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Foot-and-mouth disease poses a significant threat to both domestic and wild cloven-hoofed animals, leading to severe economic losses and jeopardizing food security. While machine learning models have become essential for predicting foot-and-mouth disease outbreaks, their effectiveness is often compromised by distribution shifts between training and target datasets, especially in non-stationary environments. Despite the critical impact of these shifts, their implications in foot-and-mouth disease outbreak prediction have been largely overlooked. This study introduces the Calibrated Uncertainty Prediction approach, designed to enhance the performance of Random Forest models in predicting foot-and-mouth disease outbreaks across varying distributions. The Calibrated Uncertainty Prediction approach effectively addresses distribution shifts by calibrating uncertain instances for pseudo-label annotation, allowing the active learner to generalize more effectively to the target domain. By utilizing a probabilistic calibration model, Calibrated Uncertainty Prediction pseudo-annotates the most informative instances, refining the active learner iteratively and minimizing the need for human annotation and outperforming existing methods known to mitigate distribution shifts. This reduces costs, saves time, and lessens the dependence on domain experts while achieving outstanding predictive performance. The results demonstrate that Calibrated Uncertainty Prediction significantly enhances predictive performance in non-stationary environments, achieving an accuracy of 98.5%, Area Under the Curve of 0.842, recall of 0.743, precision of 0.855, and an F1 score of 0.791. These findings underscore Calibrated Uncertainty Prediction’s ability to overcome the vulnerabilities of existing ML models, offering a robust solution for foot-and-mouth disease outbreak prediction and contributing to the broader field of predictive modeling in infectious disease management.
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1 Introduction

Foot-and-mouth disease (FMD) remains a formidable challenge which directly and indirectly affects the livestock industry, communities and the economy (Kerfua, 2020; Munsey et al., 2019). The disease circulates in approximately 77% of the global livestock population, primarily in Africa, the Middle East, and Asia (Bachanek-Bankowska et al., 2018; Zewdie et al., 2023), causing significant annual economic losses estimated between US$6.5 to 21 billion (Knight-Jones and Rushton, 2013). In Uganda, the disease has persisted for over six decades leading to 83 and 88% reductions in market values for bulls and cows, respectively, during FMD outbreaks (Baluka, 2016). The author further acknowledged a 23% decline in income for livestock industry stakeholders at the processing plants. The country embraces a reactive approach in managing FMD outbreaks where current interventions including vaccination, restriction on livestock movement and quarantine measures are implemented (Munsey et al., 2019). Due to the contagious nature of the disease, such interventions have had limited impact on control efforts, partly because the disease is often detected too late, after it has already spread to other regions of the country (Kerfua et al., 2013; Mwiine et al., 2019).

Random Forest (RF), an ensemble machine learning (ML) algorithm, has been used to predict FMD outbreaks in stationary environments, where the distribution of the training and test datasets is similar. This approach enables early detection of the virus and optimal allocation of resources (Punyapornwithaya et al., 2022). In such stationary settings, RF has exhibited high predictive performance due to its ensemble nature, where multiple decision trees are constructed and combined to make robust predictions using bagging (Mosavi et al., 2021). Each tree is trained on a random subset of the data and features, which helps to reduce overfitting and increase generalizability. However, in non-stationary environments with varying distributions (distribution shifts), RF demonstrates significant degradation in performance as depicted in Figure 1 (Kapalaga et al., 2024), rendering it unsuitable for deployment in the endemic and dynamic nature of Uganda. Its poor performance was attributed to the high variability in rainfall and maximum temperatures (Figure 2), which are key factors influencing FMD outbreaks. While several methods exist to mitigate distribution shifts, they often fail when the shifts are significant (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). Techniques such as pre-training and data augmentation can generate inconsistent results across different datasets (Wiles et al., 2021). Moreover, these methods require labeled datasets, which are time-consuming and costly to acquire (Kouw and Loog, 2019), and sometimes expert human annotators are unavailable (Settles, 2009; Yang and Loog, 2019).
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FIGURE 1
 Model accuracy degradation under varying distributions. RF, random forest; SVM, support vector machine; kNN, k-nearest neighbors; GBM, gradient boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification and regression tree.
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FIGURE 2
 Variability in rainfall (A) and max temperature (B) features, highlighting varying distribution (Kapalaga et al., 2024).


In this study, two primary objectives were proposed: (1) to develop a Calibrated Uncertainty Prediction (CUP) approach for enhancing RF model performance under varying distributions, and (2) to evaluate the performance of CUP in mitigating distribution shifts for predicting FMD outbreaks in the dynamic setting of Uganda. The study contributes to both practical applications and methodological advancements. Practically, the proposed approach enables proactive measures by providing timely and accurate predictions, facilitating early detection of outbreaks, and optimal resource allocation for managing FMD, thereby safeguarding livestock, the economy, and the community. Methodologically, the CUP approach addresses distribution shifts challenge, which is reported to degrade performance for RF-based prediction of FMD outbreaks (Kapalaga et al., 2024).

The rest of the paper is structured as follows: Section 2 offers an in-depth review of the relevant literature, highlighting key studies and identifying the research gap. Section 3 outlines the materials and methods used in the study, detailing the experimental design, data collection, and analytical techniques employed. Section 4 presents the results, providing a thorough analysis of the data and key findings. In Section 5, the findings are discussed, interpreting the results in the context of existing research and the study’s objectives. Finally, Section 6 concludes the paper, summarizing the key insights and implications of the research, and suggesting directions for future work.



