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Foot-and-mouth disease poses a significant threat to both domestic and wild 
cloven-hoofed animals, leading to severe economic losses and jeopardizing food 
security. While machine learning models have become essential for predicting 
foot-and-mouth disease outbreaks, their effectiveness is often compromised by 
distribution shifts between training and target datasets, especially in non-stationary 
environments. Despite the critical impact of these shifts, their implications in 
foot-and-mouth disease outbreak prediction have been largely overlooked. 
This study introduces the Calibrated Uncertainty Prediction approach, designed 
to enhance the performance of Random Forest models in predicting foot-and-
mouth disease outbreaks across varying distributions. The Calibrated Uncertainty 
Prediction approach effectively addresses distribution shifts by calibrating 
uncertain instances for pseudo-label annotation, allowing the active learner 
to generalize more effectively to the target domain. By utilizing a probabilistic 
calibration model, Calibrated Uncertainty Prediction pseudo-annotates the most 
informative instances, refining the active learner iteratively and minimizing the need 
for human annotation and outperforming existing methods known to mitigate 
distribution shifts. This reduces costs, saves time, and lessens the dependence 
on domain experts while achieving outstanding predictive performance. The 
results demonstrate that Calibrated Uncertainty Prediction significantly enhances 
predictive performance in non-stationary environments, achieving an accuracy of 
98.5%, Area Under the Curve of 0.842, recall of 0.743, precision of 0.855, and an F1 
score of 0.791. These findings underscore Calibrated Uncertainty Prediction’s ability 
to overcome the vulnerabilities of existing ML models, offering a robust solution for 
foot-and-mouth disease outbreak prediction and contributing to the broader field 
of predictive modeling in infectious disease management.
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1 Introduction

Foot-and-mouth disease (FMD) remains a formidable challenge 
which directly and indirectly affects the livestock industry, 
communities and the economy (Kerfua, 2020; Munsey et al., 2019). 
The disease circulates in approximately 77% of the global livestock 
population, primarily in Africa, the Middle East, and Asia (Bachanek-
Bankowska et al., 2018; Zewdie et al., 2023), causing significant annual 
economic losses estimated between US$6.5 to 21 billion (Knight-Jones 
and Rushton, 2013). In Uganda, the disease has persisted for over six 
decades leading to 83 and 88% reductions in market values for bulls 
and cows, respectively, during FMD outbreaks (Baluka, 2016). The 
author further acknowledged a 23% decline in income for livestock 
industry stakeholders at the processing plants. The country embraces 
a reactive approach in managing FMD outbreaks where current 
interventions including vaccination, restriction on livestock 
movement and quarantine measures are implemented (Munsey et al., 
2019). Due to the contagious nature of the disease, such interventions 
have had limited impact on control efforts, partly because the disease 
is often detected too late, after it has already spread to other regions of 
the country (Kerfua et al., 2013; Mwiine et al., 2019).

Random Forest (RF), an ensemble machine learning (ML) 
algorithm, has been used to predict FMD outbreaks in stationary 
environments, where the distribution of the training and test datasets 
is similar. This approach enables early detection of the virus and 
optimal allocation of resources (Punyapornwithaya et al., 2022). In 
such stationary settings, RF has exhibited high predictive performance 
due to its ensemble nature, where multiple decision trees are 
constructed and combined to make robust predictions using bagging 
(Mosavi et al., 2021). Each tree is trained on a random subset of the 
data and features, which helps to reduce overfitting and increase 
generalizability. However, in non-stationary environments with 
varying distributions (distribution shifts), RF demonstrates significant 
degradation in performance as depicted in Figure 1 (Kapalaga et al., 
2024), rendering it unsuitable for deployment in the endemic and 
dynamic nature of Uganda. Its poor performance was attributed to the 
high variability in rainfall and maximum temperatures (Figure 2), 
which are key factors influencing FMD outbreaks. While several 
methods exist to mitigate distribution shifts, they often fail when the 
shifts are significant (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). 
Techniques such as pre-training and data augmentation can generate 
inconsistent results across different datasets (Wiles et  al., 2021). 
Moreover, these methods require labeled datasets, which are time-
consuming and costly to acquire (Kouw and Loog, 2019), and 
sometimes expert human annotators are unavailable (Settles, 2009; 
Yang and Loog, 2019).

In this study, two primary objectives were proposed: (1) to 
develop a Calibrated Uncertainty Prediction (CUP) approach for 
enhancing RF model performance under varying distributions, and 
(2) to evaluate the performance of CUP in mitigating distribution 
shifts for predicting FMD outbreaks in the dynamic setting of Uganda. 
The study contributes to both practical applications and 
methodological advancements. Practically, the proposed approach 
enables proactive measures by providing timely and accurate 
predictions, facilitating early detection of outbreaks, and optimal 
resource allocation for managing FMD, thereby safeguarding 
livestock, the economy, and the community. Methodologically, the 
CUP approach addresses distribution shifts challenge, which is 

reported to degrade performance for RF-based prediction of FMD 
outbreaks (Kapalaga et al., 2024).

The rest of the paper is structured as follows: Section 2 offers an 
in-depth review of the relevant literature, highlighting key studies and 
identifying the research gap. Section 3 outlines the materials and 
methods used in the study, detailing the experimental design, data 
collection, and analytical techniques employed. Section 4 presents the 
results, providing a thorough analysis of the data and key findings. In 
Section 5, the findings are discussed, interpreting the results in the 
context of existing research and the study’s objectives. Finally, Section 
6 concludes the paper, summarizing the key insights and implications 
of the research, and suggesting directions for future work.

2 Literature review

In this section, the study briefly defines DS, their causes, and 
current methods attempting to address them, along with their 
limitations. Additionally, the study highlights recent developments in 
related research areas that, when integrated, can effectively address 
distribution shifts in ML-based prediction of FMD outbreaks in the 
dynamic setting of Uganda.

2.1 Definition of DS and causes

DS, also called dataset shift or domain shift is a common problem 
in ML-based predictive modeling that occurs when training and test 
joint distributions are different (Ovadia et al., 2019). The concept of 
DS was initially introduced in the book by (Quinonero-Candela et al., 
2008), which marked the first comprehensive compilation in this field. 
In this seminal work, DS was defined as instances where the joint 
distribution of inputs and outputs varies between the training and 
testing stages (Storkey, 2009). DS can arise from various factors, 
namely sample selection bias and non-stationary environments 
(Castle et al., 2021; Moreno-Torres et al., 2012). Sample selection bias 
occurs when training examples are obtained through biased methods, 
leading to a discrepancy in distribution and a lack of representation 
of the operational environment where the classifier will be deployed 
(Liu et  al., 2021). Non-stationary environments, arises when the 
training environment differs from the test environment due to 
temporal or spatial changes (Sugiyama and Kawanabe, 2012).

Mathematically, DS is the alterations in the joint distribution of 
P(X, Y), where X denotes the predictors and Y represents the targets 
of a ML model (Quinonero-Candela et al., 2008). Such alterations in 
P(X, Y) can stem from changes in P(X), P(Y), or P(Y|X). These distinct 
alterations are often referred to using varied terminology by different 
authors. However, Jose G. Moreno-Torres proposed a more unified 
naming convention, labeling changes to P(X) as covariate shift, 
changes to P(Y) as prior probability shift, and changes to P(Y|X) as 
concept shift (Moreno-Torres et al., 2012).

2.2 Predictive performance degradation for 
FMD outbreaks under varying distribution

In our previous study, we quantified the influence of distribution 
shifts on the predictive performance of ML-based algorithms for FMD 
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outbreaks (Kapalaga et al., 2024). RF which had demonstrated superb 
predictive performance under similar distribution, experienced a 
significant decrease across all performance metrics. Its accuracy 
decreased by 50% and a notable decline of 40.21% in the Area Under 
the Curve (AUC) value of the Receiver Operating Characteristic 
(ROC) curve. Similarly, RF experienced reductions in Recall by 
96.81%, Precision by 73.33%, and F1-score by 93.48%. These 
performance degradation rates in prediction of FMD under varying 
distributions underscore the need for high performing methods to 
address the challenge.

2.3 Methods for addressing DS and their 
limitations

DA is a specialized technique in ML designed to address the 
challenge of distribution shift (DS), which occurs when the data 
distribution in the target domain differs from that in the source 
domain. This shift can significantly impair the performance of ML 

models, making it a critical issue to address. The general framework 
for dealing with DS in ML, as illustrated in Figure 3, encompasses 
various strategies aimed at adapting models to new data distributions.

One of the most common approaches to mitigating DS involves 
acquiring unlabeled data from the target domain and utilizing it to 
fine-tune models. This method is particularly beneficial when labeled 
data in the target domain is scarce or unavailable. DA techniques can 
be classified according to the availability of labels in the target domain. 
In supervised domain adaptation, labeled data from the target domain 
is available, allowing models to learn directly from the target 
distribution (Motiian et  al., 2017). In semi-supervised domain 
adaptation, a small amount of labeled data from the target domain is 
available alongside a larger pool of unlabeled data, which helps refine 
model performance (Berthelot et al., 2021). Unsupervised domain 
adaptation takes on the challenge of adapting models when only 
unlabeled data from the target domain is available, making it a 
particularly challenging area of research (Kang et al., 2019). A more 
recent approach, pseudo-semi-supervised domain adaptation, 
involves generating pseudo-labels for the target domain’s unlabeled 

FIGURE 1

Model accuracy degradation under varying distributions. RF, random forest; SVM, support vector machine; kNN, k-nearest neighbors; GBM, gradient 
boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification and regression tree.

FIGURE 2

Variability in rainfall (A) and max temperature (B) features, highlighting varying distribution (Kapalaga et al., 2024).
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data, which are then used to guide the adaptation process (Singhal 
et al., 2023)(Singhal et al., 2023).

