
TYPE Original Research

PUBLISHED 13 January 2025

DOI 10.3389/frai.2024.1454258

OPEN ACCESS

EDITED BY

Ricky J. Sethi,

Fitchburg State University, United States

REVIEWED BY

Katya Mkrtchyan,

California State University, Northridge,

United States

Kausik Basak,

JIS Institute of Advanced Studies and

Research, India

*CORRESPONDENCE

Kurt Stockinger

kurt.stockinger@zhaw.ch

RECEIVED 24 June 2024

ACCEPTED 24 December 2024

PUBLISHED 13 January 2025

CITATION

Kosten C, Nooralahzadeh F and Stockinger K

(2025) Evaluating the e�ectiveness of prompt

engineering for knowledge graph question

answering. Front. Artif. Intell. 7:1454258.

doi: 10.3389/frai.2024.1454258

COPYRIGHT

© 2025 Kosten, Nooralahzadeh and

Stockinger. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Evaluating the e�ectiveness of
prompt engineering for
knowledge graph question
answering

Catherine Kosten, Farhad Nooralahzadeh and Kurt Stockinger*

School of Engineering, Institute of Computer Science, Intelligent Information Systems Research

Group, Zurich University of Applied Sciences, Winterthur, Switzerland

Many di�erent methods for prompting large language models have been

developed since the emergence of OpenAI’s ChatGPT in November 2022. In

this work, we evaluate six di�erent few-shot prompting methods. The first set

of experiments evaluates three frameworks that focus on the quantity or type

of shots in a prompt: a baseline method with a simple prompt and a small

number of shots, random few-shot prompting with 10, 20, and 30 shots, and

similarity-based few-shot prompting. The second set of experiments target

optimizing the prompt or enhancing shots through Large Language Model

(LLM)-generated explanations, using three prompting frameworks: Explain then

Translate, Question Decomposition Meaning Representation, and Optimization

by Prompting. We evaluate these six prompting methods on the newly created

Spider4SPARQL benchmark, as it is themost complex SPARQL-based Knowledge

Graph Question Answering (KGQA) benchmark to date. Across the various

prompting frameworks used, the commercial model is unable to achieve a

score over 51%, indicating that KGQA, especially for complex queries, with

multiple hops, set operations and filters remains a challenging task for LLMs. Our

experiments find that the most successful prompting framework for KGQA is a

simple prompt combined with an ontology and five random shots.

KEYWORDS

knowledge graph question answering, SPARQL, RDF, LLMs, prompt engineering

1 Introduction

Since the release of ChatGPT in November of 2022, Large Language Models (LLMs)

have seen a surge in popularity. One of the novel aspects of this, is that unlike previous

iterations of “chatbot-like” technology, ChatGPT has actually seen sustained interest

and use from users in all aspects of life.1 The popularity of ChatGPT for question

answering underscores the research value of chat-based interfaces, demonstrating real-

world user demand and justifying continued research efforts especially for Knowledge

Graph Question Answering (KGQA).

Large Language Models like ChatGPT can already perform a multitude of

tasks in domains from business to education (Bahrini et al., 2023). However,

one flaw in LLMs that has garnered attention in the last year is that they

hallucinate, meaning LLMs do not always provide factual answers. While accuracy

is not essential to some tasks, such as creative ideation and some writing or

administrative tasks, accuracy is of utmost importance when using an LLM in

factual question answering tasks such as question answering against databases or

knowledge graphs (Zhang et al., 2023; Nooralahzadeh et al., 2024; Fürst et al., 2024).

1 The following link was accessed on February, 21st 2024 and shows current statistics about ChatGPT

usage https://www.demandsage.com/chatgpt-statistics.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1454258
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1454258&domain=pdf&date_stamp=2025-01-13
mailto:kurt.stockinger@zhaw.ch
https://doi.org/10.3389/frai.2024.1454258
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1454258/full
https://www.demandsage.com/chatgpt-statistics
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

Assume that we have a knowledge graph (KG) about concerts

and stadiums as shown in Figure 1. Further, assume that we want to

answer the natural language question Show the stadium name and

the number of concerts in each stadium. The major task of KGQA

is to translate the natural language question into the formal query

language that the KG supports, such as SPARQL.

LLMs being used as KGQA systems tend to hallucinate

incorrect class names, property names and literals in the generated

SPARQL queries. Some class and property names as well as literals

may also be completely made up by the LLM, in which case, the

knowledge graph would not return an answer to the user (Kosten

et al., 2023). Hallucinations can also include class and property

names as well as literals that exist in the graph but do not match

the question being asked and would return an incorrect answer. In

this paper, specifically target mitigating both forms of hallucination

by using various approaches of prompt engineering to improve the

performance of LLMs as KGQA systems.

An interesting byproduct of the LLM boom is that many

researchers in the field have begun to see training data as obsolete,

due to the fact that LLMs are trained on Terabytes of data. The

reasoning behind this is, if they have been trained on Terabytes

of data what else could we possibly train them on? We show that

for the task of KGQA, training data is still highly relevant and

significantly improves few-shot results from 8% to 51% for LLMs

compared to a zero-shot baseline.

Overall, this paper makes the following contributions:

• We design and explore the effects of various prompt

engineering approaches on the task of Knowledge Graph

Question Answering for a complex data set.

• We assess the prompting methods using the Spider4SPARQL

benchmark (Kosten et al., 2023) and compare GPT-3.5 and

Code Llama, revealing that even the best models struggle to

surpass 51% accuracy on complex queries.

• We identify the most effective prompting framework for the

KGQA task – a simple prompt combined with an ontology

and five random shots – and conduct thorough error analysis

to pinpoint areas for improving KGQA.

2 Knowledge graph question
answering

Despite decades of research, KGQA is still a significant

challenge for the scientific community. Systems that can perform

KGQA have evolved over the years from earlier rule-based

approaches (Sima et al., 2021) to traditional machine learning

methods with ensemble techniques (Singh et al., 2018) and

most recently deep learning. Early deep learning KGQA systems

employed architectures like Tree-LSTMs (Liang et al., 2021).