2 Literature review

In this section, the study briefly defines DS, their causes, and current methods attempting to address them, along with their limitations. Additionally, the study highlights recent developments in related research areas that, when integrated, can effectively address distribution shifts in ML-based prediction of FMD outbreaks in the dynamic setting of Uganda.


2.1 Definition of DS and causes

DS, also called dataset shift or domain shift is a common problem in ML-based predictive modeling that occurs when training and test joint distributions are different (Ovadia et al., 2019). The concept of DS was initially introduced in the book by (Quinonero-Candela et al., 2008), which marked the first comprehensive compilation in this field. In this seminal work, DS was defined as instances where the joint distribution of inputs and outputs varies between the training and testing stages (Storkey, 2009). DS can arise from various factors, namely sample selection bias and non-stationary environments (Castle et al., 2021; Moreno-Torres et al., 2012). Sample selection bias occurs when training examples are obtained through biased methods, leading to a discrepancy in distribution and a lack of representation of the operational environment where the classifier will be deployed (Liu et al., 2021). Non-stationary environments, arises when the training environment differs from the test environment due to temporal or spatial changes (Sugiyama and Kawanabe, 2012).

Mathematically, DS is the alterations in the joint distribution of P(X, Y), where X denotes the predictors and Y represents the targets of a ML model (Quinonero-Candela et al., 2008). Such alterations in P(X, Y) can stem from changes in P(X), P(Y), or P(Y|X). These distinct alterations are often referred to using varied terminology by different authors. However, Jose G. Moreno-Torres proposed a more unified naming convention, labeling changes to P(X) as covariate shift, changes to P(Y) as prior probability shift, and changes to P(Y|X) as concept shift (Moreno-Torres et al., 2012).



2.2 Predictive performance degradation for FMD outbreaks under varying distribution

In our previous study, we quantified the influence of distribution shifts on the predictive performance of ML-based algorithms for FMD outbreaks (Kapalaga et al., 2024). RF which had demonstrated superb predictive performance under similar distribution, experienced a significant decrease across all performance metrics. Its accuracy decreased by 50% and a notable decline of 40.21% in the Area Under the Curve (AUC) value of the Receiver Operating Characteristic (ROC) curve. Similarly, RF experienced reductions in Recall by 96.81%, Precision by 73.33%, and F1-score by 93.48%. These performance degradation rates in prediction of FMD under varying distributions underscore the need for high performing methods to address the challenge.



2.3 Methods for addressing DS and their limitations

DA is a specialized technique in ML designed to address the challenge of distribution shift (DS), which occurs when the data distribution in the target domain differs from that in the source domain. This shift can significantly impair the performance of ML models, making it a critical issue to address. The general framework for dealing with DS in ML, as illustrated in Figure 3, encompasses various strategies aimed at adapting models to new data distributions.
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FIGURE 3
 A general framework for handling distribution shifts in ML. ACC, accuracy; AUC, area under curve; PR, precision; DS, distribution shifts; ML, machine learning.


One of the most common approaches to mitigating DS involves acquiring unlabeled data from the target domain and utilizing it to fine-tune models. This method is particularly beneficial when labeled data in the target domain is scarce or unavailable. DA techniques can be classified according to the availability of labels in the target domain. In supervised domain adaptation, labeled data from the target domain is available, allowing models to learn directly from the target distribution (Motiian et al., 2017). In semi-supervised domain adaptation, a small amount of labeled data from the target domain is available alongside a larger pool of unlabeled data, which helps refine model performance (Berthelot et al., 2021). Unsupervised domain adaptation takes on the challenge of adapting models when only unlabeled data from the target domain is available, making it a particularly challenging area of research (Kang et al., 2019). A more recent approach, pseudo-semi-supervised domain adaptation, involves generating pseudo-labels for the target domain’s unlabeled data, which are then used to guide the adaptation process (Singhal et al., 2023)(Singhal et al., 2023).

Addressing DS can also be approached differently depending on the focus of adaptation. Model-centric approaches concentrate on modifying the model architecture or learning algorithm to accommodate shifts in data distribution. This might involve adding domain-specific layers or parameters to the model, which are designed to better handle the differences between source and target domains (Dou et al., 2019; Ramponi and Plank, 2020). On the other hand, data-centric approaches involve transforming the data itself, such as through normalization, augmentation, or selecting specific features that are less sensitive to changes in data distribution. These transformations aim to make the data more consistent across different domains, thereby improving model performance (Bashath et al., 2022; Liang et al., 2019). Hybrid approaches combine both model-centric and data-centric techniques, leveraging the strengths of each to maximize the effectiveness of adaptation strategies (Amrani, 2021).

Several techniques are commonly employed to address DS. Maximum Mean Discrepancy (MMD) is a statistical method used to measure the difference between distributions and reduce this gap during model training (Long et al., 2016). Huber Loss is a loss function that is less sensitive to outliers, helping models adapt more effectively to changes in data distribution (Huber, 1992; Owen, 2007; Zwald and Lambert-Lacroix, 2012). Singular Value Decomposition (SVD) is a technique for dimensionality reduction that can help identify key features across different domains, thereby facilitating better model adaptation (Rebentrost et al., 2018). Latent Discriminant Analysis (LDA) is another method used for feature extraction and dimensionality reduction, making it easier for models to learn from data with varying distributions (Leng et al., 2020). Partial Least Squares (PLS) finds the fundamental relations between two matrices, aiding in domain adaptation (Gong et al., 2019). Additionally, KL Divergence is a metric used to rank domains based on their similarity, which can guide the adaptation efforts by identifying the most relevant domains for model training (Farahani et al., 2021). Lastly, Dynamic Weighted Majority (DWM) is an ensemble learning technique that adjusts the weights of base classifiers to better cope with DS, thereby improving the overall model performance in dynamic environments (Kolter and Maloof, 2007).