Addressing DS can also be approached differently depending on 
the focus of adaptation. Model-centric approaches concentrate on 
modifying the model architecture or learning algorithm to 
accommodate shifts in data distribution. This might involve adding 
domain-specific layers or parameters to the model, which are designed 
to better handle the differences between source and target domains 
(Dou et al., 2019; Ramponi and Plank, 2020). On the other hand, data-
centric approaches involve transforming the data itself, such as 
through normalization, augmentation, or selecting specific features 
that are less sensitive to changes in data distribution. These 
transformations aim to make the data more consistent across different 
domains, thereby improving model performance (Bashath et al., 2022; 
Liang et al., 2019). Hybrid approaches combine both model-centric 
and data-centric techniques, leveraging the strengths of each to 
maximize the effectiveness of adaptation strategies (Amrani, 2021).

Several techniques are commonly employed to address 
DS. Maximum Mean Discrepancy (MMD) is a statistical method used 
to measure the difference between distributions and reduce this gap 
during model training (Long et al., 2016). Huber Loss is a loss function 
that is less sensitive to outliers, helping models adapt more effectively 
to changes in data distribution (Huber, 1992; Owen, 2007; Zwald and 
Lambert-Lacroix, 2012). Singular Value Decomposition (SVD) is a 
technique for dimensionality reduction that can help identify key 
features across different domains, thereby facilitating better model 
adaptation (Rebentrost et al., 2018). Latent Discriminant Analysis 
(LDA) is another method used for feature extraction and 
dimensionality reduction, making it easier for models to learn from 
data with varying distributions (Leng et  al., 2020). Partial Least 
Squares (PLS) finds the fundamental relations between two matrices, 
aiding in domain adaptation (Gong et al., 2019). Additionally, KL 
Divergence is a metric used to rank domains based on their similarity, 
which can guide the adaptation efforts by identifying the most relevant 
domains for model training (Farahani et al., 2021). Lastly, Dynamic 
Weighted Majority (DWM) is an ensemble learning technique that 
adjusts the weights of base classifiers to better cope with DS, thereby 

improving the overall model performance in dynamic environments 
(Kolter and Maloof, 2007).

Despite these advancements, existing methods for addressing DS 
have notable limitations. A significant challenge is the substantial 
disparity between the source and target domains, which can result in 
poor model performance even after adaptation efforts (Gulrajani and 
Lopez-Paz, 2020; Koh et al., 2021). The scarcity of labeled target data 
exacerbates this issue, as acquiring such data often requires 
considerable time and financial resources. Moreover, the unavailability 
of expert annotators further complicates the situation, limiting the 
scope of effective domain adaptation (Settles, 2009; Yang and Loog, 
2019). Even techniques like pretraining on large datasets and data 
augmentation, which are intended to mitigate DS, exhibit 
inconsistencies across different datasets. These inconsistencies suggest 
that there is no universal solution, and the effectiveness of these 
techniques varies depending on the specific characteristics of the 
datasets involved (Wiles et al., 2021). The challenges presented by DS 
underscore the need for novel approaches that can more effectively 
address this issue and enhance predictive performance in 
non-stationary environments. Developing strategies that integrate 
active learning, data augmentation, probabilistic calibration, and 
pseudo-labeling could provide more robust solutions for DS in 
dynamic settings, such as in the prediction of FMD outbreaks in 
Uganda. By improving the adaptation of ML models to dynamic 
distribution changes, this study aims to contribute to more accurate 
and effective disease control and management strategies.

2.4 Related research areas

2.4.1 Data augmentation
ML models demand substantial data for effective learning and 

accurate predictions (Makridakis et al., 2018; Verbraeken et al., 2020). 
However, gathering and annotating large volumes of data is laborious 
and costly, posing a challenge in training models for real-world 
applications (Paleyes et  al., 2022; Wu et  al., 2022). Various data 
augmentation methods aim to diversify limited datasets, creating a 

FIGURE 3

A general framework for handling distribution shifts in ML. ACC, accuracy; AUC, area under curve; PR, precision; DS, distribution shifts; ML, machine 
learning.
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more comprehensive representation of the target distribution. 
Augmentation techniques play a pivotal role in expanding and 
diversifying limited training data, ultimately improving a model’s 
generalization capacity and enriching its insights into the problem 
domain (Wang et al., 2023). The oversampling method has emerged 
as a crucial approach for augmenting data within a dataset, 
particularly focusing on boosting instances in the minority class. A 
variety of oversampling techniques are available, including the 
Synthetic Minority Over-sampling TEchnique (SMOTE; Original; 
Chawla et al., 2002), Borderline-SMOTE (Han et al., 2005), Adaptive 
Synthetic Sampling (ADASYN; He et al., 2008), SMOTE with Edited 
Nearest Neighbors (SMOTE-ENN; Muntasir Nishat et  al., 2022), 
Safe-Level SMOTE (Bunkhumpornpat et  al., 2009), Borderline-
SMOTE SVM (Synthetic Minority Oversampling Technique-Support 
Vector Machine; Wang et al., 2017), K-Means SMOTE (Douzas et al., 
2018) and Random Oversampling (Mohammed et al., 2020), among 
others. Research indicates the potential of oversampling to improve 
predictive model performance in various domains of ML application 
(Barfungpa et  al., 2024; Karamti et  al., 2023; Priyadarshinee and 
Panda, 2022). In our previous study, Borderline-SMOTE was the best 
performing oversampling technique in mitigating the class imbalance 
exhibited during prediction of FMD in a stationary environment 
(Kapalaga et  al., 2024). However, oversampling methods may 
introduce biases and lead to overfitting (Huda et al., 2018; Koziarski 
et al., 2019; Vandewiele et al., 2021). Data augmentation effectiveness 
can also diminish if the disparities between source and target 
domains are substantial (Antoniou et  al., 2017; Shorten and 
Khoshgoftaar, 2019).

2.4.2 Active learning (AL)
AL is a subfield of ML aimed at reducing annotation costs and 

improving learning performance by iteratively selecting the most 
informative samples for labeling (Budd et al., 2021; Ren et al., 2021). 
Despite the necessity for large labeled datasets in ML, acquiring labels 
is time-consuming and costly (Ren et al., 2021), especially in real-
world applications like disease outbreak annotation (Polonsky et al., 
2019). AL addresses this challenge by selecting informative samples 
for labeling, thus reducing annotation costs while maintaining 
learning performance (Monarch and Munro, 2021). Pool-based active 
learning is prevalent across various domains, where extensive 
collections of unlabeled data are simultaneously available (Bhatnagar 
et al., 2020; Chandrasekaran et al., 2020; Karlos et al., 2021; Lowell 
et al., 2018; Schröder and Niekler, 2020; Zhan et al., 2021). In this 
approach, a small set of labeled data is augmented iteratively by 
selecting informative instances from a pool of unlabeled data. 
Uncertainty sampling is a widely used query framework in active 
learning, selecting instances based on the model’s uncertainty in 
labeling (Nguyen et al., 2022; Ren et al., 2021).

In this study, we  adopt uncertainty sampling as the sample 
selection strategy for active learning due to its simplicity, effectiveness, 
and flexibility across different probabilistic models (Bull et al., 2019; 
Kottke et al., 2021; Settles, 2011). This approach aligns with our goal 
of enhancing the predictive performance of FMD model in dynamic 
environments where distribution shifts is prevalent in key predictor 
like rainfall and maximum temperature. By prioritizing instances 
where the model’s confidence is low, uncertainty sampling optimizes 
the efficiency of the active learning process and improves the FMD 
model’s performance.

2.4.3 Pseudo-label annotation (PLA)
PLA diverges from AL by leveraging a pre-trained model on 

labeled source data to predict labels for unlabeled target data in 
batches (Rizve et al., 2021; Shin et al., 2020). Unlike AL, where human 
annotation is involved, pseudo-labeling methods rely solely on model 
predictions (Arazo et al., 2020; Cascante-Bonilla et al., 2021; Ding 
et al., 2018). Although the labels assigned to the target data are not 
entirely accurate (Arazo et al., 2020; Wang et al., 2022), they mirror 
the labeled source data to some extent (Cho et al., 2022; Pham et al., 
2021; Zou et al., 2020). One common approach is to incorporate these 
pseudo-labeled target samples alongside the labeled source data to 
train a new model (Liang et al., 2019; Shin et al., 2020; Wang and 
Breckon, 2020). However, this method is susceptible to the 
introduction of noisy or incorrect labels, which can adversely affect 
model performance (Park et al., 2020; Rizve et al., 2021; Wang et al., 
2022). In addressing the challenge of noisy labels, various techniques 
have been proposed in different domains (Huang et al., 2021; Liang 
et al., 2021; Wang and Breckon, 2020). Despite these efforts to address 
noisy label problems, there remains inconsistency in performance 
(Arazo et  al., 2020; Cascante-Bonilla et  al., 2021, 2021). This 
underscores the necessity for further exploration and experimentation 
in this area.

2.4.4 Probabilistic calibration (PC)
PC aims to convert prediction scores from ML models into 

reliable probability estimates (Hébert-Johnson et  al., 2018; 
Vaicenavicius et  al., 2019). Various techniques exist, including 
empirical binning calibration, isotonic regression, Platt scaling, 
probability calibration trees, beta calibration, and temperature scaling 
(Kull et al., 2017; Wenger et al., 2020). These methods adjust prediction 
scores to ensure they represent accurate probabilities, improving 
model interpretability and performance. Despite advancements in 
calibration techniques, current models often struggle with 
generalization to distribution shifts (Gulrajani and Lopez-Paz, 2020; 
Koh et al., 2021). The dynamic nature of deployment environments, 
such as those encountered in FMD dataset, presents challenges in 
handling distribution shifts (Settles, 2009). The limited generalization 
to distribution shifts can lead to false alarms and the need for costly 
and time-consuming labeling efforts by domain experts. Therefore, 
there is a pressing need for more advanced distribution shift 
applications to address these challenges and improve model robustness 
in dynamic environments like FMD prediction.

DA addresses the challenge of domain shift in ML by adapting a 
model trained on a source domain to perform better in a target 
domain (Jing et al., 2020; Sun et al., 2016; Wilson and Cook, 2020). 
Methods for DA vary based on the availability of labels in the target 
domain: supervised DA, semi-supervised DA, unsupervised DA, and 
pseudo-semi-supervised DA (Motiian et al., 2017; Singhal et al., 2023). 
DA methods are mainly categorized into model-centric, data-centric 
and hybrid approaches as illustrated in Figure 3.

