU

result, which is not the case for the synthetic dataset. This is possibly

due to the PQ metric being influenced by the false positives, false
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negatives, and true positives, as some of the objects in the case study

images were segmented well in terms of the object profile but were

mislabeled as other classes.

The segmentation model’s performance on the case study

images was slightly lower than that achieved in the final evaluation

step during the testing phase with the synthetic dataset. The use

of transfer learning to retain the real-world learned features was

successful, as no real-world images of the chosen case study were

used during model training, and only a slight loss of performance

was seen.

All the validation results have shown that the proposed

method to generate synthetic data produces datasets usable for

training instance segmentation models and that the performance

is comparable to those of recent studies using real-world datasets.

The validation also showed that the method is cost-efficient,

as a relatively low-powered computer was used to train the

segmentation model, and the final training time was only 16

minutes.

4 Conclusion

The proposed methodology for creating a synthetic dataset

of segmented and labeled scenes was applied to a deep-level

mining case study. The real-world images contained objects such

as pipes, valves, induction motors, and ladders. These images were

analyzed, and the synthetic scenes were designed and constructed.

3D models, such as pipes and valves, were utilized to increase the

similarity between synthetic and real-world scenes. A camera and

raycaster were used to create and label different perspectives within

the generated scenes to produce the final synthetic dataset.

The validation comprised utilizing the created dataset in a

transfer learning approach on an instance segmentation model

while calculating the IoU and PQ metrics after each epoch. The

performance metrics increased (initially in large increments) over

each epoch and plateaued after five epochs. The inference on the

validation dataset showed high confidence instance segmentation

and labeling on each object of interest present.

The segmentation performance achieved with the proposed

generator was compared to the results reported in a recent survey

paper. It showed that the IoU metric results obtained are similar to

those reported in the survey paper.

The segmentations of the case study images showed that

most of the real-world object’s profiles could be segmented and

labeled with high confidence and accuracy. Some objects of interest

defined for the synthetic dataset were not segmented or mislabeled.

However, the results on the real-world data are promising when

considering the relatively inexpensive hardware used to train the

segmentation model, the final training time, and the fact that a

synthetic dataset was used for training.

Future work includes experiments with the proposed generator

in various case studies, such as image segmentation for indoor

manufacturing or construction sites, to test its generalizability.

Investigations into the effects of creating a balanced versus biased

dataset for various case studies’ real-world scenes can also be

conducted to determine a balance between generalizability and

segmentation performance. Lastly, testing the dataset generator

with various segmentation algorithms is also recommended for

future work.
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