Despite these advancements, existing methods for addressing DS have notable limitations. A significant challenge is the substantial disparity between the source and target domains, which can result in poor model performance even after adaptation efforts (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). The scarcity of labeled target data exacerbates this issue, as acquiring such data often requires considerable time and financial resources. Moreover, the unavailability of expert annotators further complicates the situation, limiting the scope of effective domain adaptation (Settles, 2009; Yang and Loog, 2019). Even techniques like pretraining on large datasets and data augmentation, which are intended to mitigate DS, exhibit inconsistencies across different datasets. These inconsistencies suggest that there is no universal solution, and the effectiveness of these techniques varies depending on the specific characteristics of the datasets involved (Wiles et al., 2021). The challenges presented by DS underscore the need for novel approaches that can more effectively address this issue and enhance predictive performance in non-stationary environments. Developing strategies that integrate active learning, data augmentation, probabilistic calibration, and pseudo-labeling could provide more robust solutions for DS in dynamic settings, such as in the prediction of FMD outbreaks in Uganda. By improving the adaptation of ML models to dynamic distribution changes, this study aims to contribute to more accurate and effective disease control and management strategies.



2.4 Related research areas


2.4.1 Data augmentation

ML models demand substantial data for effective learning and accurate predictions (Makridakis et al., 2018; Verbraeken et al., 2020). However, gathering and annotating large volumes of data is laborious and costly, posing a challenge in training models for real-world applications (Paleyes et al., 2022; Wu et al., 2022). Various data augmentation methods aim to diversify limited datasets, creating a more comprehensive representation of the target distribution. Augmentation techniques play a pivotal role in expanding and diversifying limited training data, ultimately improving a model’s generalization capacity and enriching its insights into the problem domain (Wang et al., 2023). The oversampling method has emerged as a crucial approach for augmenting data within a dataset, particularly focusing on boosting instances in the minority class. A variety of oversampling techniques are available, including the Synthetic Minority Over-sampling TEchnique (SMOTE; Original; Chawla et al., 2002), Borderline-SMOTE (Han et al., 2005), Adaptive Synthetic Sampling (ADASYN; He et al., 2008), SMOTE with Edited Nearest Neighbors (SMOTE-ENN; Muntasir Nishat et al., 2022), Safe-Level SMOTE (Bunkhumpornpat et al., 2009), Borderline-SMOTE SVM (Synthetic Minority Oversampling Technique-Support Vector Machine; Wang et al., 2017), K-Means SMOTE (Douzas et al., 2018) and Random Oversampling (Mohammed et al., 2020), among others. Research indicates the potential of oversampling to improve predictive model performance in various domains of ML application (Barfungpa et al., 2024; Karamti et al., 2023; Priyadarshinee and Panda, 2022). In our previous study, Borderline-SMOTE was the best performing oversampling technique in mitigating the class imbalance exhibited during prediction of FMD in a stationary environment (Kapalaga et al., 2024). However, oversampling methods may introduce biases and lead to overfitting (Huda et al., 2018; Koziarski et al., 2019; Vandewiele et al., 2021). Data augmentation effectiveness can also diminish if the disparities between source and target domains are substantial (Antoniou et al., 2017; Shorten and Khoshgoftaar, 2019).



2.4.2 Active learning (AL)

AL is a subfield of ML aimed at reducing annotation costs and improving learning performance by iteratively selecting the most informative samples for labeling (Budd et al., 2021; Ren et al., 2021). Despite the necessity for large labeled datasets in ML, acquiring labels is time-consuming and costly (Ren et al., 2021), especially in real-world applications like disease outbreak annotation (Polonsky et al., 2019). AL addresses this challenge by selecting informative samples for labeling, thus reducing annotation costs while maintaining learning performance (Monarch and Munro, 2021). Pool-based active learning is prevalent across various domains, where extensive collections of unlabeled data are simultaneously available (Bhatnagar et al., 2020; Chandrasekaran et al., 2020; Karlos et al., 2021; Lowell et al., 2018; Schröder and Niekler, 2020; Zhan et al., 2021). In this approach, a small set of labeled data is augmented iteratively by selecting informative instances from a pool of unlabeled data. Uncertainty sampling is a widely used query framework in active learning, selecting instances based on the model’s uncertainty in labeling (Nguyen et al., 2022; Ren et al., 2021).

In this study, we adopt uncertainty sampling as the sample selection strategy for active learning due to its simplicity, effectiveness, and flexibility across different probabilistic models (Bull et al., 2019; Kottke et al., 2021; Settles, 2011). This approach aligns with our goal of enhancing the predictive performance of FMD model in dynamic environments where distribution shifts is prevalent in key predictor like rainfall and maximum temperature. By prioritizing instances where the model’s confidence is low, uncertainty sampling optimizes the efficiency of the active learning process and improves the FMD model’s performance.