Modern KGQA systems use the most recent deep learning

architectures like the cutting-edge transformer as seen in Large

Language Models.

There are a few main components necessary to build and use a

KGQA system. The first element is the knowledge graph (KG) itself,

which consists of an ontology and underlying data (literals), also

known as the Terminological Box (T-box) and the Assertion Box

(A-box), respectively (Krotzsch et al., 2014). The next component

is a dataset that can be used for training and evaluating a KGQA

system. This resource contains natural language questions with

their corresponding SPARQL queries, serving as a benchmark for

assessing the systems’ performance. The last building block is the

KGQA system which translates a natural language question into a

SPARQL query.

2.1 Translating a natural language question
into SPARQL

The first step in the task of translating a natural language

question into SPARQL is mapping the entities in the natural

language question to the classes, properties, and literals in the

knowledge graph. As Figure 1 shows, the system must be able to

recognize that stadium name from the natural language question

refers to the Datatype property name in the stadium Class. It also

needs to find the Class concert and be able to connect it to the Class

stadium with the correct Object Property, in the correct direction,

as shown in Example 1.

Example 1:

concert → ref-stadium_id → stadium

The last step is to take all of this information and formulate it

into a SPARQL query. The system has to decide which variables

belong in the projection and if there are any additional elements

in the query like aggregations, filters, set operations, group by or

having clauses.

2.2 Ontologies

One of the components that has largely been left out of building

KGQA systems using LLMs, is the importance of ontologies.

An ontology consists of classes, object properties, and datatype

properties. An example of an ontology from the Spider4SPARQL

dataset is shown in Figure 2. One of the key errors that KGQA

systemsmake, is predicting triple patterns that do not exist or are in

the wrong direction when connecting classes such as stadium and

concert shown in Example 1. This challenge is specific to KGQA

systems and does not apply to similar systems used for relational

databases, such as text-to-SQL systems.

Let us explain this concept in more detail. For relational

database management systems, the join condition of an inner join

(other types of joins have not yet been implemented in text-to-SQL

systems) between two tables can be declared in either direction.

Consider the following two examples:

SELECT * FROM Table A join Table B on A.id = B.id

will produce the same results as:

SELECT * FROM Table A join Table B on B.id = A.id

The order or direction in which the join attributes (in bold

above) are specified is irrelevant for SQL.

However, this is not the case for SPARQL. Here, the order or the

direction of connecting classes (i.e., performing a join) is relevant

since the ontology is a labeled directed graph. A connection between

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

FIGURE 1

This figure shows an example of a natural language question, its corresponding SPARQL query and a section of a knowledge graph with the classes

and properties used in the SPARQL query.

classes in one direction may not exist in another direction and will

therefore return an empty result set.

The ontology in Figure 2 shows a connection going from the

Class concert toward the Class stadium. A SPARQL query using the

triple pattern shown in Example 2 would return an empty result set

because this connection does not exist in the knowledge graph.

Example 2:

stadium → ref-stadium_id → concert

The ontology contains the information that shows how classes

are connected to one another, and is therefore crucial information

when implementing any type of KGQA system. More evidence of

this assertion is shown in the experiments and results in the next

section.

3 Prompting frameworks

A variety of prompting strategies and frameworks have been

introduced in order to take advantage of the expressive power

of LLMs and their ability to understand natural language. These

techniques attempt to exploit the ability of LLMs to acquire

knowledge from vast amounts of text data, including code

constructs, during the training process.

For the purpose of this analysis, we categorize the prompting

frameworks into the following categories:

1. Baseline prompt: this category includes methods that leverage

ontological information to enhance prompt effectiveness.

(a) Our baseline prompt incorporates an ontology to provide

contextual information to the LLM.

(b) This category establishes a baseline performance for

Knowledge Graph Question Answering with LLMs. This

serves as a foundation for comparison with subsequent

methods.

2. Few-shot prompting: this category explores the impact of

incorporating few-shot examples into the baseline prompt.

(a) We investigate the impact of supplementing the baseline

prompt with few-shot examples, exploring both random and

similarity-based examples.

3. Query-optimized prompting: methods in this category focus on

modifying the structure or content of the query itself.

(a) Explain-then-translate: this approach adds a chain-of-

thought explanation to the SPARQL query, aiming to

improve the LLM’s understanding of the desired output.

(b) Question decomposition meaning representation: this

method breaks down the natural language question into

smaller components, providing the LLM with a more

structured input.

4. Iterative prompt optimization: this category evaluates a method

that leverages the LLM’s capabilities to refine a prompt.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

ref-stadium_id

ref-singer_id

ref-concert_id

integer

concert_id
integer

integer

integer
integer

integer

integer

integer

integer

integerinteger

string

string

string

string

string

string

string

boolean

string

string

singer_id

concert_name

year

concert_id

stadium_id

theme

singer_id

stadium_id

capacity

lowest

name

average

highest

location

name age

country

is_male

song_release_year

stadium

singer
singer_in_concert

concert

FIGURE 2

The figure depicts the ontology or T-box for the concert_singer knowledge graph in the Spider4SPARQL dataset. The figure shows the Classes in

blue, the Object Properties in pink, the Datatype Properties in Green, and the DataTypes of each DataType Property in yellow.

(a) Optimization by PROmpting:this framework explores the

LLM’s ability to self-improve the prompt through iterative

feedback and refinement.

3.1 Baseline prompt with ontology

In order to determine the impact of target prompting

techniques, we introduce a simple baseline prompt against which

we compare and evaluate more complex methodologies. The

baseline prompt includes a simple instruction about the task,

information about the SPARQL prefixes, as well as the ontology.

Example 1 shows the baseline prompt which is also later used in

Section 4.3.1.1:

Given an input question create a syntactically
correct SPARQL query.

The prefix for the queries is PREFIX : <http://
valuenet/ontop/>.

Use the following ontology:

<Ontology>

[Q]: <Natural Language Question>
[SPARQL]: <SPARQL Query>
[Q]: <Target Natural Language Question>
[SPARQL]:

Example 1 Baseline prompt. The “< >" placeholders denote specific

variables.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
http://valuenet/ontop/
http://valuenet/ontop/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

3.2 Random few-shot prompting

In this method, we employ the baseline prompt with

progressively increasing numbers of examples, pushing the limits

allowed by the LLM’s context window. This prompting method

uses the same prompt and structure as the baseline method and is

designed to interpret if simply giving the model more examples will

produce better output.