Data-centric DA strategies leverage intrinsic data characteristics 
rather than modifying model architecture or loss functions (Fan et al., 
2022). Techniques like pseudo-labeling automatically assign labels to 
unlabeled data using pre-trained models, treating inferred labels as 
training data (Singhal et al., 2023). Data selection methods aim to 
identify source domain data closely aligned with the target domain, 
but this area remains underexplored despite past applications in 
machine translation. Pre-training, particularly with large 
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Transformer-based models, is a prevalent method in Natural Language 
Processing (NLP) domain adaptation (Kalyan et  al., 2021), but 
challenges persist, including inconsistent model performance across 
datasets and limited improvement under varying distributions 
(Gulrajani and Lopez-Paz, 2020; Heaven, 2020; Koh et al., 2021; Wiles 
et al., 2021).

2.5 Research gap

The current ML-based research on FMD prediction largely 
focuses on stationary environments, neglecting the critical challenge 
of distribution shifts in non-stationary settings. This oversight leaves 
predictions vulnerable to unexpected changes, reducing their 
reliability. While domain adaptation techniques, particularly in 
computer vision, have made progress, they struggle with large 
disparities between source and target domains, especially when 
labeled target data is scarce and expensive to acquire. Moreover, 
methods like pre-training and data augmentation show inconsistent 
results across different datasets and distribution shifts. This gap 
underscores the need for innovative approaches that address 
distribution shifts and improve prediction performance in 
non-stationary environments. To fill this gap, this study explores a 
CUP approach. The CUP integrates borderline-SMOTE, active 
learning, probabilistic calibration, and pseudo-labeling to effectively 
manage varying distributions in a curated FMD dataset. This approach 
aims to enhance the robustness and accuracy of predictions under 
dynamic conditions in Uganda, contributing to better disease control 
and resource allocation for FMD management.

3 Materials and methods

3.1 Employing an experimental design to 
conduct the study

To achieve the main goal of enhancing predictive performance of 
RF model for FMD outbreaks under varying distributions, the study 
employed an experimental research design to develop and evaluate a 
CUP approach. Experimental research design in ML involves a 
structured approach for planning, executing, and analyzing 
experiments (Kamiri and Mariga, 2021). The methodology as depicted 
in Figure 4, ensured a rigorous design, development and evaluation of 
the proposed CUP method in enhancing predictive performance rates 
in dynamic setting for FMD outbreaks. By employing various 
performance metrics including accuracy (ACC), AUC of the Receiver 
Operating Characteristic (ROC), recall, precision and F1-score, the 
study provides a comprehensive performance evaluation of the CUP 
approach’s effectiveness in addressing the challenges posed by 
distribution shifts in the unified and curated FMD dataset. The phases 
in the methodological approach include CUP development and CUP 
evaluation. Table  1 summarizes the key activities, methods, and 
descriptions used to achieve the study objectives.

3.1.1 Data collection
This study focused on Uganda, an East African country with 

diverse landscapes and climates that contribute to varied ecological 
conditions affecting the transmission dynamics of FMD (Mwiine 

et al., 2019). The country’s geography, spanning savannahs, forests, 
and mountains, coupled with its tropical climate, plays a significant 
role in influencing the occurrence and spread of FMD outbreaks. A 
retrospective approach was employed to collect data from 2011 to 
2022, drawing from multiple sources to create a comprehensive 
dataset for training and validating ML models for FMD prediction. 
The dataset included FMD outbreak records from 86 districts 
(Figure 5), obtained from the National Animal Disease Diagnostics 
and Epidemiology Centre (NADDEC) and the World Organisation 
for Animal Health (WOAH). The data captured essential details such 
as outbreak locations, timing, and confirmed cases. Additionally, the 
study incorporated climatic data including rainfall and temperature 
from the Uganda National Meteorological Authority (UNMA) and 
livestock population densities from the National Livestock Census 
2008, conducted by the Ministry of Agriculture, Animal Industry, and 
Fisheries (MAAIF) and the Uganda Bureau of Statistics (UBOS). 
Geographical information related to proximity to protected wildlife 
zones and international borders was also included, as these factors 
significantly influence FMD transmission dynamics. The independent 
variables (risk factors) and their corresponding data sources are 
summarized in Table 2, with the presence of FMD outbreaks serving 
as the dependent variable.

3.1.1.1 Data pre-processing
In this study, a comprehensive data pre-processing strategy was 

implemented to create an integrated FMD dataset for training, testing, 
and evaluating ML models for predicting FMD outbreaks in Uganda. 
This process involved several critical steps to ensure the accuracy, 
consistency, and reliability of the dataset.

Initially, missing values in the dataset were addressed using mean 
imputation, a technique where missing data points are replaced with 
the mean value of their respective features (Van Ginkel et al., 2020). 
This method was selected for its simplicity and effectiveness in 
maintaining dataset completeness, ensuring that essential variables 
were preserved for subsequent analysis and model development. 

FIGURE 4

Experimental design to guide the CUP development and evaluation. 
RF, random forest; CUP, calibrated uncertainty prediction; FMD, foot-
and-mouth disease.
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Duplicate records, which can introduce bias and reduce the reliability 
of the analysis, were identified and removed using Python’s Pandas 
library (Pandas—Python Data Analysis Library, 2024). This process 
ensured that the dataset was free from redundancy, thereby enhancing 
its integrity and the accuracy of the models built upon it. Outliers, 
which could potentially skew the results, were detected using the 
Z-score method (Chikodili et  al., 2020). Confirmed outliers were 
treated by replacing them with the mean value of the respective feature. 
This approach maintained the consistency and reliability of the dataset, 
ensuring that extreme values did not adversely affect the predictive 
modeling process. Data integration was another critical step, where 
multiple datasets from various sources, including historical FMD 
outbreak records and environmental data, were merged into a single, 
cohesive dataset. This was achieved using Python’s pd.merge function, 
which facilitated the seamless integration of data based on common 
identifiers. This integrated dataset (Table 2) provided a comprehensive 
foundation for in-depth analysis and modeling. Feature engineering 
played a vital role in enhancing the performance of the ML models. 
New features, including monthly rainfall and monthly maximum 
temperature, were created by summing daily rainfall values and 
selecting the maximum temperature, respectively, to align with the 
monthly FMD outbreak data. These engineered features were crucial 
in improving the predictive performance of the model. Finally, 
categorical data encoding was employed to convert qualitative variables 
including outbreak occurrences, into numerical formats suitable for 
ML algorithms. The target variable was encoded to represent outbreak 
(1) and non-outbreak (0) instances, facilitating the interpretation and 
modeling of FMD outbreaks. Through these data pre-processing steps, 
the study ensured that the integrated dataset was well-prepared for 
accurate and robust predictive modeling, ultimately contributing to the 
effective prediction and management of FMD outbreaks in Uganda.

3.1.1.2 Descriptive analysis of pre-processed FMD dataset
The pre-processed dataset for FMD in Uganda contains a total of 

12,384 records, collected from 86 districts across the country. Each 
record represents either the occurrence or non-occurrence of an FMD 
outbreak in a given district within a specified time frame. The dataset 
reveals a significant class imbalance, with 97.88% of the records 
corresponding to non-outbreaks, and only 2.12% indicating outbreaks. 
This severe class imbalance is a critical factor to consider during the 
development and evaluation of ML models, as it can lead to biased 
predictions if not properly addressed. Further analysis of the dataset 
reveals considerable variation in the prevalence of FMD outbreaks 
across different districts, as depicted in Figure 6. Some districts report 
higher incidences of outbreaks, while others rarely experience them. 
This spatial disparity underscores the importance of incorporating 

geographical factors and local conditions into predictive models, as 
these variations can significantly influence the risk of outbreaks.

The descriptive statistics of the dataset provide a foundational 
understanding of the distribution and characteristics of the data. 
These insights are essential for guiding the selection of appropriate 
modeling techniques, particularly those that can effectively manage 
class imbalance and leverage the spatial heterogeneity observed in the 
data. By carefully considering these factors, the analysis aims to 
enhance the predictive performance and reliability of models used for 
forecasting FMD outbreaks, ultimately contributing to better disease 
management and control strategies in Uganda.

3.1.1.3 Data sampling
In data science, various sampling techniques are employed to 

meet specific research objectives, with each method offering unique 
advantages depending on the nature of the data and the goals of the 
study (Bhardwaj, 2019; Sarker and AL Muaalemi, 2022). For this 
study on prediction of FMD outbreaks in Uganda, the data sampling 
approach was strategically designed to enhance the performance of 
ML models used for predicting outbreaks. Given the dominance of 
FMD outbreaks in certain districts across Uganda, as illustrated in 
Figure 6, a purposive sampling strategy was adopted. Out of the total 
districts, 22 were carefully selected based on the frequency and 
intensity of outbreaks observed during the study period from 2011 
to 2022. These districts, highlighted in Figure 7, were chosen because 
they had the highest recorded occurrences of FMD outbreaks, 
indicating that they are critical zones for the disease. By focusing on 
these high-frequency outbreak districts, the study aimed to ensure 
that the base ML model is trained on a robust and representative 
dataset. This approach not only provided the model with a substantial 
amount of relevant data but also provide a foundation for mitigating 
the risk of working with highly imbalanced datasets, which could 
undermine the model’s predictive performance. In districts with 
fewer outbreaks, data scarcity could lead to poor model training, 
resulting in less reliable predictions. Therefore, concentrating on 
districts with rich outbreak data was crucial for maintaining model 
accuracy. Moreover, these dominant districts are often referred to as 
“hotspots” in epidemiological research, as they are typically the 
sources of outbreaks that spread to neighboring regions. By 
prioritizing these hotspots in the sampling process, the study aimed 
to improve the generalizability of the predictive models. The insights 
gained from these key districts can be extrapolated to other areas, 
thereby enhancing the overall applicability of the model across 
Uganda. This targeted sampling strategy was fundamental in building 
a robust dataset that supports the development of high performing 
ML-based predictive model for FMD outbreak management.