2.4.3 Pseudo-label annotation (PLA)

PLA diverges from AL by leveraging a pre-trained model on labeled source data to predict labels for unlabeled target data in batches (Rizve et al., 2021; Shin et al., 2020). Unlike AL, where human annotation is involved, pseudo-labeling methods rely solely on model predictions (Arazo et al., 2020; Cascante-Bonilla et al., 2021; Ding et al., 2018). Although the labels assigned to the target data are not entirely accurate (Arazo et al., 2020; Wang et al., 2022), they mirror the labeled source data to some extent (Cho et al., 2022; Pham et al., 2021; Zou et al., 2020). One common approach is to incorporate these pseudo-labeled target samples alongside the labeled source data to train a new model (Liang et al., 2019; Shin et al., 2020; Wang and Breckon, 2020). However, this method is susceptible to the introduction of noisy or incorrect labels, which can adversely affect model performance (Park et al., 2020; Rizve et al., 2021; Wang et al., 2022). In addressing the challenge of noisy labels, various techniques have been proposed in different domains (Huang et al., 2021; Liang et al., 2021; Wang and Breckon, 2020). Despite these efforts to address noisy label problems, there remains inconsistency in performance (Arazo et al., 2020; Cascante-Bonilla et al., 2021, 2021). This underscores the necessity for further exploration and experimentation in this area.



2.4.4 Probabilistic calibration (PC)

PC aims to convert prediction scores from ML models into reliable probability estimates (Hébert-Johnson et al., 2018; Vaicenavicius et al., 2019). Various techniques exist, including empirical binning calibration, isotonic regression, Platt scaling, probability calibration trees, beta calibration, and temperature scaling (Kull et al., 2017; Wenger et al., 2020). These methods adjust prediction scores to ensure they represent accurate probabilities, improving model interpretability and performance. Despite advancements in calibration techniques, current models often struggle with generalization to distribution shifts (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). The dynamic nature of deployment environments, such as those encountered in FMD dataset, presents challenges in handling distribution shifts (Settles, 2009). The limited generalization to distribution shifts can lead to false alarms and the need for costly and time-consuming labeling efforts by domain experts. Therefore, there is a pressing need for more advanced distribution shift applications to address these challenges and improve model robustness in dynamic environments like FMD prediction.

DA addresses the challenge of domain shift in ML by adapting a model trained on a source domain to perform better in a target domain (Jing et al., 2020; Sun et al., 2016; Wilson and Cook, 2020). Methods for DA vary based on the availability of labels in the target domain: supervised DA, semi-supervised DA, unsupervised DA, and pseudo-semi-supervised DA (Motiian et al., 2017; Singhal et al., 2023). DA methods are mainly categorized into model-centric, data-centric and hybrid approaches as illustrated in Figure 3.

Data-centric DA strategies leverage intrinsic data characteristics rather than modifying model architecture or loss functions (Fan et al., 2022). Techniques like pseudo-labeling automatically assign labels to unlabeled data using pre-trained models, treating inferred labels as training data (Singhal et al., 2023). Data selection methods aim to identify source domain data closely aligned with the target domain, but this area remains underexplored despite past applications in machine translation. Pre-training, particularly with large Transformer-based models, is a prevalent method in Natural Language Processing (NLP) domain adaptation (Kalyan et al., 2021), but challenges persist, including inconsistent model performance across datasets and limited improvement under varying distributions (Gulrajani and Lopez-Paz, 2020; Heaven, 2020; Koh et al., 2021; Wiles et al., 2021).




2.5 Research gap

The current ML-based research on FMD prediction largely focuses on stationary environments, neglecting the critical challenge of distribution shifts in non-stationary settings. This oversight leaves predictions vulnerable to unexpected changes, reducing their reliability. While domain adaptation techniques, particularly in computer vision, have made progress, they struggle with large disparities between source and target domains, especially when labeled target data is scarce and expensive to acquire. Moreover, methods like pre-training and data augmentation show inconsistent results across different datasets and distribution shifts. This gap underscores the need for innovative approaches that address distribution shifts and improve prediction performance in non-stationary environments. To fill this gap, this study explores a CUP approach. The CUP integrates borderline-SMOTE, active learning, probabilistic calibration, and pseudo-labeling to effectively manage varying distributions in a curated FMD dataset. This approach aims to enhance the robustness and accuracy of predictions under dynamic conditions in Uganda, contributing to better disease control and resource allocation for FMD management.




3 Materials and methods


3.1 Employing an experimental design to conduct the study

To achieve the main goal of enhancing predictive performance of RF model for FMD outbreaks under varying distributions, the study employed an experimental research design to develop and evaluate a CUP approach. Experimental research design in ML involves a structured approach for planning, executing, and analyzing experiments (Kamiri and Mariga, 2021). The methodology as depicted in Figure 4, ensured a rigorous design, development and evaluation of the proposed CUP method in enhancing predictive performance rates in dynamic setting for FMD outbreaks. By employing various performance metrics including accuracy (ACC), AUC of the Receiver Operating Characteristic (ROC), recall, precision and F1-score, the study provides a comprehensive performance evaluation of the CUP approach’s effectiveness in addressing the challenges posed by distribution shifts in the unified and curated FMD dataset. The phases in the methodological approach include CUP development and CUP evaluation. Table 1 summarizes the key activities, methods, and descriptions used to achieve the study objectives.
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FIGURE 4
 Experimental design to guide the CUP development and evaluation. RF, random forest; CUP, calibrated uncertainty prediction; FMD, foot-and-mouth disease.