3.3 Similarity-based few-shot prompting

In dynamic few-shot prompting (which we call similarity-

based), an approach developed at Microsoft Research, the most

relevant examples from the training data for each specific task

are chosen based on their similarity to the current input (Nori

et al., 2023). These similar questions are then used as the few-

shot examples for prompting the model. Several open-source

frameworks designed for building applications that use large

language models, e.g., Langchain,2 offer functions that integrate

dynamic few-shot prompting natively. This approach leverages the

training data effectively without the need for extensive fine-tuning,

which requires massive amounts of computational resources.

3.4 Explain-then-translate (ETT)

Explain-then-Translate (Tang et al., 2023) is a chain of thought

type prompting method used to improve translation from one

programming language to another. In this framework, an LLM

generates a natural language explanation for the code, which is

then used in the prompt. This techniques introduces three different

types of explanations: explain (exp), explain line by line (lbl),

and explain line by line in detail (lbl-d). This method was shown

to consistently improve translation from Python into 18 target

programming languages, especially in the zero-shot setting.

3.5 Question decomposition meaning
representation (QDMR)

QDMR (Wolfson et al., 2020) is an approach to question

understanding that decomposes complex natural language

questions into simpler ones. It provides a language-agnostic

way to represent the meaning of questions by breaking them

down into smaller steps. Similar to query languages like SQL

or SPARQL, QDMR uses a sequence of operations to select

entities, retrieve information, and aggregate results. QDMR has

been shown to improve question answering tasks and simplify

complex logical forms used in semantic parsing. In contrast

to previous frameworks, QDMR focuses on explaining natural

language questions, while ETT focuses on explaining programming

languages. We transform natural language questions into their

2 https://api.python.langchain.com/en/latest/example_selectors/

langchain_core.example_selectors.semantic_similarity.

SemanticSimilarityExampleSelector.html

QDMR using the method and model outlined in Wolfson et al.

(2020).

3.6 Optimization by PROmpting (OPRO)

The OPRO approach to prompting from Google’s Deep Mind

was introduced early 2023 by Yang et al. (2024). OPRO proposes

using LLMs as self-optimizers for their own prompts. The pipeline

begins with a “meta-prompt” that feeds the LLMwith past attempts

(prompts with their performance scores, or human generated

prompts with scores) and examples of the desired task (i.e., training

data). The LLM then continuously suggests new prompts based

on this information. These new prompts are evaluated and the

best ones become part of the meta-prompt for the next iteration.

This cycle allows OPRO to discover the most effective prompt for

a specific task. 3.5% examples from the GSM8K dataset (Cobbe

et al., 2021) were sampled and put through the OPRO pipeline.

The results show that the OPRO framework outperforms the best

manually developed prompts like “Let’s think step by step” (Kojima

et al., 2022) on the GSM8K dataset by 8.4%.

4 Experiments and results

This section details the experiments and results of translating

natural language questions to SPARQL using the following six

prompting methodologies: (1) Baseline, (2) Random Few-Shot

Prompting, (3) Similarity-Based Few-Shot Prompting, (4) Explain-

then-Translate (ETT), (5) Question Decomposition Meaning

Representation (QDMR) and (6) Optimization by PROmpting

(OPRO).

4.1 Benchmark dataset

For all our experiments we used the Spider4SPARQL

benchmark (Kosten et al., 2023), which is currently considered

as the most challenging benchmark for evaluating KGQA. This

benchmark contains 9,693 natural language questions consisting

of a training set of 8,659 NL/SPARQL-pairs and a test set of 1034

NL/SPARQL-pairs covering 166 multi-domain knowledge graphs

and ontologies. The queries have a complexity of easy, medium,

hard and extra-hard according to the Spider hardness definition

(Yu et al., 2018).

4.2 Models and parameters

4.2.1 OpenAI
For the experiments we used OpenAI’s gpt-3.5-turbo-0125

model. The average processing time per run (inferencing 1,034

queries of the test set) was 30–40 min. For each experiment we

performed 10 runs. We ran the queries using the OpenAI API. We

set the temperature at 0 to ensure more deterministic results and set

the top_p at 1. The total costs of these experiments was 163 USD.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html
https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html
https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

TABLE 1 The table shows the specs for the GPU used to process the queries with the Code Llama model.

VRAM/GPU vCPUs RAM STORAGE PRICE

40 GB 30 200 GiB 512 GiB SSD $1.29/h

4.2.2 Code Llama
For comparison with the commercial model from OpenAI, we

performed experiments with an open source model, Code Llama.

Code Llama, fromMeta, is built on Llama2 and has been specifically

trained to handle a variety of programming tasks. It significantly

outperforms other open source code-specific models (Roziére et al.,

2024). For our experiments, we used and Code Llama—Instruct

with 13b parameters.3

We set up and ran the model with the Ollama framework.4

During tests with the larger 34b and 70b Instruct models, the

models frequently refused to produce SPARQL queries “due to

safety concerns.”

These experiments were run on a gpu_1x_a100_sxm4

machine, rented from the Llambda GPU Cloud.5 The full GPU

specs are provided in Table 1. The total costs for renting the GPU

was 51.45 USD.

The processing times with the A100 GPU were similar to

the processing times from the OpenAI API for the 1, 3, and 5

shot experiments. For the 10-shot experiments the processing time

doubled.

4.3 Experiments

4.3.1 Prompting with the ontology
We will now evaluate the performance of our six prompting

methods using 10-fold cross-validation for the test set of 1,034

NL/SPARQL-pairs. This results in inferencing a total of 10,340

queries.

4.3.1.1 Baseline

As a baseline experiment, we use the simple prompts

introduced in Section 3.1. The execution accuracy of the baseline

for translating to 1,034 natural language questions to SPARQL

using zero-shot experiments is 8% for GPT-3.5 (see Table 2).