TABLE 1 A Summary of the research phases, activities, methods and description of the methods for achieving the objectives.

Phase 
No.

Activity Study 
objective

Research 
methods

Description

1

Develop a CUP approach to enhance RF 

model predictive performance for FMD 

outbreaks under varying distributions

Objective 1 Experiments

A CUP approach based on a data-centric domain adaptation involved 

integrating active learning, borderline-SMOTE, probabilistic calibration, 

and pseudo-label annotation.

2

Evaluate predictive performance of the 

proposed CUP approach in prediction of 

FMD outbreaks under varying distributions

Objective 2 Experiments

Five performance metrics including ACC, AUC, recall, precision, and 

F1-score were used to assess the performance of the proposed approach 

in comparison with existing methods reported to address distribution 

shifts in the ML domain.
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The dataset for the 22 purposively selected districts comprised 
a total of 3,456 records, as detailed in Table 2. Within this integrated 
dataset, 96.15% of the records represented non-outbreak instances, 
while only 3.85% corresponded to FMD outbreaks. This 
distribution highlights a significant class imbalance, with a heavy 
skew towards non-outbreak records. Such an imbalance presents 
challenges for ML models, as they tend to become biased towards 
predicting the majority class in this case, non-outbreaks. This bias 
can lead to models that are less sensitive to detecting actual 
outbreaks, resulting in poorer predictive performance when it 
comes to identifying potential FMD outbreaks. Addressing this 
imbalance is therefore critical to enhancing the performance and 
reliability of the models.

The development and evaluation of the proposed CUP approach 
were conducted in two phases. Phase 1 (Section 3.1.2) involved 
designing and developing the algorithm. Phase 2 (Section 3.1.3) 
focused on evaluating the predictive performance of the CUP approach 
in mitigating distribution shifts for FMD outbreaks using the holdout 
validation dataset. These phases are detailed in the following sections:

3.1.2 Phase 1: CUP development
In Phase 1, the study aimed to design and develop the CUP approach 

to enhance the performance of the RF model under varying distributions 
for predicting FMD in Uganda. This section discusses the various 
techniques adopted in designing and developing the approach. Table 3 
shows the respective performances of the RF model in a stationary 

FIGURE 5

Map of Uganda showing districts affected by FMD outbreaks between 2011 and 2022.
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environment, the degradation under varying distributions, and the 
improved performance when subjected to the proposed CUP approach.

3.1.2.1 Experimental setup
The experiments for developing and evaluating the CUP approach 

for predicting FMD outbreaks were conducted using Python 3.11.4, 
leveraging its extensive ML libraries. The study was carried out within 
the Jupyter Notebook integrated development environment (IDE), 
utilizing a local ML platform optimized to use both GPU and CPU, 
significantly speeding up processing tasks. Key libraries such as Scikit-
Learn, Pandas, NumPy, and Matplotlib were employed for data 
manipulation, model development, evaluation, and visualization, 
ensuring a streamlined and efficient workflow. This setup provided a 
solid foundation for accurate and reliable experimental results.

3.1.2.2 Choosing RF as the baseline ML algorithm
The selection of RF as the baseline ML algorithm for performance 

improvement under varying distributions to predict FMD outbreaks 
in Uganda stemmed from the groundwork laid by our previous study 
(Kapalaga et al., 2024). The study explored seven ML models namely 
RF, Support Vector Machine (SVM), k-Nearest Neighbors (kNN), 
Gradient Boosting Machine (GBM), AdaBoost, Logistic Regression 
(LR), and Classification and Regression Tree (CART) to predict FMD 
outbreaks due to their diverse functionalities and strengths in 
handling various aspects of predictive modeling (Aghaei et al., 2021; 
Bansal et al., 2022; Cervantes et al., 2020; Choudhury et al., 2021; Joshi 
and Dhakal, 2021; Mienye and Sun, 2022; Touzani et al., 2018).

In that study, RF was the best performing model under stationary 
environment as shown in Table 4 and Figure 8. The choice of RF is 
further supported by Punyapornwithaya et al. (2022) who explored the 
predictive capability of ML models in identifying FMD outbreaks in 
Thailand, through testing of various models, RF exhibited superior 
performance across all evaluation metrics. The superb predictive 
performance of RF is attributed to its ensemble nature where it 
integrates multiple decision trees to enhance performance (Choudhury 
et  al., 2021). However, despite its superior predictive performance 
under stationary environment, RF demonstrated degradation in 
prediction of FMD outbreaks under varying distribution as depicted 
in Table 4 under validation performance, therefore this study aimed to 
enhance its predictive power by proposing the CUP approach which 
integrates techniques including borderline-SMOTE, active learning, 
probabilistic calibration and pseudo labeling.

3.1.2.3 Integration of borderline-STOME, active learning, 
probabilistic calibration, and pseudo-labeling

The proposed CUP approach based on the data centric setting 
aimed to enhance RF’s performance by leveraging a combination of 
advanced techniques including borderline SMOTE, active learning, 
probabilistic calibration, and pseudo labeling tailored to handle 
imbalanced data, improve model calibration, and enhance 
generalization. In the following sections, the study delves into a 
detailed discussion on how these techniques were integrated to 
enhance RF’s performance in prediction of FMD outbreaks in the 
ever-evolving environment of Uganda.

3.1.2.3.1 Mitigating class imbalance with borderline-SMOTE
The selection of the Borderline-SMOTE technique was 

informed by findings from our previous research (Kapalaga et al., T
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2024), where it was compared with three other data augmentation 
methods including original SMOTE, SMOTE-SVM, and ADASYN 
on the imbalanced FMD dataset. Two experimental approaches 
were taken: one involved oversampling the minority class 
(outbreaks) by a factor of 20 (Table 5 and Figure 9), and the other 
balanced the minority class to match the majority class size. As 
shown in Table 4 and illustrated in Figure 8, models trained on 
balanced datasets consistently outperformed those trained on 
imbalanced ones. Among the oversampling methods, Borderline-
SMOTE emerged as the most effective (Figure 8). This success can 
be attributed to its focus on instances near the decision boundary 
between classes, where classification errors are most likely to 
occur. Unlike standard SMOTE, which generates synthetic samples 
across the entire feature space, Borderline-SMOTE specifically 
targets critical regions, thereby improving the model’s ability to 
accurately define the decision boundary. Given its strategic focus 
and proven effectiveness, Borderline-SMOTE was selected as the 
optimal technique for addressing class imbalance in our study.

3.1.2.3.1.1 Mathematical formulation of the borderline-SMOTE
To present the mathematical formulations of the 

Borderline-SMOTE technique in the context of predicting FMD 
outbreaks, it is essential to connect the general principles of 
Borderline-SMOTE with the specific variables and the RF model 
used for FMD prediction. The formulation involved three 
key steps:

 a. Defining the problem context: this step involved describing the 
task of predicting FMD outbreaks, the imbalanced nature of 
the dataset, and the necessity of addressing the minority class 
through resampling. In the context of Uganda, predicting FMD 
outbreaks requires using historical and environmental data. 
The main challenge lies in the dataset’s imbalance, where 

instances of FMD outbreaks are much fewer than non-outbreak 
instances, making it difficult for models to accurately 
predict outbreaks.

 b. Formulating the mathematical model: to achieve the 
formulation, there were three main steps involved as 
discussed below.

Step 1: Identifying the borderline FMD outbreak samples.
Let { }1 2, , , nX x x x= …  be the set of training samples, where each 

sample ix  is a feature vector associated with either an FMD outbreak 
(minority class) or non-outbreak (majority class).

For each minority class sample ix  (FMD outbreak):

 • Find the k -nearest neighbors of ix  in the training set, 
denoted as ( )k iN x

 • Let majk  be  the number of majority class neighbors 
(non-outbreak) within ( )k iN x .

We define a sample ix  as a borderline sample if:
maj

kk
2

> , meaning that the sample is surrounded by more 
non-outbreak cases than outbreak cases, placing it near the 
decision boundary.

Step 2: Generating synthetic samples.
For each borderline FMD outbreak sample ix

 • Randomly select a minority class neighbor neighborx  from ( )k iN x .
 • Generate a synthetic sample syntheticx  using linear interpolation:

( )synthetic i neighbor ix x · x x= + λ − , where ( )ë Uniform 0,1∼  is a 
random number between 0 and 1.

Step 3: Integrating with the FMD prediction model.
Let syntheticX  be  the set of synthetic samples generated from 

borderline FMD outbreak cases.

FIGURE 6

Prevalence of FMD outbreaks by district.
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The augmented training set X ′ used for training the FMD 
prediction model becomes:

syntheticX' XUX= , the new dataset X'  is then used to train 
the predictive model to improve its ability to detect 
FMD outbreaks.

3.1.2.3.2 Enhancing model confidence with active learning
Active learning is a subfield of ML that studies how an active 

learner model can best identify informative unlabeled instances 
and request their labels from some oracle, usually a human 
annotator (Settles, 2009). This study explored a pool-based active 
learning setting using the uncertainty sampling technique to 

query the uncertainty samples where the active learner is 
most uncertain about the instances. Using the predict_proba 
method, RF acted as the active learner trained with dataset from 
2011 to 2018, generated probability predictions for target samples, 
which might not accurately reflect the true likelihood of class 
membership. The study aimed to augment the training dataset 
with challenging samples, thus improving the model’s 
robustness to varying distributions. Furthermore, the study 
computed the absolute scores by measuring the difference between 
these probabilities and 0.5 to quantify uncertainty. Utilizing the 
argsort method, the study sorted absolute differences to select 
instances with the highest uncertainty scores. Samples with 

FIGURE 7

Map of Uganda with purposively selected study districts.
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absolute probability scores less than 3.5 were considered, 
indicating uncertainty around the 0.5 probability mark (Nguyen 
et al., 2022).

The study systematically evaluated the model’s uncertainty by 
scrutinizing the highest score for a given class on specific instances. 
The study selected instances with the lowest score among those in 
the active learning set, ensuring a thorough exploration of 
uncertainty. The integration of these strategies sought to equip the 
model with enhanced adaptability to varying data distributions, 
ultimately improving predictive performance and overall 
model robustness.