TABLE 1 A Summary of the research phases, activities, methods and description of the methods for achieving the objectives.
[image: Table1]


3.1.1 Data collection

This study focused on Uganda, an East African country with diverse landscapes and climates that contribute to varied ecological conditions affecting the transmission dynamics of FMD (Mwiine et al., 2019). The country’s geography, spanning savannahs, forests, and mountains, coupled with its tropical climate, plays a significant role in influencing the occurrence and spread of FMD outbreaks. A retrospective approach was employed to collect data from 2011 to 2022, drawing from multiple sources to create a comprehensive dataset for training and validating ML models for FMD prediction. The dataset included FMD outbreak records from 86 districts (Figure 5), obtained from the National Animal Disease Diagnostics and Epidemiology Centre (NADDEC) and the World Organisation for Animal Health (WOAH). The data captured essential details such as outbreak locations, timing, and confirmed cases. Additionally, the study incorporated climatic data including rainfall and temperature from the Uganda National Meteorological Authority (UNMA) and livestock population densities from the National Livestock Census 2008, conducted by the Ministry of Agriculture, Animal Industry, and Fisheries (MAAIF) and the Uganda Bureau of Statistics (UBOS). Geographical information related to proximity to protected wildlife zones and international borders was also included, as these factors significantly influence FMD transmission dynamics. The independent variables (risk factors) and their corresponding data sources are summarized in Table 2, with the presence of FMD outbreaks serving as the dependent variable.

[image: Figure 5]

FIGURE 5
 Map of Uganda showing districts affected by FMD outbreaks between 2011 and 2022.




TABLE 2 Composition of FMD dataset for the study.
[image: Table2]


3.1.1.1 Data pre-processing

In this study, a comprehensive data pre-processing strategy was implemented to create an integrated FMD dataset for training, testing, and evaluating ML models for predicting FMD outbreaks in Uganda. This process involved several critical steps to ensure the accuracy, consistency, and reliability of the dataset.

Initially, missing values in the dataset were addressed using mean imputation, a technique where missing data points are replaced with the mean value of their respective features (Van Ginkel et al., 2020). This method was selected for its simplicity and effectiveness in maintaining dataset completeness, ensuring that essential variables were preserved for subsequent analysis and model development. Duplicate records, which can introduce bias and reduce the reliability of the analysis, were identified and removed using Python’s Pandas library (Pandas—Python Data Analysis Library, 2024). This process ensured that the dataset was free from redundancy, thereby enhancing its integrity and the accuracy of the models built upon it. Outliers, which could potentially skew the results, were detected using the Z-score method (Chikodili et al., 2020). Confirmed outliers were treated by replacing them with the mean value of the respective feature. This approach maintained the consistency and reliability of the dataset, ensuring that extreme values did not adversely affect the predictive modeling process. Data integration was another critical step, where multiple datasets from various sources, including historical FMD outbreak records and environmental data, were merged into a single, cohesive dataset. This was achieved using Python’s pd.merge function, which facilitated the seamless integration of data based on common identifiers. This integrated dataset (Table 2) provided a comprehensive foundation for in-depth analysis and modeling. Feature engineering played a vital role in enhancing the performance of the ML models. New features, including monthly rainfall and monthly maximum temperature, were created by summing daily rainfall values and selecting the maximum temperature, respectively, to align with the monthly FMD outbreak data. These engineered features were crucial in improving the predictive performance of the model. Finally, categorical data encoding was employed to convert qualitative variables including outbreak occurrences, into numerical formats suitable for ML algorithms. The target variable was encoded to represent outbreak (1) and non-outbreak (0) instances, facilitating the interpretation and modeling of FMD outbreaks. Through these data pre-processing steps, the study ensured that the integrated dataset was well-prepared for accurate and robust predictive modeling, ultimately contributing to the effective prediction and management of FMD outbreaks in Uganda.



3.1.1.2 Descriptive analysis of pre-processed FMD dataset

The pre-processed dataset for FMD in Uganda contains a total of 12,384 records, collected from 86 districts across the country. Each record represents either the occurrence or non-occurrence of an FMD outbreak in a given district within a specified time frame. The dataset reveals a significant class imbalance, with 97.88% of the records corresponding to non-outbreaks, and only 2.12% indicating outbreaks. This severe class imbalance is a critical factor to consider during the development and evaluation of ML models, as it can lead to biased predictions if not properly addressed. Further analysis of the dataset reveals considerable variation in the prevalence of FMD outbreaks across different districts, as depicted in Figure 6. Some districts report higher incidences of outbreaks, while others rarely experience them. This spatial disparity underscores the importance of incorporating geographical factors and local conditions into predictive models, as these variations can significantly influence the risk of outbreaks.

[image: Figure 6]

FIGURE 6
 Prevalence of FMD outbreaks by district.


The descriptive statistics of the dataset provide a foundational understanding of the distribution and characteristics of the data. These insights are essential for guiding the selection of appropriate modeling techniques, particularly those that can effectively manage class imbalance and leverage the spatial heterogeneity observed in the data. By carefully considering these factors, the analysis aims to enhance the predictive performance and reliability of models used for forecasting FMD outbreaks, ultimately contributing to better disease management and control strategies in Uganda.