4.3.1.2 Random few-shot prompting

To investigate the impact of training data size on model

performance, we conduct experiments using randomly chosen

natural language/SPARQL pairs. These shots were chosen from

the training set of 8,659 NL/SPARQL-pairs. Both GPT-3.5 and

Code Llama 13b have a context window of 16K. With GPT-3.5

we experimented with up to 30 examples. For Code Llama 13b

we experimented with up to 10 examples. Running experiments

with 20–30 examples for Code Llama 13b proved infeasible due

to both cost constraints and processing times that exceeded the

responsiveness real-world users expect.

3 https://ollama.com/library/codellama:13b

4 https://ollama.com/

5 https://cloud.lambdalabs.com

TABLE 2 Random few-shot prompting: the table shows the average

execution accuracy of up to 30 shot experiments over 10 runs.

Model # of shots Accuracy with
ontology

GPT-3.5 0 (Kosten et al., 2023) 8%

1 46%(±1.16%)

3 49%(±1.21%)

5 51%(±0.70%)

10 (Kosten et al., 2023) 45%(±4.41%)

20 50% (±0.56%)

30 49% (±1.03%)

Code Llama 13b 0 7%(±0%)

1 7%(±0.57%)

3 16%(±0.83%)

5 16%(±0.76%)

10 12%(0.79±%)

All shots are chosen randomly. We show the accuracy with the ontology used in the prompt.

Bold values indicate the highest accuracy.

TABLE 3 Similarity-based few-shot prompting: the table shows the

execution accuracy of the 1, 3, and 5 shot experiments for GPT-3.5.

of shots Accuracy with ontology

1 39%

3 42%

5 46%

Bold values indicate the highest accuracy.

Table 2 shows the average execution accuracy over 10 runs

along with the errors in brackets. Note that the impact of using

more than five training examples has not been previously explored

in the literature. Interestingly, the results presented in Table 2

demonstrate that increasing the number of training examples to

30 decreases performance compared to 20 examples. However, the

highest accuracy of 51% for GPT-3.5 and 16% for Code Llama,

respectively, is achieved with only five training examples. These

findings suggest that there may be a tipping point beyond which

additional training data can hinder performance.

These initial experiments revealed a substantial performance

gap between GPT-3.5 and Code Llama. GPT-3.5 outperformed

Code Llama by a significant margin of 35%. To maximize the

efficiency of our research and ensure the results are most relevant

to our specific task, we opted to focus our efforts on the higher-

performing model.

4.3.1.3 Similarity-based few-shot prompting

This prompting methodology does not include randomly

chosen shots but rather shots that are selected based on their

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://ollama.com/library/codellama:13b
https://ollama.com/
https://cloud.lambdalabs.com
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

You are a helpful AI assistant who understands the SPARQL Protocol and
RDF Query Language. Can you explain what this SPARQL script does with a
couple of sentences? The goal of the explanation is so that a reader can
easily rewrite the question in SPARQL.

[Q]:
Return me the keyword, which has been contained by the most number
of papers in VLDB conference.

[SPARQL]:
SELECT ?T1_keyword (count(*) as ?aggregation_all) WHERE {
?T1 a :keyword.
?T14 a :publication_keyword.
?T14 :publication_keyword#ref-kid ?T1.
?T1 :keyword#keyword ?T1_keyword.
?T2 a :publication.
?T2 :publication#title ?T2_title.
?T14 :publication_keyword#ref-pid ?T2.
?T3 a :conference.
?T3 :conference#name ?T3_name.
?T2 :publication#ref-cid ?T3.
FILTER(?T3_name = ’VLDB’).}
GROUP BY ?T1_keyword
ORDER BY DESC ((count(?T2_title) as ?aggregation)) LIMIT 1

[Explanation]:
This SPARQL script retrieves the keyword that appears in the most number
of papers in the VLDB conference. It does this by querying for papers that
have a keyword, publications that have a title, conferences that have a
name, and linking them together using various properties. It then filters
the results to only include papers from the VLDB conference and groups the
results by keyword. Finally, it orders the results in descending order bas-
ed on the count of titles and limits the output to only the keyword with
the highest count.

Example 2 Explanation Prompt.

TABLE 4 Explain-then-translate: the table shows the execution accuracy

of 1, 3, and 5 shot experiments for GPT-3.5 in the exp setting.

of shots Accuracy with ontology

1 47% (±0.80%)

3 49% (±1.03%)

5 50% (±0.80%)

Bold values indicate the highest accuracy.

semantic similarity to the target natural language question. We

use the all-MiniLM-L6-v2 sentence encoder from HuggingFace6

to encode the natural language questions and cosine similarity to

measure the distance between the target natural language question

and the examples from the train set. The training samples are only

chosen based on the natural language question. The results for 1, 3,

and 5-shot experiments of GPT-3.5 are shown in Table 3.

We limit these experiments to the 1, 3, and 5-shot setting to

maintain a high degree of semantic similarity between the examples

and the target question. While it would be technically possible to

use more shots, this could introduce irrelevant information that

could hinder the model’s ability to learn the concepts relevant to

the target question.

6 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Table 3 shows that similarity-based few shot prompting

performs 4% worse than random few-shot prompting shown

previously in Table 2. There are several potential explanations for

this drop in accuracy. One possible explanation is overfitting in

similarity-based example selection. By choosing examples that are

too closely aligned with the target question, the model might

struggle to generalize to slightly different query structures or

variations in natural language expressions. Randomly selecting

examples, on the other hand, might introduce a degree of diversity

that exposes the model to a broader range of query patterns

and SPARQL constructs. This exposure could enable the model

to develop a more robust understanding of the task, leading to

better generalization. Further research is warranted to expose

the underlying reasons for this phenomenon. Future work could

explore the optimal number of examples for few-shot LLM-

based KGQA or investigate the effectiveness of combining random

and similarity-based example selection strategies to gain a more

comprehensive understanding of this observation.