3.1.2.3.3 Enhancing uncertainty estimates with probabilistic 
calibration

To enhance prediction under distribution shifts, the study 
opted for probabilistic calibration technique to adjust the 
probabilities of the uncertainty samples to better align with the 
true probabilities. Probability calibration refers to refining the 
predicted probabilities generated by a ML model to improve their 
accuracy and reliability (Kuleshov et al., 2018). The study trained 
a logistic regression algorithm using dataset from 2019–2020 to act 
as the calibration layer for correcting the probabilities of 
uncertainty samples queried form the target unlabeled pool 0Q  
(Figure 10). This study used the CalibratedClassifierCV class from 
scikit-learn for probability calibration. Specifically, Platt Scaling 
with the sigmoid method was employed. Platt Scaling is a logistic 
regression model trained to map the model’s raw scores output 
before applying the logistic function to calibrate probabilities 
(Bella et  al., 2013). The study aimed to refine the predicted 
probabilities of challenging samples, aligning them more closely 
with their true probabilities.

3.1.2.3.4 Pseudo-labeling with calibrated uncertainty 
probabilities

The process of pseudo-labeling involved assigning labels to the 
uncertainty samples based on their calibrated probabilities by the 
calibrator model using a thresholding method. The calibrated 
probabilities are compared to a chosen threshold value of 0.5 
(default), where samples with probabilities above the threshold are 
assigned the label corresponding to the positive class (outbreak), 
and samples below the threshold are assigned the label 
corresponding to the negative class (non-outbreak). These pseudo 
labels are then utilized to retrain the active learner, with the goal of 
enhancing the overall predictive performance for FMD outbreaks 
under distribution shifts. This iterative approach aims to refine the 
model’s understanding of uncertainty and improve its ability to 
make accurate predictions under distribution shifts.

3.1.2.3.5 The proposed CUP design
In the proposed CUP approach, the study employs a four-

staged strategy as illustrated in Figure 10. The first stage is training 
the RF baseline model on source dataset (2011–2018) represented 
as 0L  to act as the active learner represented as A, and be utilized 
to predict the probabilities of the target unlabeled validation 
dataset (2021–2022) represented as U . The second stage is 
uncertainty selection, which involves using the predicted 
probabilities to select the most informative samples represented as 

0Q  where active learner A is not confident. The third stage is the T
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probabilistic calibration. At this stage, the queried uncertainty 
samples 0Q  are fed into the calibration model represented as M  
trained on dataset (2019–2020) represented as 1L , adjusting their 
probabilities to better align with the true likelihood of outcomes 
using the sigmoid method. Still, at the same stage, the calibrated 
probabilities of the uncertain samples are converted into pseudo-
labels. Finally, the fourth stage involves adding the pseudo-labeled 
samples represented as 1Q  to the initial training set 0L  for retraining 

the active learner. This repeats until the uncertainty samples are 
finished or once the model attains acceptable performance. 
We named this amalgamated approach as CUP and implemented 
as outlined in Algorithm 1.

The CUP algorithm (Algorithm 1) represents an iterative 
process of leveraging borderline-SMOTE, active learning, 
probabilistic calibration and pseudo-annotation to improve RF’s 
predictive performance in predicting FMD outbreaks in a 
non-stationary environment by utilizing uncertain instances in 
the validation dataset. The proposed algorithm utilizes the 
training dataset 0L , calibration dataset 1L  to train the active learner 
A and model calibrator M  respectively. The validation set is 
represented as .U  In step  1, splits the training dataset 0L into 
features and labels, and apply the borderline-SMOTE technique 
to enhance the representation of the minority class (outbreaks) by 
generating synthetic samples, outputting a balanced dataset 0L′ . 
In step 2, splits the calibration dataset, apply borderline-SMOTE 
outputting 1L′ . In step 3, 0L′ and 1L′  datasets are used in training 
the active learner A and model calibrator M  respectively. Several 
iterations are performed represented as T, at every iteration in the 
CUP learning loop, the algorithm trains an active learn tA  to 
predict on the features of augmented validation set (Xtarget), the 
absolute difference is calculated to identify the most uncertain 
samples uX  using the predicted probabilities. The trained model 
calibrator M  predicts the labels for the uncertain samples, 
outputting 1Q  which is then added to the initial dataset 0L  to 
generate a new 0L′  dataset for training a new active learner tA  and 
the cycle is repeated until desired results are achieved. Algorithm 1 
indicates all the steps executed to achieve optimal performance for 
active learner (RF) in predicting FMD outbreaks in 
varying distributions.

TABLE 4 Weighted average performance scores of models for a balanced 
dataset (Kapalaga et al., 2024).

Weighted average performance scores

Dataset before oversampling: no-outbreak—2.769; outbreak—111

Balanced dataset after oversampling: no-outbreak—2.769; outbreak

Model
SMOTE 

(Original)

Borderline-

SMOTE

SMOTE-

SVM
ADASYN

RF 0.88 0.93 0.89 0.87

SVM 0.56 0.70 0.66 0.58

GBM 0.77 0.88 0.85 0.79

CART 0.81 0.90 0.84 0.83

LR 0.53 0.34 0.25 0.50

kNN 0.78 0.88 0.86 0.78

AdaBoost 0.65 0.79 0.73 0.66

RF, random forest; SVM, support vector machine; kNN, k-nearest neighbors; GBM, gradient 
boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification 
and regression tree; SMOTE, synthetic minority over-sampling technique; ADASYN, 
adaptive synthetic sampling. Bold values indicate the best-performing model across the 
various oversampling techniques.

FIGURE 8

Model Performances across Oversampling Techniques with balanced dataset (Kapalaga et al., 2024). RF, random forest; SVM, support vector machine; 
kNN, k-nearest neighbors; GBM, gradient boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification and regression tree; 
SMOTE, synthetic minority over-sampling technique; ADASYN, adaptive synthetic sampling.
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ALGORITHM 1 CUP

3.1.3 Phase 2: evaluation
In Phase 2, the study aimed to evaluate the performance of the 

proposed CUP approach in enhancing the predictive power of RF in 
prediction of FMD outbreaks in Uganda under varying distributions, 
the study utilized various classification performance metrics. These 
metrics included accuracy (ACC), AUC of ROC, precision (PR), 
recall, and F1-score which are discussed in detail under section 
3.1.3.1. These metrics provided quantitative measures that allowed the 
study to compare the performances of CUP with five selected 

approaches known to mitigate distribution shifts (Figure 11) using the 
validation dataset (2021–2022). These approaches are RF (Balogun 
and Attoh-Okine, 2021), Dynamic Weighted Learning (DWL; Xiao 
and Zhang, 2021), Select TARgets (STar; Singh et  al., 2021), Less 
Annotated Active Learning Extreme Learning Machine (LAAL-ELM; 
Yang et al., 2018) and Regularized Learning under Label shifts (RLLS; 
Azizzadenesheli et al., 2019).

3.1.3.1 Performance evaluation metrics
To evaluate the performance of the proposed CUP approach 

in predicting FMD outbreaks under varying distributions, 
we utilized the following classification metrics: ACC, AUC, PR, 
Recall, and F1-score. These metrics were chosen to provide a 
comprehensive assessment of the model’s effectiveness in 
comparison to existing methods as discussed in sections 3.1.3.3 
and 3.1.3.4. Additionally, these metrics were used to calculate the 
performance improvement rates of the CUP approach as discussed 
in Section 3.1.3.2.

3.1.3.2 Performance improvement rates of CUP under 
varying distribution

To assess the performance improvement rates of the proposed 
CUP approach in predicting FMD under varying distributions, the 
study utilized the sequentially sampled target dataset (2021–2022). To 
quantify the performance improvement rates across all performance 
metrics, the study used the formula below.

 

( )target validation

validation

P P
Performance improvement rate 100%

P
−

= ×

Where:

TABLE 5 Weighted average performance scores of models with minority 
class oversampled by a factor of 20.

Weighted average performance scores

Minority Class Oversampled by a Factor of 20

Dataset before oversampling: no-outbreak—2.769; outbreak—111

Dataset after oversampling: no-outbreak—2.769; outbreak—2.220

Model

SMOTE 

(Original)

Borderline-

SMOTE

SMOTE-

SVM ADASYN

RF 0.58 0.73 0.62 0.57

SVM 0.12 0.12 0.15 0.15

GBM 0.38 0.65 0.46 0.48

CART 0.57 0.72 0.52 0.52

LR 0.14 0.13 0.15 0.14

kNN 0.51 0.68 0.59 0.49

AdaBoost 0.39 0.48 0.36 0.39

RF, random forest; SVM, support vector machine; kNN, k-nearest neighbors; GBM, gradient 
boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification 
and regression tree; SMOTE, synthetic minority over-sampling technique; ADASYN, 
adaptive synthetic sampling.
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validationP  represents the performance for metric i, targetP  
represents the performance for metric i. For each performance 
metric, we calculated the difference between CUP’s performance 
(CUP approach performance) and the RF model’s performance 
under validation (Validation performance). This difference was then 
divided by the RF model’s performance under validation. The final 
result was expressed as a percentage (Table  3). This systematic 
approach allowed the study to evaluate improvement in performance 
metrics, serving as crucial indicator in assessing RF model 

performance improvement rates in prediction of FMD under 
varying distributions.

3.1.3.2.1 Contribution of each component within the CUP 
approach

To determine the contribution of each component within the 
CUP approach, we conducted experiments by systematically removing 
individual components (borderline-SMOTE, active learning, 
probabilistic calibration, and pseudo-labeling) and evaluating their 

FIGURE 10

Visual overview of the CUP approach. ACC, accuracy; AUC, area under curve; PR, precision, 0L , training dataset for training initial active learner (A); U , 
validation dataset; 0Q , queried uncertainty samples; 1L , dataset for training model calibrator (M ); 1Q , pseudo-labeled uncertainty samples.