3.1.1.3 Data sampling

In data science, various sampling techniques are employed to meet specific research objectives, with each method offering unique advantages depending on the nature of the data and the goals of the study (Bhardwaj, 2019; Sarker and AL Muaalemi, 2022). For this study on prediction of FMD outbreaks in Uganda, the data sampling approach was strategically designed to enhance the performance of ML models used for predicting outbreaks. Given the dominance of FMD outbreaks in certain districts across Uganda, as illustrated in Figure 6, a purposive sampling strategy was adopted. Out of the total districts, 22 were carefully selected based on the frequency and intensity of outbreaks observed during the study period from 2011 to 2022. These districts, highlighted in Figure 7, were chosen because they had the highest recorded occurrences of FMD outbreaks, indicating that they are critical zones for the disease. By focusing on these high-frequency outbreak districts, the study aimed to ensure that the base ML model is trained on a robust and representative dataset. This approach not only provided the model with a substantial amount of relevant data but also provide a foundation for mitigating the risk of working with highly imbalanced datasets, which could undermine the model’s predictive performance. In districts with fewer outbreaks, data scarcity could lead to poor model training, resulting in less reliable predictions. Therefore, concentrating on districts with rich outbreak data was crucial for maintaining model accuracy. Moreover, these dominant districts are often referred to as “hotspots” in epidemiological research, as they are typically the sources of outbreaks that spread to neighboring regions. By prioritizing these hotspots in the sampling process, the study aimed to improve the generalizability of the predictive models. The insights gained from these key districts can be extrapolated to other areas, thereby enhancing the overall applicability of the model across Uganda. This targeted sampling strategy was fundamental in building a robust dataset that supports the development of high performing ML-based predictive model for FMD outbreak management.

[image: Figure 7]

FIGURE 7
 Map of Uganda with purposively selected study districts.


The dataset for the 22 purposively selected districts comprised a total of 3,456 records, as detailed in Table 2. Within this integrated dataset, 96.15% of the records represented non-outbreak instances, while only 3.85% corresponded to FMD outbreaks. This distribution highlights a significant class imbalance, with a heavy skew towards non-outbreak records. Such an imbalance presents challenges for ML models, as they tend to become biased towards predicting the majority class in this case, non-outbreaks. This bias can lead to models that are less sensitive to detecting actual outbreaks, resulting in poorer predictive performance when it comes to identifying potential FMD outbreaks. Addressing this imbalance is therefore critical to enhancing the performance and reliability of the models.

The development and evaluation of the proposed CUP approach were conducted in two phases. Phase 1 (Section 3.1.2) involved designing and developing the algorithm. Phase 2 (Section 3.1.3) focused on evaluating the predictive performance of the CUP approach in mitigating distribution shifts for FMD outbreaks using the holdout validation dataset. These phases are detailed in the following sections:




3.1.2 Phase 1: CUP development

In Phase 1, the study aimed to design and develop the CUP approach to enhance the performance of the RF model under varying distributions for predicting FMD in Uganda. This section discusses the various techniques adopted in designing and developing the approach. Table 3 shows the respective performances of the RF model in a stationary environment, the degradation under varying distributions, and the improved performance when subjected to the proposed CUP approach.



TABLE 3 Predictive performance improvement with the CUP approach.
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3.1.2.1 Experimental setup

The experiments for developing and evaluating the CUP approach for predicting FMD outbreaks were conducted using Python 3.11.4, leveraging its extensive ML libraries. The study was carried out within the Jupyter Notebook integrated development environment (IDE), utilizing a local ML platform optimized to use both GPU and CPU, significantly speeding up processing tasks. Key libraries such as Scikit-Learn, Pandas, NumPy, and Matplotlib were employed for data manipulation, model development, evaluation, and visualization, ensuring a streamlined and efficient workflow. This setup provided a solid foundation for accurate and reliable experimental results.



3.1.2.2 Choosing RF as the baseline ML algorithm

The selection of RF as the baseline ML algorithm for performance improvement under varying distributions to predict FMD outbreaks in Uganda stemmed from the groundwork laid by our previous study (Kapalaga et al., 2024). The study explored seven ML models namely RF, Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Gradient Boosting Machine (GBM), AdaBoost, Logistic Regression (LR), and Classification and Regression Tree (CART) to predict FMD outbreaks due to their diverse functionalities and strengths in handling various aspects of predictive modeling (Aghaei et al., 2021; Bansal et al., 2022; Cervantes et al., 2020; Choudhury et al., 2021; Joshi and Dhakal, 2021; Mienye and Sun, 2022; Touzani et al., 2018).

In that study, RF was the best performing model under stationary environment as shown in Table 4 and Figure 8. The choice of RF is further supported by Punyapornwithaya et al. (2022) who explored the predictive capability of ML models in identifying FMD outbreaks in Thailand, through testing of various models, RF exhibited superior performance across all evaluation metrics. The superb predictive performance of RF is attributed to its ensemble nature where it integrates multiple decision trees to enhance performance (Choudhury et al., 2021). However, despite its superior predictive performance under stationary environment, RF demonstrated degradation in prediction of FMD outbreaks under varying distribution as depicted in Table 4 under validation performance, therefore this study aimed to enhance its predictive power by proposing the CUP approach which integrates techniques including borderline-SMOTE, active learning, probabilistic calibration and pseudo labeling.