4.3.1.4 Explain-then-Translate

For evaluating the Explain-then-Translate prompt engineering

framework, we sample 30% of the Spider4SPARQL training set

(2,598 queries), including only hard and extra hard questions,

as previous few-shot experiments show produces the highest

Frontiers in Artificial Intelligence 07 frontiersin.org

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Kosten et al. 10.3389/frai.2024.1454258

Given an input question and an ontology create a syntactically correct
SPARQL query.
The prefix for the queries is PREFIX : <http://valuenet/ontop/>.
Use the following ontology:
‘kg_id’: ‘concert_singer’,
‘classes’: [‘concert’, ‘singer’, ‘singer_in_concert’, ‘stadium’],
‘object_properties’: [‘concert#ref-stadium_id’],
‘data_properties’: [‘concert#concert_id’, ‘concert#concert_name’],

Please use the following examples to better understand this task:
[Q]: who does Noah A Smith work with ?
[SPARQL]:
SELECT DISTINCT ?T1_authorid WHERE {
?T1 a :author.
?T1 :author#authorid ?T1_authorid.
?T1 :author#authorname ?T1_authorname.
FILTER(?T1_authorname = ’Noah A Smith’).}

[Explanation]:
‘return noah a smith ’,
‘return who does #1 work with’

[Q]:How many singers do we have?
[SPARQL]:

Example 3 QDMR Explanation Prompt.

accuracy (Kosten et al., 2023). We provide the NL/SPARQL-pairs

to GPT-3.5 and ask it to generate explanations.

Example 2 shown below is an extra hard query from a

knowledge graph about academia. The example shows the basic exp

explanations prompt, the NL/SPARQL-pair and the explanation.

Further examples of line by line and line by line in detail explanation

prompts and their generated responses are included in the Example

10 in the Appendix.

Let us analyze the results for GPT-3.5. We performed 1, 3, and

5-shot experiments with the setting exp. The shots for each prompt

were randomly selected.

Experiments using 3 and 5-shots with the lbl-d (line-by-line

in detail) explanation setting with the ontology were not feasible

because they exceeded the context window of 16,385 tokens.

Table 4 shows the results of the experiments for the Explain-

then-Translate framework. Increasing the number of shots

included in the prompt from 1 to 5, led to a 3% increase in accuracy.

4.3.1.5 Question decomposition meaning representation

For evaluating the QDMR framework, we utilize the same hard

and extra hard training examples (30% of the Spider4SPARQL

training set, i.e., 2,598 queries) as in the Explain-then-Translate

experiments.

Example 3 shows the input that the model receives in the

1-shot experiments, i.e., the ontology (abridged version shown

below), an example from the training data with a natural

language question, a SPARQL query, a QDMR explanation and the

target question.

The best QDMR experiment including the ontology has an

accuracy of 49% (see Table 5).

Table 5 shows that QDMR performs 1% below Explain-

then-Translate (ETT, previously shown in Table 4) across the

different numbers of shots. The two different frameworks focus

on different aspects of explanations. ETT was designed as a

TABLE 5 Question decomposition meaning representation: the table

shows the execution accuracy of 1, 3, and 5 shot experiments using

GPT-3.5.

of shots Accuracy with ontology

1 46% (±1.30)

3 48% (±0.77)

5 49% (±0.65)

Bold values indicate the highest accuracy.

prompt engineering strategy focused on explaining programming

languages, while QDMR centers on explaining natural language

questions. This difference in focus could contribute to their

performance discrepancies in the context of LLM-based KGQA.

ETT may have an advantage because the step-by-step explanations

of the SPARQL queries might provide more direct guidance for

the LLM to map natural language elements to SPARQL constructs.

QDMR’s emphasis on decomposing natural language questions

into simpler units might not be as effective in directly addressing

the challenges of SPARQL generation. While breaking down the

natural language question can help with understanding, it might

not offer the same level of explicit mapping to SPARQL syntax

and structure as ETT. To further investigate the performance

disparity between ETT andQDMR in the context of SPARQL-based

KGQA, future research could explore the impact of explanation

granularity for SPARQL query generation. Such analysis would

reveal the optimal level of granularity that balances natural

language understanding with effective SPARQL query generation.

4.3.1.6 Optimization by PROmpting

We perform experiments using the OPRO framework. In

the first phase, the model is given an optimization prompt as

shown in the example below, and produces optimized queries.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
http://valuenet/ontop/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

I have some texts along with their corresponding scores.
The texts are arranged in ascending order based on their scores, where
higher scores indicate better quality.
Write your new text that is similar but different from the old ones.
Write the text in square brackets.

Example 4 Optimization Prompt.

These optimized queries are then evaluated against the entire

Spider4SPARQL training data set of 8,659 queries. In this phase, the

model is given the optimized prompt, the ontology and a natural

language question. The prompt that performs best over the training

data set is then used for evaluating the test set.

The best prompts generated by this framework are able to

answer 11% of the questions in the zero-shot scenario on the

test set. This is a 3% improvement over the performance of the

manually generated prompt from the baseline experiments of the

Spider4SPARQL benchmark (Kosten et al., 2023)—see also Table 2.

Let us now analyze the optimization prompt (see

Example 4), the generated prompts (see Example 5), and

the generation prompt (see Example 6) employing the

OPRO framework.

1- Let’s approach this systematically. Provide the
SPARQL query only. No additional information

needed.
score: 70

2- text: Let’s approach the task systematically.
Provide only the SPARQL query. No additional
information.

3- text: Let’s carefully analyze the data. Only
respond with the SPARQL query. Nothing more.

score: 70
4- text: Let’s tackle the challenge with precision

. Respond with the SPARQL query only. No
additional information needed.

score: 70
5-text: Let’s approach the task systematically.

Provide a concise SPARQL query as your
response. No additional information needed.

6- text: Let’s approach this systematically.
Provide the SPARQL query only. No additional
information.

7- text: Let’s approach this systematically.
Provide the SPARQL query only, without any
additional information.

8- Write the SPARQL. Only answer with the SPARQL.
Nothing else.

Example 5 Generated Prompts.