FIGURE 9

Comparative model performance across oversampling techniques. RF, random forest; SVM, support vector machine; kNN, k-nearest neighbors; GBM, 
gradient boosting machine; AdaBoost, adaptive boost; LR, logistic regression; CART, classification and regression tree; SMOTE, synthetic minority over-
sampling technique; ADASYN, adaptive synthetic sampling.
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impact on overall performance. Each variant of CUP was assessed 
using the same FMD validation dataset and performance metrics 
detailed in Section 3.1.3.1.

The following CUP variants were tested:

 • CUP without Borderline-SMOTE: to measure the impact of 
addressing class imbalance.

 • CUP without active learning: to assess the role of active learning, 
especially in scenarios with limited labeled data.

 • CUP without probabilistic calibration: to evaluate the importance 
of probabilistic calibration for prediction reliability.

 • CUP without pseudo-labeling: to explore the contribution of 
pseudo-labeling in utilizing unlabeled data during training.

Comparing these variants against the complete CUP approach 
allowed us to quantify the significance of each component in achieving 
the observed performance improvements.

3.1.3.3 Performance of existing methods using the FMD 
dataset

In this study, we  evaluated the performance of five selected 
methods on the FMD dataset using a range of performance metrics as 
outlined in Section 3.1.3.1. This evaluation aimed to quantitatively 
assess how well these methods address class imbalance and 
distribution shifts in predicting FMD outbreaks in Uganda (Table 6). 
Specifically, 70% of the dataset from 2011 to 2018 was used as the 
training set, while the holdout dataset from 2021 to 2022 was used 
for validation.

The selected methods for comparison represent diverse strategies 
for mitigating distribution shifts, a critical challenge in predicting 
FMD outbreaks. These methods were chosen based on their 
effectiveness in previous studies and their potential relevance to the 
FMD dataset:

 • RF: a powerful ensemble technique known for its robustness in 
various ML tasks, including handling distribution shifts (Balogun 
and Attoh-Okine, 2021).

 • DWL: this method dynamically adjusts model weights to better 
accommodate changes in data distribution, making it particularly 
effective in non-stationary environments (Xiao and Zhang, 2021).

 • Star: star focuses on selective training, emphasizing critical 
samples that are most likely to improve model performance in 
the presence of distribution shifts (Singh et al., 2021).

 • LAAL-ELM: this approach utilizes active learning with minimal 
annotated data, which is beneficial in scenarios where labeled data 
is scarce, and distribution shifts are prominent (Yang et al., 2018).

 • RLLS: RLLS addresses label shifts through regularization 
techniques, providing a mechanism to handle changes in the 
distribution of output labels (Azizzadenesheli et al., 2019).

These methods were selected to ensure a comprehensive and 
balanced comparison with our proposed CUP approach, which 
integrates strategies including borderline-SMOTE, active learning, 
probabilistic calibration, and pseudo-labeling. By evaluating these 
established methods on the same FMD dataset, we provide a clear and 

FIGURE 11

Workflow for evaluating performance of CUP with existing methods. AUC of ROC, area under curve of receiver operating characteristic; RF, random 
forest; DWL, dynamic weighted learning, STar, select TARgets; LAAL-ELM, less annotated active learning extreme learning machine; RLLS, regularized 
learning under label shifts; CUP, calibrated uncertainty prediction; FMD, foot-and-mouth disease.

TABLE 6 Performance of existing methods on FMD dataset.

Method ACC AUC Recall Precision F1

RF 0.458 0.583 0.031 0.236 0.064

DWL 0.957 0.478 0.007 0.667 0.013

STar 0.823 0.467 0.136 0.035 0.056

LAAL-ELM 0.570 0.714 0.320 0.642 0.434

RLLS 0.358 0.382 0.097 0.064 0.001

ACC, accuracy; AUC, area under curve; RF, random forest; DWL, dynamic weighted 
learning; STar, select TARgets; LAAL-ELM, less annotated active learning extreme learning 
machine; RLLS, regularized learning under label shifts.
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direct comparison that highlights the strengths and limitations of each 
approach relative to the CUP method.

3.1.3.4 Comparison of CUP approach performance with 
existing methods

The performance of the proposed CUP model was benchmarked 
against established methods known for handling distribution shifts as 
discussed under section 3.1.3.3 Performance of existing methods 
using the FMD dataset, offering a comparison to state-of-the-art 
strategies. The validation of CUP is essential to show that it either 
outperforms or is at least on par with these existing methods. This 
would solidify CUP’s position as a reliable and potentially more 
effective solution. The chosen methods have been tested across various 
domains and datasets, highlighting their generalization abilities. By 
comparing CUP against these established approaches, the study 
underscores its robustness and potential for application beyond FMD 
prediction. The comparative evaluation involved aggregating 
individual performance metric scores into a single metric, the 
weighted average performance score, which was then used to rank the 
models. The evaluation process followed these key steps.

 a. Assign weights: each performance metric was assigned an equal 
weight of 1, reflecting their equal importance in the study.

 b. Calculate weighted scores: each performance metric was 
multiplied by its assigned weight, and the resulting values 
were summed.

 c. Compute weighted average scores: the sum of the weighted 
scores was then divided by the total number of performance 
metrics to obtain the weighted average.

Therefore, the formula for calculating the weighted average score 
for n metrics is as follows:

 
1WWeighted average score

n
i ii M

n
=

×
=
∑

Where:
iW  represents the weight assigned to metric i,
iM  represents the value of metric i, and

n is the total number of metrics.

4 Results

In this section, the study reveals the research findings related 
to enhancing RF model predictive performance for FMD outbreaks 
in Uganda under varying distributions. The comprehensive 
investigation unfolds in two significant sections: assessment of 
predictive performance improvement rates with CUP approach 
under varying distributions, and evaluation of CUP performance 
in comparison with existing methods from the literature.

4.1 Predictive performance improvement 
with the CUP approach

The predictive performance of the CUP approach, as illustrated in 
Table 7 and Figures 12B–G showcases the impact of the proposed 

method through the iterative selection of the most uncertain instances 
for probabilistic calibration. Across the six iterations of active learning, 
the results demonstrate remarkable improvement, with probabilities 
approaching near-perfection. Figure 12A provides insight into the 
uncertain samples before calibration, displaying their absolute 
differences. By employing the absolute difference metric, the study 
focused on a pool-based active learning scenario, explicitly 
emphasizing the identification of uncertain instances for probabilistic 
calibration and subsequent fine-tuning.

Table 3 illustrates the predictive performance of various RF model 
for FMD outbreaks across different evaluation levels. The model 
initially demonstrated excellent performance on the test dataset, as 
reflected in the “Test Performance” column. However, when the model 
was validated against dataset with varying distributions, the RF model 
exhibited a notable decline in performance, as shown in the 
“Validation performance” column of Table 3. Given the RF model’s 
limitations under varying data distributions, it was selected as the 
baseline model for comparison with the proposed CUP approach. The 
CUP approach aimed to address the challenges faced by the RF model, 
particularly under conditions of distributional shift.

As detailed in Tables 7, 3, the CUP approach demonstrated 
substantial improvements in predictive performance metrics 
compared to the baseline RF model. Notably, key performance 
indicators such as Recall and F1-score showed significant percentage 
increases, indicating an enhanced ability of the model to correctly 
identify true positive instances of FMD outbreaks. These 
improvements in Recall highlight the CUP approach’s increased 
sensitivity, while the enhanced F1-score reflects a better balance 
between precision and recall, ultimately leading to more reliable 
predictions. Figure 13 further illustrates these performance gains, 
showcasing the effectiveness of the CUP approach in improving the 
RF model’s ability to predict FMD outbreaks. This is particularly 
crucial in the context of Uganda, where climatic conditions and other 
environmental factors are continually evolving, making accurate and 
reliable predictions of FMD outbreaks more challenging.

4.1.1 Component-wise performance of the CUP 
approach

The performance of the CUP approach was assessed by 
systematically removing individual components and evaluating their 
impact on predictive performance. The removal of Borderline-SMOTE 
led to a dramatic decrease in the model’s ability to handle class 

TABLE 7 Performance of the CUP approach across six active learning 
iterations.

Iterations ACC AUC Recall Precision F1-
score

1 0.957 0.602 0.455 0.433 0.444

2 0.979 0.722 0.591 0.813 0.684

3 0.986 0.836 0.682 0.938 0.789

4 0.991 0.919 0.818 0.947 0.878

5 0.997 0.974 0.909 1.000 0.952

6 1.000 1.000 1.000 1.000 1.000

Average 

performance
0.985 0.842 0.743 0.855 0.791

ACC, accuracy; AUC, area under curve.
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FIGURE 13

Performance improvement with the CUP approach. AUC, area under curve.

imbalance, as evidenced by the extremely low precision, recall, and 
F1-score (7). Although accuracy remained high, it is misleading due to 
the model’s failure to effectively identify minority class instances. On the 
other hand, excluding active learning resulted in a reduction in overall 
accuracy compared to the full CUP approach. The model’s AUC was 
significantly higher, indicating better discriminatory power. However, 
precision, recall, and F1-score were notably lower, demonstrating the 

crucial role of active learning in enhancing the model’s performance in 
minority class prediction. Furthermore, the absence of probabilistic 
calibration led to a substantial drop in accuracy, indicating a significant 
loss in the model’s overall performance. Despite a relatively high AUC 
and precision, both recall and F1-score were lower, emphasizing the 
critical role of calibration in adjusting the model’s probability estimates 
to accurately reflect true class distributions.

FIGURE 12

Visual overview of the iterative probabilistic calibration process applied to uncertainty instances. (A) Depicts the distribution of uncertainty samples 
before calibration, while (B–F) illustrate the status of uncertainty examples after iterative calibrations. (G) Showcases a scenario where uncertainty 
samples are perfectly calibrated.
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The component-wise evaluation reveals that each element of the 
CUP approach plays a crucial role in enhancing model performance. 
Borderline-SMOTE is essential for managing class imbalance, as its 
absence severely impacts precision and recall. Active learning 
contributes to overall model accuracy and improves detection of 
uncertain instances, while probabilistic calibration is vital for enhancing 
probability estimation reliability and maintaining high accuracy. These 
results highlight the importance of each component in achieving the 
robust performance observed with the full CUP approach (Table 8).