TABLE 4 Weighted average performance scores of models for a balanced dataset (Kapalaga et al., 2024).
[image: Table4]



3.1.2.3 Integration of borderline-STOME, active learning, probabilistic calibration, and pseudo-labeling

The proposed CUP approach based on the data centric setting aimed to enhance RF’s performance by leveraging a combination of advanced techniques including borderline SMOTE, active learning, probabilistic calibration, and pseudo labeling tailored to handle imbalanced data, improve model calibration, and enhance generalization. In the following sections, the study delves into a detailed discussion on how these techniques were integrated to enhance RF’s performance in prediction of FMD outbreaks in the ever-evolving environment of Uganda.


3.1.2.3.1 Mitigating class imbalance with borderline-SMOTE

3.1.2.3.1 Mitigating class imbalance with borderline-SMOTE. The selection of the Borderline-SMOTE technique was informed by findings from our previous research (Kapalaga et al., 2024), where it was compared with three other data augmentation methods including original SMOTE, SMOTE-SVM, and ADASYN on the imbalanced FMD dataset. Two experimental approaches were taken: one involved oversampling the minority class (outbreaks) by a factor of 20 (Table 5 and Figure 9), and the other balanced the minority class to match the majority class size. As shown in Table 4 and illustrated in Figure 8, models trained on balanced datasets consistently outperformed those trained on imbalanced ones. Among the oversampling methods, Borderline-SMOTE emerged as the most effective (Figure 8). This success can be attributed to its focus on instances near the decision boundary between classes, where classification errors are most likely to occur. Unlike standard SMOTE, which generates synthetic samples across the entire feature space, Borderline-SMOTE specifically targets critical regions, thereby improving the model’s ability to accurately define the decision boundary. Given its strategic focus and proven effectiveness, Borderline-SMOTE was selected as the optimal technique for addressing class imbalance in our study.



TABLE 5 Weighted average performance scores of models with minority class oversampled by a factor of 20.
[image: Table5]
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FIGURE 8
 Model Performances across Oversampling Techniques with balanced dataset (Kapalaga et al., 2024). RF, random forest; SVM, support vector machine; kNN, k-nearest neighbors; GBM, gradient boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification and regression tree; SMOTE, synthetic minority over-sampling technique; ADASYN, adaptive synthetic sampling.


[image: Figure 9]

FIGURE 9
 Comparative model performance across oversampling techniques. RF, random forest; SVM, support vector machine; kNN, k-nearest neighbors; GBM, gradient boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification and regression tree; SMOTE, synthetic minority over-sampling technique; ADASYN, adaptive synthetic sampling.



3.1.2.3.1.1 Mathematical formulation of the borderline-SMOTE
To present the mathematical formulations of the Borderline-SMOTE technique in the context of predicting FMD outbreaks, it is essential to connect the general principles of Borderline-SMOTE with the specific variables and the RF model used for FMD prediction. The formulation involved three key steps:

a. Defining the problem context: this step involved describing the task of predicting FMD outbreaks, the imbalanced nature of the dataset, and the necessity of addressing the minority class through resampling. In the context of Uganda, predicting FMD outbreaks requires using historical and environmental data. The main challenge lies in the dataset’s imbalance, where instances of FMD outbreaks are much fewer than non-outbreak instances, making it difficult for models to accurately predict outbreaks.

b. Formulating the mathematical model: to achieve the formulation, there were three main steps involved as discussed below.

Step 1: Identifying the borderline FMD outbreak samples.

Let [image: image] be the set of training samples, where each sample [image: image] is a feature vector associated with either an FMD outbreak (minority class) or non-outbreak (majority class).

For each minority class sample [image: image] (FMD outbreak):

• Find the [image: image]-nearest neighbors of [image: image] in the training set, denoted as [image: image]

• Let [image: image] be the number of majority class neighbors (non-outbreak) within [image: image].

We define a sample [image: image] as a borderline sample if:

[image: image], meaning that the sample is surrounded by more non-outbreak cases than outbreak cases, placing it near the decision boundary.

Step 2: Generating synthetic samples.

For each borderline FMD outbreak sample [image: image]

• Randomly select a minority class neighbor [image: image] from [image: image].

• Generate a synthetic sample [image: image] using linear interpolation:

[image: image], where [image: image] is a random number between 0 and 1.

Step 3: Integrating with the FMD prediction model.

Let [image: image] be the set of synthetic samples generated from borderline FMD outbreak cases.

The augmented training set [image: image] used for training the FMD prediction model becomes:

[image: image], the new dataset [image: image] is then used to train the predictive model to improve its ability to detect FMD outbreaks.




3.1.2.3.2 Enhancing model confidence with active learning

3.1.2.3.2 Enhancing model confidence with active learning. Active learning is a subfield of ML that studies how an active learner model can best identify informative unlabeled instances and request their labels from some oracle, usually a human annotator (Settles, 2009). This study explored a pool-based active learning setting using the uncertainty sampling technique to query the uncertainty samples where the active learner is most uncertain about the instances. Using the predict_proba method, RF acted as the active learner trained with dataset from 2011 to 2018, generated probability predictions for target samples, which might not accurately reflect the true likelihood of class membership. The study aimed to augment the training dataset with challenging samples, thus improving the model’s robustness to varying distributions. Furthermore, the study computed the absolute scores by measuring the difference between these probabilities and 0.5 to quantify uncertainty. Utilizing the argsort method, the study sorted absolute differences to select instances with the highest uncertainty scores. Samples with absolute probability scores less than 3.5 were considered, indicating uncertainty around the 0.5 probability mark (Nguyen et al., 2022).