PREFIX : <http://valuenet/ontop/>
Given the ontology:
{‘kg_id’: ‘concert_singer’,
‘classes’: [‘concert’, ‘singer’, ‘

singer_in_concert’, ‘stadium’],
‘object_properties’: [‘concert#ref-stadium_id’,
‘singer_in_concert#ref-concert_id’, ‘

singer_in_concert#ref-singer_id’],
‘data_properties’: [‘concert#concert_id’, ‘concert

#concert_name’,
‘concert#stadium_id’, ‘concert#theme’, ‘concert#

year’, ‘singer#age’,
‘singer#country’, ‘singer#is_male’, ‘singer#name’,

‘singer#singer_id’,

‘singer#song_name’, ‘singer#song_release_year’,
‘singer_in_concert#concert_id’,‘singer_in_concert#

singer_id’,
‘stadium#average’,‘stadium#capacity’, ‘stadium#

highest’, ‘stadium#location’,
‘stadium#lowest’, ‘stadium#name’, ‘stadium#

stadium_id’]}
[Q]:
How many singers do we have?
[text]:
Let’s approach this systematically. Provide the

SPARQL query only.
No additional information needed.
score: 70

Example 6 Generation Prompt. Without being prompted to do so, the

model generated its own scores e.g. “score: 70" for 3 of the prompts.

Question: List the dates of debates with number of
audience bigger than 150.

Query: SELECT ?date WHERE {
?debate debate#date ?date;
debate#num_of_audience ?audience.
FILTER (?audience > 150) }it]

Example 7 Using the prompt generated by the OPRO framework (first

iteration).

Question: What is the highest salary among each
team? List the team name, id and maximum
salary.

Query: SELECT ?team_name ?team_id (MAX(?salary) AS
?max_salary)

WHERE { ?team a <team\#team>;
<team#name> ?team_name;
<team#team_id> ?team_id.
?salary a <salary#salary>;
<salary#team_id> ?team_id;
<salary#salary> ?salary_value. }
GROUP BY ?team_name ?team_id

Example 8 Using the prompt generated by the OPRO framework (second

iteration).

Question: What is the id and first name of all the
drivers who participated in the Australian

Grand Prix and the Chinese Grand Prix?

Query: PREFIX : <http://example.org/formula_1/>
SELECT ?driverid ?forename WHERE {
?race1 a :races;
:name ‘‘Australian Grand Prix";
:raceid ?raceid1.
?race2 a :races;
:name ‘‘Chinese Grand Prix";
:raceid ?raceid2.
?result1 a :results;

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
http://valuenet/ontop/
http://example.org/formula_1/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

:raceid ?raceid1;
:driverid ?driverid.
?result2 a :results;
:raceid ?raceid2;
:driverid ?driverid.
?driver a :drivers;
:driverid ?driverid;
:forename ?forename. }

Example 9 Using the prompt generated by the OPRO framework (third

iteration).

The optimization prompt shown in Example 4, informs the

model about the task it will be performing, i.e. writing new prompts

that should have higher scores than the old prompts. Themodel was

set to output 10 optimized prompts, for brevity we have included

the de-duplicated list of eight generated prompts in Example 5. The

scores shown in some of the generated prompts are hallucinated

by the model and have no relation to the actual performance of

the prompts.

The following are examples of the types of queries that

were generated by GPT-3.5 using the prompts generated in the

OPRO framework.

The first prompts in the optimization process produced

queries like Example 7. It seems like the model has some

knowledge of the SPARQL query language because it is able

to produce output that resembles triples. However, this output

is syntactically incorrect, due to the added it] at the end of

the query.

In Example 8 the model unsuccessfully attempts to format the

query in a URL-like format, even though it has been provided with

the necessary and ontology.

Over the course of the iterations of self-improving prompts,

the model did manage to produce queries that were syntactically

correct. The query in Example 9 would be executable, except that

the model added its own prefix, which does not match the IRI’s in

the underlying graph. Removing the incorrect prefix could be done

in a post-processing step.

The OPRO framework demonstrates that models can improve

the prompts they are given, leading to better 3% results for 5 shots

with respect to 1 shot (see Table 6). One area for future research

would be to explore the OPRO framework in combination with the

top-performing Query-Optimized-Prompting Framework, ETT.

4.3.2 Ablation study: prompting without the
ontology

Finally, we conduct experiments across three different

prompting frameworks without using the ontology of the

knowledge graph. The prompting frameworks we use are (1)

Baseline, (2) ETT (both the explain and explain line by line

explanations), and (3) QDMR.

Table 7 shows that not including the ontology leads to poor

results. We evaluated the impact of ontologies on prompting

effectiveness across several frameworks. Our analysis revealed a

difference of 26% in accuracy between frameworks that used

ontologies and those that did not. The best-performing framework

without an ontology achieved an accuracy of 13%, while the

least accurate framework with an ontology reached 39%. Due

to this performance gap, we focused further investigation on

TABLE 6 Optimization by prompting framework: the table shows the

execution accuracy of the 1, 3, and 5 shot experiments for GPT-3.5.

of shots Accuracy with ontology

1 44% (±1.11)

3 49% (±1.077)

5 49% (±1.19)

Bold values indicate the highest accuracy.

frameworks that employed ontologies. Therefore, we did not

conduct additional experiments with the remaining frameworks in

the without ontology setting.

5 Error analysis

In the following section, we analyze the queries that were

systematically incorrectly inferred (representing 34% of the test set)

across the three top performing frameworks using the knowledge

graph ontology, i.e., frameworks that achieved 50%–51% accuracy.

We evaluate the queries using the Spider hardness easy,

medium, hard and extra hard as previously introduced. The

number of queries per hardness level are shown in Figure 3.

In the following analysis, we consider three different types of

output:

1. Match: queries that produce results that match the ground truth.

2. No match: queries that produce results but do not match the

ground truth.

3. Not executable: queries that are not able to be executed against

the RDF triple store.

The Figure 4 shows that models are more successful at

translating the easy and medium type queries from natural

language into SPARQL across the prompting frameworks. We can

also see that with hard and extra hard type queries the models

struggle to produce accurate answers.

5.1 Types of errors

Let us analyze the types of errors that occur when translating

natural language to SPARQL in more detail. All the examples we

address here are shown in the Appendix.

5.1.1 Syntax errors
3% of the queries could not be executed due to syntax errors.

Some of the syntax errors were due to the model producing an

explanation for the generated query, even when prompted to “only

produce a SPARQL query”. This kind of error could easily be

resolved in a post-processing step.