4.2 Evaluation of existing methods using 
the FMD dataset

In this section, we present the evaluation of five existing methods 
RF, DWL, STar, LAAL-ELM, and RLLS on the FMD dataset. The 
performance metrics used in this evaluation include ACC, AUC, 
Recall, Precision, and F1-score. These metrics provide a comprehensive 
understanding of each method’s ability to predict FMD outbreaks 
under varying distribution conditions. Table 6 presents the predictive 
performance across various metrics, which are further discussed below:

RF, known for its robustness in many classification tasks, exhibited 
limited effectiveness when applied to the FMD dataset. The model 
achieved an accuracy of 0.458 and an AUC of 0.583, suggesting 
moderate discriminative power. However, its Recall was notably low 
at 0.031, indicating a significant challenge in correctly identifying 
FMD outbreak instances. Precision stood at 0.236, while the F1-score 
was 0.064, reflecting the model’s struggle to balance recall and 
precision. These results suggest that while RF could identify some 
positive instances, its overall performance in handling the varying 
distributed FMD data was limited.

DWL, which dynamically adjusts model weights to account for 
distribution shifts, showed a high accuracy of 0.957. Despite this, its 
AUC was relatively low at 0.478, indicating limited capability in 
distinguishing between outbreak and non-outbreak instances. The 
model’s Recall was extremely low at 0.007, demonstrating a significant 
issue in detecting positive FMD cases. Interestingly, DWL achieved a 
Precision of 0.667, which is high but comes at the cost of an extremely 
low Recall. The resulting F1-score of 0.013 highlights the model’s poor 
balance between precision and recall, questioning its effectiveness in 
this specific application.

STar, designed for selective training, produced mixed results. It 
achieved an Accuracy of 0.823, which is relatively high, but its AUC 
was the lowest among the methods at 0.467. This suggests that while 
the model was able to classify the majority class effectively, it struggled 
with the minority class. The Recall was 0.136, indicating some ability 
to detect FMD outbreaks, though not strong enough for reliable 
predictions. Precision was particularly low at 0.035, leading to a 
modest F1-score of 0.056. These results imply that STar’s focus on 

selective training may not have been sufficient to handle the varying 
distributed nature of the FMD dataset effectively.

The LAAL-ELM method, which leverages less annotated data in 
an active learning framework, delivered a balanced performance 
across the metrics. It achieved an Accuracy of 0.570 and the highest 
AUC among the methods at 0.714, suggesting good overall 
discriminative ability. The Recall was 0.320, indicating a relatively 
better capacity to identify FMD outbreaks compared to other 
methods. Precision was also high at 0.642, and the F1-score was 0.434, 
the highest among the methods evaluated. These results indicate that 
LAAL-ELM effectively balanced recall and precision, making it the 
most reliable method for predicting FMD outbreaks in this dataset.

RLLS, which addresses label shifts through regularization, 
performed the weakest among the methods evaluated. It recorded an 
Accuracy of 0.358 and an AUC of 0.382, both of which are the lowest 
in this comparison. The model’s Recall was 0.097, suggesting poor 
sensitivity to FMD outbreak instances. Precision was also low at 0.064, 
resulting in an F1-score of just 0.001. These metrics highlight the 
challenges RLLS faced in adapting to the distribution shifts present in 
the FMD dataset, leading to an overall ineffective performance.

4.3 Comparative analysis of the CUP 
approach with existing methods

In this section, we present a comparative analysis of the proposed 
CUP approach against the five selected stablished methods, including 
RF, DWL, STar, LAAL-ELM, and RLLS. The evaluation focuses on key 
performance metrics: ACC, AUC, Recall, Precision, and F1-score, with 
particular attention given to CUP’s ability to handle class imbalance and 
distribution shifts effectively (Table 9 and Figure 14). Furthermore, 
we calculated the weighted average performance score across all metrics 
for each method to identify the best-performing approaches (Figure 15).

ACC: CUP achieved an impressive Accuracy of 0.985, significantly 
outperforming all other methods. The closest competitor, DWL, 
recorded an Accuracy of 0.957, but this came at the expense of 
extremely low recall and F1-score. The superior accuracy of CUP 
indicates its robust ability to correctly classify both outbreak and 
non-outbreak instances, making it highly reliable for predicting FMD 
outbreaks. In contrast, other methods like RF and LAAL-ELM, which 
achieved accuracies of 0.458 and 0.570 respectively, were less effective 
in distinguishing between the classes, particularly in the presence of 
imbalanced data.

AUC: CUP’s AUC of 0.842 further underscores its exceptional 
performance, indicating a strong ability to discriminate between FMD 
outbreak and non-outbreak cases across varying thresholds. This is 
notably higher than the AUCs achieved by the other methods, with 
LAAL-ELM being the closest at 0.714. The substantial gap in AUC 
highlights CUP’s superior handling of distribution shifts, ensuring that 

TABLE 8 Component-wise performance of CUP approach.

ACC AUC Precision Recall F1-score

Without Borderline-SMOTE 0.971 0.515 0.000 0.000 0.000

Without Active Learning 0.954 0.952 0.158 0.150 0.154

Without Probabilistic Calibration 0.654 0.797 0.752 0.460 0.571

ACC, accuracy; AUC, area under curve.
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it maintains high discriminative power even under challenging 
conditions. Methods like STar and RLLS, which recorded AUCs of 0.467 
and 0.382 respectively, struggled to perform well, particularly in cases 
where the minority class (FMD outbreaks) was severely underrepresented.

Recall: a critical metric for evaluating the performance of models 
in imbalanced datasets is Recall, which measures the model’s ability 
to correctly identify positive instances (FMD outbreaks). CUP 
excelled with a Recall of 0.743, indicating that it could identify a large 
proportion of actual outbreak cases. This is a dramatic improvement 
over the other methods, with LAAL-ELM being the next best at 0.320. 
The stark difference between CUP and methods like RF (0.031) and 
DWL (0.007) illustrates CUP’s effectiveness in overcoming the 
challenge of class imbalance, which often leads to under-prediction of 
minority class instances in traditional models.

Precision: CUP also demonstrated high Precision, scoring 0.855, 
which indicates its accuracy in predicting FMD outbreaks without a 
significant number of false positives. This precision was unmatched 
by other methods, with LAAL-ELM again being the closest at 0.642. 
The high precision, combined with its strong recall, suggests that CUP 
not only captures most of the true positive instances but also maintains 
a low false positive rate, making it an exceptionally reliable method for 
FMD outbreak prediction. In contrast, methods like STar, which 
recorded a Precision of 0.035, suffered from a significant number of 
false positives, reducing their overall effectiveness.

F1-Score: the F1-score provides a balanced measure of a model’s 
performance, taking into account both precision and recall. CUP 
achieved an outstanding F1-score of 0.791, far surpassing the other 
methods, with LAAL-ELM again trailing at 0.434. This high F1-score 
signifies that CUP effectively balances precision and recall, making it 
the most capable method for accurately and consistently predicting 
FMD outbreaks. The performance gap between CUP and methods like 
RLLS, which recorded an F1-score of just 0.001, highlights the 
substantial improvements CUP offers in handling both class imbalance 
and distribution shifts exhibited in FMD dataset.

4.3.1 Weighted performance scores of methods 
on FMD dataset

The weighted average performance scores for the different methods 
reveal a clear distinction in effectiveness, with the CUP approach 
demonstrating exceptional performance as depicted in Table 9 . Among 
the methods evaluated, CUP achieved a remarkably high weighted 
average performance score of 0.843. This score significantly surpasses 
those of other techniques, highlighting CUP’s superior ability to handle 

the challenges of class imbalance and distribution shifts effectively. In 
comparison, the next highest score was recorded by LAAL-ELM, 
which attained a weighted average performance score of 0.536. While 
this score is notable, it is still considerably lower than CUP’s, indicating 
that LAAL-ELM, though effective, does not match CUP’s overall 
performance. Other methods such as DWL, STar, and RF had weighted 
average performance scores of 0.424, 0.303, and 0.274, respectively. 
These scores reflect their relative limitations in managing distribution 
shifts and class imbalance compared to CUP.

RLLS, with the lowest weighted average performance score of 
0.180, demonstrates the least effectiveness among the evaluated 
methods, further underscoring CUP’s superior performance. The 
substantial gap between CUP and other methods underscores CUP’s 
robustness and its exceptional capability in achieving high accuracy, 
recall, precision, and overall balanced performance in predicting FMD 
outbreaks. Overall, CUP’s outstanding performance across all metrics 
positions it as the most effective method for addressing the complexities 
associated with class imbalance and distribution shifts in the FMD 
dataset, confirming its suitability as a leading approach in this domain.

5 Discussion of results

The main objective of this study was to enhance predictive 
performance of RF model in predicting FMD outbreaks under varying 
distributions for enhanced preparedness in Uganda, achieved through 
the proposed CUP approach that involved the integration of 
techniques including borderline-SMOTE, active learning, probabilistic 
calibration and pseudo-label annotation. Furthermore, the study 
evaluated the proposed CUP approach’s performance by utilizing five 
performance metrics including accuracy, AUC, recall, precision, and 
F1-score. The section presents a discussion of the study findings, 
contributions, limitations, and recommendations from this study.

5.1 Impact of component-wise 
contributions on CUP performance

The component-wise performance evaluation of the CUP 
approach provides valuable insights into the specific roles that each 
component plays in improving the model’s predictive capabilities. This 
evaluation highlights how the integration of each component 
including Borderline-SMOTE, active learning, probabilistic 
calibration, and pseudo-labeling collectively contributes to the overall 
success of the CUP approach.