The study systematically evaluated the model’s uncertainty by scrutinizing the highest score for a given class on specific instances. The study selected instances with the lowest score among those in the active learning set, ensuring a thorough exploration of uncertainty. The integration of these strategies sought to equip the model with enhanced adaptability to varying data distributions, ultimately improving predictive performance and overall model robustness.



3.1.2.3.3 Enhancing uncertainty estimates with probabilistic calibration

3.1.2.3.3 Enhancing uncertainty estimates with probabilistic calibration. To enhance prediction under distribution shifts, the study opted for probabilistic calibration technique to adjust the probabilities of the uncertainty samples to better align with the true probabilities. Probability calibration refers to refining the predicted probabilities generated by a ML model to improve their accuracy and reliability (Kuleshov et al., 2018). The study trained a logistic regression algorithm using dataset from 2019–2020 to act as the calibration layer for correcting the probabilities of uncertainty samples queried form the target unlabeled pool [image: image] (Figure 10). This study used the CalibratedClassifierCV class from scikit-learn for probability calibration. Specifically, Platt Scaling with the sigmoid method was employed. Platt Scaling is a logistic regression model trained to map the model’s raw scores output before applying the logistic function to calibrate probabilities (Bella et al., 2013). The study aimed to refine the predicted probabilities of challenging samples, aligning them more closely with their true probabilities.

[image: Figure 10]

FIGURE 10
 Visual overview of the CUP approach. ACC, accuracy; AUC, area under curve; PR, precision, [image: image], training dataset for training initial active learner ([image: image]); [image: image], validation dataset; [image: image], queried uncertainty samples; [image: image], dataset for training model calibrator ([image: image]); [image: image], pseudo-labeled uncertainty samples.




3.1.2.3.4 Pseudo-labeling with calibrated uncertainty probabilities

3.1.2.3.4 Pseudo-labeling with calibrated uncertainty probabilities. The process of pseudo-labeling involved assigning labels to the uncertainty samples based on their calibrated probabilities by the calibrator model using a thresholding method. The calibrated probabilities are compared to a chosen threshold value of 0.5 (default), where samples with probabilities above the threshold are assigned the label corresponding to the positive class (outbreak), and samples below the threshold are assigned the label corresponding to the negative class (non-outbreak). These pseudo labels are then utilized to retrain the active learner, with the goal of enhancing the overall predictive performance for FMD outbreaks under distribution shifts. This iterative approach aims to refine the model’s understanding of uncertainty and improve its ability to make accurate predictions under distribution shifts.



3.1.2.3.5 The proposed CUP design

3.1.2.3.5 The proposed CUP design. In the proposed CUP approach, the study employs a four-staged strategy as illustrated in Figure 10. The first stage is training the RF baseline model on source dataset (2011–2018) represented as [image: image] to act as the active learner represented as [image: image], and be utilized to predict the probabilities of the target unlabeled validation dataset (2021–2022) represented as [image: image]. The second stage is uncertainty selection, which involves using the predicted probabilities to select the most informative samples represented as [image: image] where active learner [image: image] is not confident. The third stage is the probabilistic calibration. At this stage, the queried uncertainty samples [image: image] are fed into the calibration model represented as [image: image] trained on dataset (2019–2020) represented as [image: image], adjusting their probabilities to better align with the true likelihood of outcomes using the sigmoid method. Still, at the same stage, the calibrated probabilities of the uncertain samples are converted into pseudo-labels. Finally, the fourth stage involves adding the pseudo-labeled samples represented as [image: image] to the initial training set [image: image] for retraining the active learner. This repeats until the uncertainty samples are finished or once the model attains acceptable performance. We named this amalgamated approach as CUP and implemented as outlined in Algorithm 1.

The CUP algorithm (Algorithm 1) represents an iterative process of leveraging borderline-SMOTE, active learning, probabilistic calibration and pseudo-annotation to improve RF’s predictive performance in predicting FMD outbreaks in a non-stationary environment by utilizing uncertain instances in the validation dataset. The proposed algorithm utilizes the training dataset [image: image], calibration dataset [image: image] to train the active learner [image: image] and model calibrator [image: image] respectively. The validation set is represented as [image: image] In step 1, splits the training dataset [image: image]into features and labels, and apply the borderline-SMOTE technique to enhance the representation of the minority class (outbreaks) by generating synthetic samples, outputting a balanced dataset [image: image]. In step 2, splits the calibration dataset, apply borderline-SMOTE outputting [image: image]. In step 3, [image: image]and [image: image] datasets are used in training the active learner [image: image] and model calibrator [image: image] respectively. Several iterations are performed represented as T, at every iteration in the CUP learning loop, the algorithm trains an active learn [image: image] to predict on the features of augmented validation set (Xtarget), the absolute difference is calculated to identify the most uncertain samples [image: image] using the predicted probabilities. The trained model calibrator [image: image] predicts the labels for the uncertain samples, outputting [image: image] which is then added to the initial dataset [image: image] to generate a new [image: image] dataset for training a new active learner [image: image] and the cycle is repeated until desired results are achieved. Algorithm 1 indicates all the steps executed to achieve optimal performance for active learner (RF) in predicting FMD outbreaks in varying distributions.


ALGORITHM 1 CUP
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