Example 11 in the Appendix, demonstrates a different kind

of syntax error in the Filter of the query. Instead of using a

comparison operator against a variable, the model has tried to use

an incomplete triple pattern ?T1 :pets#pet_age in the filter. The

query is also missing the triple required to access the target variable

?T1_pet_age for the filter.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

TABLE 7 The table shows the execution accuracy for prompts that do not

include the ontology.

Model # of shots Accuracy without
ontology

Baseline 1 8%

3 10%

5 10%

ETT-exp 1 8%

3 13%

5 9%

ETT-lbl 1 7%

3 13%

5 9%

QDMR 1 11%

3 13%

5 13%

The full length description for the abbreviations in the ETT framework are as follows: explain

(exp), explain line by line (lbl).

FIGURE 3

The figure shows the number of queries per hardness level

according to the Spider Hardness Framework.

5.1.2 Missing triples
Example 12 in the Appendix shows the ground truth query

and the generated query, which answers the question, “Return the

names of all the poker players.” The model has been provided with

the ontology in the prompt, so the information about connections

between classes is available. In this case, the model has failed to

use the information provided in the ontology, which only has two

classes people and poker_player.

Example 13 in the Appendix answers the question, “What

are the countries having at least one car maker? List name and

id.” The generated SPARQL query has a few errors, most notably

it is missing a HAVING-clause even though this keyword is

contained in the natural language question. Additionally, this

query is missing the class countries, which contains the property

countryname. The model has not connected the countries

class with the reference in the natural language question. It

has also not made use of the information in the ontology

that shows that the classes car_makers and countries are

connected.

5.1.3 Incorrect variable chosen for aggregation in
projection

For this type of error, the model chooses the wrong variable for

an aggregation. Example 14 in the Appendix is syntactically correct,

however, since the variable ?T1_petid does not exist in any of the

triples in the query, the query returns an empty set.

The natural language question for Example 15 in the Appendix

is “how many cars were produced in 1980?”. In this example, not

only has the model forgotten to include a triple with the variable

from the projection ?T1_id, but it misinterpreted the query which

should have simply counted all of the rows that met the criteria set

by the filter i.e., Select (count (*) as ?agg).

5.1.4 Limitations in filter generation
The following examples demonstrate challenges that KGQA

systems face in answering questions that require a filter. Example 16

in the Appendix answers the question “What are the names of the

singers who are not French citizens?” The literal that corresponds

to singer#citizenship is the country name France not the adjective

French. In this case, the model simply used the named entity

from the natural language question. This kind of error could be

solved with a pre-processing pipeline that informed the model

about literals in the graph that are semantically similar to the named

entities in the natural language questions.

Example 17 in the Appendix is from a knowledge graph about

TV shows and answers the question, “When did the episode ‘A Love

of a Lifetime’ air?”. In this case, the model has included the triple

needed for the filter ?T1_episode, but chose the wrong variable, i.e.,

?T1_series_name. It would appear in this instance that the model

has misunderstood the difference between an episode of a TV show

and a series.

6 Conclusion

In this paper we presented experiments and a thorough

evaluation of six different prompting frameworks, namely (1)

Baseline, (2) Random Few-Shot Prompting, (3) Similarity-

Based Few-Shot Prompting, (4) Explain-then-Translate (ETT),

(5) Question Decomposition Meaning Representation (QDMR),

and (6) Optimization by PROmpting (OPRO). The recent

advancements in prompt engineering frameworks within the

research community are aimed at improving few-shot LLM

capabilities in tasks like code translation and question answering.

To the best of our knowledge, we are the first to perform

rigorous experiments with few shot selection by performing 10-

fold experiments for translating natural language questions into

SPARQL queries.

The top performing framework is random few-shot prompting

with no additional explanations for the natural language questions

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

FIGURE 4

Execution results per query hardness for three top performing frameworks: random few-shot prompting with 5-shots and 20-shots, and ETT 5-shot.

or SPARQL queries. Our experiments also indicate that the

more advanced prompting engineering frameworks such as ETT,

QDMR or OPRO do not yield significantly better results. The

5-shot random few-shot prompting experiment outperformed

the 20-shot random few shot prompting experiment by 1%

indicating that more shots does not necessarily help the model

to produce accurate queries. Finally, a top score of 51%

indicates that complex Knowledge Graph Question answering is

still an unsolved research question, even for commercial large

language models.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/ckosten/Spider4SPARQL.

Author contributions

CK: Conceptualization, Data curation, Formal analysis,

Methodology, Software, Visualization, Writing – original draft,

Writing – review & editing. FN: Data curation, Writing – review &

editing. KS: Funding acquisition, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This project

has received funding from the European Union’s Horizon 2020

research and innovation program under grant agreement no.

863410. Open access funding by Zurich University of Applied

Sciences (ZHAW).

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://github.com/ckosten/Spider4SPARQL
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Kosten et al. 10.3389/frai.2024.1454258

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2024.

1454258/full#supplementary-material

References

Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R., Esmaeili, M.,
Majdabadkohne, R., et al. (2023). “Chatgpt: applications, opportunities, and threats,”
in Proceedings of the IEEE Information Engineering Design Symposium (SIEDS)
(Charlottesville, VA: EEE). doi: 10.1109/SIEDS58326.2023.10137850

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., et al. (2021).
Training verifiers to solve math word problems. arXiv [Preprint]. arXiv:2110.14168.
doi: 10.48550/arXiv.2110.14168

Fürst, J., Kosten, C., Nooralahzadeh, F., Zhang, Y., and Stockinger, K. (2025).
“Evaluating the data model robustness of text-to-SQL systems based on real
user queries,” in Proceedings 28th International Conference on Extending Database
Technology, EDBT 2025, Barcelona, Spain, March 25-28, 2025, eds. A. Simitsis, B.
Kemme, A. Queralt, O. Romero, and P. Jovanovic (OpenProceedings.org), 158–170.
doi: 10.48786/EDBT.2025.13

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. (2024). “Large language
models are zero-shot reasoners,” in Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22 (Red Hook, NY: Curran Associates
Inc.). doi: 10.5555/3600270.3601883

Kosten, C., Cudre-Mauroux, P., and Stockinger, K. (2023). “Spider4sparql: a
complex benchmark for evaluating knowledge graph question answering systems,” in
2023 IEEE International Conference on Big Data (BigData) (Los Alamitos, CA: IEEE
Computer Society), 5272–5281. doi: 10.1109/BigData59044.2023.10386182

Krotzsch, M., Simancik, F., and Horrocks, I. (2014). “A description logic primer,” in
Perspectives on Ontology Learning, Vol. 18, eds. J. Lehmann and J. Völker (Studies on
the Semantic Web), 3–19.