The removal of Borderline-SMOTE resulted in a significant 
decline in the model’s ability to handle class imbalance, which was 
clearly reflected in the drastic reduction of precision, recall, and 
F1-score, despite the accuracy remaining relatively high. This 
discrepancy underscores the importance of considering more than 
just accuracy when evaluating models trained on imbalanced datasets. 
Borderline-SMOTE is particularly effective in addressing class 
imbalance by generating synthetic instances near the decision 
boundary where the model is most likely to make errors. By 
strategically focusing on these critical areas, the CUP approach, with 
Borderline-SMOTE, enhances the model’s ability to correctly classify 
minority class instances, which is essential for achieving a balanced 
and reliable predictive performance.

TABLE 9 Comparative analysis of CUP performance with existing 
methods.

Method ACC AUC Recall Precision F1

RF 0.458 0.583 0.031 0.236 0.064

DWL 0.957 0.478 0.007 0.667 0.013

STar 0.823 0.467 0.136 0.035 0.056

LAAL-ELM 0.570 0.714 0.320 0.642 0.434

RLLS 0.358 0.382 0.097 0.064 0.001

CUP 0.985 0.842 0.743 0.855 0.791

ACC, accuracy; AUC, area under curve; RF, random forest; DWL, dynamic weighted learning; 
STar, select TARgets; LAAL-ELM, less annotated active learning extreme learning machine; RLLS, 
regularized learning under label shifts; CUP, calibrated uncertainty prediction. Bold values indicate 
the best-performing model across the various performance metrics.
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Active learning plays a pivotal role in the CUP approach by 
iteratively selecting the most uncertain samples from the validation 
set, which are then used to improve the model through calibration and 
pseudo-labeling. When active learning was excluded, there was a 
noticeable reduction in the model’s accuracy and predictive precision, 
particularly concerning minority class detection. While the AUC was 
slightly higher, indicating good discriminatory power, the reduction 
in precision, recall, and F1-score highlighted that active learning 
significantly contributes to the model’s ability to focus on challenging, 
uncertain samples, thereby enhancing its overall robustness. Active 
learning drives the model toward a more efficient learning process, 
ensuring that the most informative samples are used to refine the 
model iteratively, leading to improved performance on real-world, 
unseen data.

Probabilistic calibration is crucial for refining the model’s 
probability estimates, ensuring that the predicted probabilities 
align closely with the actual class distributions. The absence of 
probabilistic calibration resulted in a marked decrease in accuracy, 
despite maintaining relatively high AUC and precision. This drop 
in performance, particularly in recall and F1-score, highlights the 
importance of calibration in the CUP approach. Calibration 
ensures that the model’s predictions are not only accurate but also 
reliable, particularly when dealing with uncertainty in 
classification. By adjusting the probability estimates, probabilistic 
calibration reduces overconfidence in incorrect predictions and 
improves the model’s overall decision-making process. This leads 
to more balanced performance metrics and better generalization 
to new data.

FIGURE 14

Comparative performance analysis of various methods. ACC, accuracy, AUC, area under curve, RF, random forest; DWL, dynamic weighted learning; 
STar, select TARgets; LAAL-ELM, less annotated active learning extreme learning machine; RLLS, regularized learning under label shifts; CUP, calibrated 
uncertainty prediction.

FIGURE 15

Weighted average performance of evaluated methods. RF, random forest; DWL, dynamic weighted learning; STar, select TARgets; LAAL-ELM, less 
annotated active learning extreme learning machine; RLLS, regularized learning under label shifts; CUP, calibrated uncertainty prediction.
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Pseudo-labeling complements the active learning and calibration 
processes by providing additional training data, particularly from 
uncertain samples. These samples, once calibrated, are pseudo-
annotated and added back to the training dataset. This iterative 
process helps the model to better understand the underlying data 
distribution and improves its ability to generalize. Without pseudo-
labeling, the model misses out on valuable information that could 
have been leveraged to enhance its performance. The iterative 
retraining using pseudo-labeled samples helps to refine the model 
continually, improving its predictive power, especially in complex 
scenarios where labeled data is scarce or imbalanced.

5.1.1 Superiority of CUP in mitigating distribution 
shifts in prediction of FMD outbreaks

To enhance the performance of the optimal baseline mode (RF) 
in predicting FMD outbreaks under distribution shifts, the study 
developed the CUP approach to address the challenge. To achieve a 
better performing CUP approach, the study integrated Borderline-
SMOTE, active learning, probabilistic calibration, and pseudo-
labeling techniques. This combination addressed class imbalance, 
queried uncertainty instances, calibrated their probabilities to align 
closer to the true values, and transformed the calibrated probabilities 
into pseudo-labels for retraining the baseline model. Subsequently, a 
CUP algorithm was developed to implement the approach in 
mitigating distribution shifts for predicting FMD outbreaks 
in Uganda.

The results highlight the exceptional performance of the CUP 
approach in mitigating distribution shifts and handling class 
imbalance for predicting FMD outbreaks. CUP achieved a 
remarkable Accuracy of 0.985, far surpassing the closest competitor, 
DWL, which scored 0.957. This indicates CUP’s superior ability to 
correctly classify both outbreak and non-outbreak instances. 
Additionally, CUP’s AUC of 0.842 demonstrates its strong capability 
in distinguishing between classes across various thresholds, 
outperforming other methods, including LAAL-ELM (0.714). The 
CUP approach also excelled in Recall with a score of 0.743, 
substantially higher than LAAL-ELM (0.320) and other methods, 
showcasing its effectiveness in identifying true outbreak cases. Its 
Precision of 0.855 further underscores its accuracy in making 
predictions while minimizing false positives, a notable improvement 
over LAAL-ELM and other methods. The F1-score of 0.791 achieved 
by CUP reflects a well-balanced performance between precision and 
recall, outshining the other methods, including RLLS, which had an 
F1-score of 0.001. The weighted average performance score of 0.843 
for CUP, significantly higher than the next best score of 0.536 by 
LAAL-ELM, reinforces its superior overall performance. These 
results confirm CUP’s effectiveness and robustness in managing the 
challenges of class imbalance and distribution shifts, establishing it 
as the most reliable approach for predicting FMD outbreaks in 
the dataset.

5.2 Contributions of the study

The main objective of this study was to enhance the performance 
of RF in prediction of FMD outbreaks for enhanced preparedness in 
Uganda. The study’s contributions to methods and practice are 
as follows:

5.2.1 Contribution of the study to methods
This study made significant contributions by devising a novel 

CUP approach based on the data-centric domain adaptation 
framework. This innovative methodology was rigorously evaluated, 
with the results demonstrating its notable superiority over 
conventional methods reported to tackle distribution shifts in ML 
domain. Through development and assessment, the study has 
enriched the methodological landscape, offering promising avenues 
for more effective and robust strategies in addressing distribution 
shifts within the ML domain.

5.2.2 Contribution of the study to practice
By addressing the challenge of varying distributions in ML-based 

prediction of FMD outbreaks, this study significantly enhances 
preparedness for managing and controlling FMD in Uganda. The 
proposed CUP’s ability to provide timely and accurate predictions of 
potential FMD outbreaks under varying distributions offers valuable 
information to policymakers, farmers, and veterinary officers. This 
enables continuous surveillance of hotspots, early detection of 
outbreaks and facilitates optimal allocation of resources, ultimately 
improving the effectiveness of FMD management and control efforts 
in the country.

5.3 Limitations of the study

This section acknowledges the limitations encountered during the 
study and discusses their potential impact on the research findings:

 a. Computational resource requirements: The proposed CUP 
approach, which demonstrated superior performance in 
handling varying distributions, required significantly more 
computational resources. This increased demand for 
computational power may pose practical challenges in 
implementing the approach, particularly in settings with limited 
resources. Addressing this limitation by optimizing the 
computational efficiency of the CUP approach could enhance its 
feasibility and scalability for deployment in operational contexts. 
This may involve exploring techniques such as model pruning, 
and algorithmic optimizations to reduce processing time and 
resource utilization while maintaining predictive performance.

 b. Dataset-specific evaluation: Another limitation of the study is 
that the CUP approach was evaluated exclusively on the FMD 
dataset. This focus presents a gap in understanding its 
performance across different datasets. While CUP 
demonstrated impressive results in predicting FMD outbreaks, 
its effectiveness and generalizability to other domains remain 
untested. Future research should explore the application of 
CUP on various datasets to assess its robustness and 
adaptability in diverse contexts. This additional validation 
could provide a more comprehensive understanding of CUP’s 
capabilities and limitations beyond the FMD dataset.

6 Conclusion

The persistent challenge of FMD outbreaks poses significant 
threats to the livestock industry, communities, and economies, 
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especially in developing countries like Uganda. Addressing this 
issue requires innovative approaches. Despite previous efforts to 
leverage ML for predicting FMD outbreaks, these studies often 
operated under stationary conditions, rendering the models 
vulnerable to varying distributions that significantly degrade their 
predictive performance. In this study, we  proposed a CUP 
approach that integrates Borderline-SMOTE, active learning, 
probabilistic calibration, and pseudo-label annotation. Each 
component plays a distinct role: Borderline-SMOTE addresses 
class imbalance, active learning focuses on the most informative 
samples, probabilistic calibration ensures accurate probability 
estimates, and pseudo-labeling enhances the training dataset 
iteratively. The component-wise evaluation showed that removing 
any of these elements significantly degrades performance, 
emphasizing their collective importance in achieving the observed 
improvements. This approach aimed to enhance the performance 
of the RF model in predicting FMD outbreaks under varying 
distributions. Further evaluation demonstrated that the CUP 
approach significantly outperforms traditional methods, 
maintaining excellent predictive performance even when 
distribution shifts occur. The CUP approach’s iterative and 
integrated nature allows it to adapt and refine its predictions 
continually, leading to robust performance across various metrics. 
This innovative approach is crucial for managing FMD outbreaks 
in the endemic setting of Uganda. It facilitates continuous 
surveillance of potential outbreak hotspots, enabling early 
detection and optimal allocation of resources in resource-
constrained regions of Uganda. The CUP method represents a 
significant advancement in predictive modeling for disease 
outbreaks, offering a more resilient and accurate tool for livestock 
management. Future work should focus on evaluating the 
performance of CUP across different datasets and conducting 
algorithmic optimizations to reduce processing time and resource 
utilization while maintaining predictive performance.
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