Liang, S., Stockinger, K., de Farias, T. M., Anisimova, M., and Gil, M.
(2021). Querying knowledge graphs in natural language. J. Big Data 8, 1–23.
doi: 10.1186/s40537-020-00383-w

Nooralahzadeh, F., Zhang, Y., Smith, E., Maennel, S., Matthey-Doret, C., De
Fondeville, R., et al. (2024). “StatBot.Swiss: bilingual open data exploration in natural
language,” in Findings of the Association for Computational Linguistics: ACL 2024, eds.
L.-W. Ku, A. Martins, and V. Srikumar (Bangkok: Association for Computational
Linguistics), 5486–5507. doi: 10.18653/v1/2024.findings-acl.326

Nori, H., Lee, Y. T., Zhang, S., Carignan, D., Edgar, R., Fusi, N., et al.
(2023). Can generalist foundation models outcompete special-purpose tuning? Case

study in medicine. arXiv [Preprint]. arXiv/2311:16452. doi: 10.48550/arXiv/2311:
16452

Roziére, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., et al. (2024). Code
llama: open foundation models for code. arXiv [Preprint]. arXiv:2308.12950.

Sima, A. C., Mendes de Farias, T., Anisimova, M., Dessimoz, C., Robinson-Rechavi,
M., Zbinden, E., et al. (2021). “Bio-soda: enabling natural language question answering
over knowledge graphs without training data,” in Proceedings of the 33rd International
Conference on Scientific and Statistical Database Management, SSDBM ’21 (New York,
NY: Association for Computing Machinery), 61–72. doi: 10.1145/3468791.3469119

Singh, K., Radhakrishna, A. S., Both, A., Shekarpour, S., Lytra, I., Usbeck, R.,
et al. (2018). “Why reinvent the wheel: let’s build question answering systems
together,” in Proceedings of the 2018 World Wide Web Conference, WWW ’18 (Geneva:
International World Wide Web Conferences Steering Committee), 1247–1256.
doi: 10.1145/3178876.3186023

Tang, Z., Agarwal, M., Shypula, A., Wang, B., Wijaya, D., Chen, J., et al. (2023).
“Explain-then-translate: An analysis on improving program translation with self-
generated explanations,” in Findings of the Association for Computational Linguistics:
EMNLP 2023 (Singapore: ACL). doi: 10.18653/v1/2023.findings-emnlp.119

Wolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg, Y., Deutch, D., et al.
(2020). Break it down: a question understanding benchmark. Trans. Assoc. Comput.
Linguist. 8, 183–198. doi: 10.1162/tacl_a_00309

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., et al. (2024).
“Large language models as optimizers,” in The Twelfth International Conference
on Learning Representations (OpenReview.net). Availableat:https://openreview.net/
forum?id=Bb4VGOWELI

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., et al. (2018). “Spider: a
large-scale human-labeled dataset for complex and cross-domain semantic parsing and
text-to-sql task,” in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing (Brussels: IEEE), 3911–3921. doi: 10.18653/v1/D18-1425

Zhang, Y., Deriu, J., Katsogiannis-Meimarakis, G., Kosten, C., Koutrika, G.,
and Stockinger, K. (2023). Sciencebenchmark: a complex real-world benchmark
for evaluating natural language to SQL systems. Proc. VLDB Endow. 17, 685–698.
doi: 10.14778/3636218.3636225

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1454258
https://www.frontiersin.org/articles/10.3389/frai.2024.1454258/full#supplementary-material
https://doi.org/10.1109/SIEDS58326.2023.10137850
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48786/EDBT.2025.13
https://doi.org/10.5555/3600270.3601883
https://doi.org/10.1109/BigData59044.2023.10386182
https://doi.org/10.1186/s40537-020-00383-w
https://doi.org/10.18653/v1/2024.findings-acl.326
https://doi.org/10.48550/arXiv/2311:16452
https://doi.org/10.1145/3468791.3469119
https://doi.org/10.1145/3178876.3186023
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.1162/tacl_a_00309
Available at: https://openreview.net/forum?id=Bb4VGOWELI
Available at: https://openreview.net/forum?id=Bb4VGOWELI
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.14778/3636218.3636225
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Evaluating the effectiveness of prompt engineering for knowledge graph question answering
	1 Introduction
	2 Knowledge graph question answering
	2.1 Translating a natural language question into SPARQL
	2.2 Ontologies

	3 Prompting frameworks
	3.1 Baseline prompt with ontology
	3.2 Random few-shot prompting
	3.3 Similarity-based few-shot prompting
	3.4 Explain-then-translate (ETT)
	3.5 Question decomposition meaning representation (QDMR)
	3.6 Optimization by PROmpting (OPRO)

	4 Experiments and results
	4.1 Benchmark dataset
	4.2 Models and parameters
	4.2.1 OpenAI
	4.2.2 Code Llama

	4.3 Experiments
	4.3.1 Prompting with the ontology
	4.3.1.1 Baseline
	4.3.1.2 Random few-shot prompting
	4.3.1.3 Similarity-based few-shot prompting
	4.3.1.4 Explain-then-Translate
	4.3.1.5 Question decomposition meaning representation
	4.3.1.6 Optimization by PROmpting

	4.3.2 Ablation study: prompting without the ontology

	5 Error analysis
	5.1 Types of errors
	5.1.1 Syntax errors
	5.1.2 Missing triples
	5.1.3 Incorrect variable chosen for aggregation in projection
	5.1.4 Limitations in filter generation

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

