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The integration of artificial intelligence in education has shown great potential 
to improve student’s learning experience through emotion detection and the 
personalization of learning. Many educational settings lack adequate mechanisms 
to dynamically adapt to students’ emotions, which can negatively impact their 
academic performance and engagement. This study addresses this problem by 
implementing a deep reinforcement learning model to detect emotions in real-
time and personalize teaching strategies in a hybrid educational environment. 
Using data from 500 students, captured through cameras, microphones, and 
biometric sensors and pre-processed with advanced techniques such as histogram 
equalization and noise reduction, the deep reinforcement learning model was 
trained and validated to improve the detection accuracy of emotions and the 
personalization of learning. The results showed a significant improvement in the 
accuracy of emotion detection, going from 72.4% before the implementation of 
the system to 89.3% after. Real-time adaptability also increased from 68.5 to 87.6%, 
while learning personalization rose from 70.2 to 90.1%. K-fold cross-validation with 
k  =  10 confirmed the robustness and generalization of the model, with consistently 
high scores in all evaluated metrics. This study demonstrates that integrating 
reinforcement learning models for emotion detection and learning personalization 
can transform education, providing a more adaptive and student-centered learning 
experience. These findings identify the potential of these technologies to improve 
academic performance and student engagement, offering a solid foundation for 
future research and implementation.

KEYWORDS

artificial intelligence in education, deep reinforcement learning, emotion detection, 
personalization of learning, computer vision

1 Introduction

In recent years, integrating artificial intelligence (AI) in education has shown significant 
potential to transform students’ learning experience. Among the most promising applications 
are emotion detection and learning personalization systems, which use advanced technologies 
to adapt to students’ emotional and academic needs in real time (Ouyang and Jiao, 2021). This 
study is part of this line of research, exploring the implementation of a deep reinforcement 
learning (DRL) model together with convolutional neural networks (CNN) and recurrent 
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neural networks (RNN) to improve the accuracy of emotion detection 
and the personalization of learning in a hybrid educational 
environment (Zhang et al., 2023).

The motivation behind this research lies in the growing evidence 
that emotions play a crucial role in the learning process—previous 
studies, such as those by Trigueros et al. (2019), have shown that 
positive emotions can increase motivation and academic performance. 
In contrast, negative emotions can have the opposite effect. However, 
many existing studies focus solely on static data sets or predefined 
scenarios, limiting their ability to adapt to students’ evolving 
emotional states in real-time. Additionally, although CNNs and RNNs 
have been successfully applied in emotion detection tasks, their 
isolated use presents challenges in simultaneously handling spatial and 
temporal data. There is also a lack of research that integrates 
reinforcement learning models, like DRL, with emotion detection 
systems to optimize personalized learning strategies dynamically.

A critical gap in current research is the limited adaptability of 
existing models to diverse and fluctuating emotional and academic 
inputs in real-world educational environments. Most models cannot 
continuously adjust their strategies based on real-time emotional 
feedback, essential for effectively personalizing learning experiences. 
This gap highlights the need for more dynamic systems capable of 
handling complex emotional data and providing real-
time personalization.

The main objective of this study is to design and implement an 
AI-based system that uses a hybrid model of CNN and RNN along 
with DRL to detect emotions in real-time and personalize teaching 
strategies based on these detections (Kotwal et  al., 2022). The 
hypothesis is that such an adaptive system will improve accuracy in 
emotion detection and allow for more effective personalization of 
learning, ultimately improving academic performance and 
student engagement.

Emotional and academic data was collected from 500 students in 
a hybrid educational environment to address this goal. The data was 
captured using cameras, microphones, and biometric sensors and then 
pre-processed using advanced techniques such as histogram 
equalization and noise reduction to improve the quality of the inputs 
(Kumar and Mahajan, 2019). CNN was implemented for facial 
expression recognition and RNN for audio sequence analysis, 
combining both approaches in a hybrid model integrated with the 
DRL. The resulting model was trained using 70% of this data, with 
15% allocated to validation and another 15% to testing.

By integrating CNN and RNN with DRL, this study addresses the 
gaps above by providing a system that processes spatial and temporal 
emotional data and dynamically adapts to students’ needs in real time. 
This hybrid approach allows for continuous personalization of 
learning strategies, which has been a significant limitation in previous 
research. Furthermore, using DRL enables the system to optimize 
decision-making processes, ensuring that the learning strategies 
evolve alongside students’ emotional and academic progress.

The study’s results are promising; the accuracy of emotion 
detection increased significantly from 72.4% before system 
implementation to 89.3% after implementation. Additionally, the 
system’s real-time adaptive capacity improved from 68.5 to 87.6%, and 
learning personalization increased from 70.2 to 90.1%. These results 
indicate that the system based on a hybrid model of CNN-RNN and 
DRL can detect emotions accurately and adapt teaching strategies 
effectively to meet students’ individual needs. K-fold cross-validation 

with k = 10 was used to evaluate the model’s robustness and 
generalizability. The results showed consistently high scores on all 
assessed metrics, suggesting that the model is stable and generalizable 
to different data set partitions. This robustness is crucial to ensuring 
the system can be applied effectively in various educational contexts.

The obtained results validate the effectiveness of combining CNN, 
RNN, and DRL for emotion detection and personalized learning. It 
fills critical gaps in research by providing a model that can dynamically 
adapt to students’ emotional states in real-time. These demonstrate the 
potential of advanced AI technologies to transform education, offering 
a more adaptive, responsive, and student-centered learning experience, 
which current models have not yet fully achieved.

This study significantly contributes to personalized education by 
integrating advanced AI models for emotion detection and learning 
personalization, specifically CNN, RNN, and DRL. The results validate 
the model’s effectiveness and highlight the potential of these 
technologies to transform education, providing a more adaptive and 
student-centered learning experience. This innovative approach can 
significantly affect how learning is approached in the future, improving 
student engagement and academic performance (Croll et al., 2023).

2 Literature review

Implementing intelligent systems for emotion detection and the 
personalization of learning in educational environments has gained 
increasing attention in recent research. This interdisciplinary field 
combines advances in AI, psychology, and educational sciences to 
improve students’ learning experiences by adapting teaching strategies 
to their emotional and academic needs (Coraci et al., 2023). Real-time 
emotion detection has become a critical tool for enhancing the quality 
of education, with studies highlighting how emotions impact students’ 
motivation, attention, and academic performance Villegas-Ch et al. 
(2023). These studies underscore the importance of systems capable 
of dynamically detecting and responding to students’ emotions to 
optimize their educational experience.

Despite these advancements, many current systems struggle to 
adapt to fluctuating emotional states in real-time, leading to limited 
personalization of learning strategies. A significant gap in the existing 
literature is the lack of integrated approaches simultaneously 
processing spatial (facial expressions) and temporal (emotional 
progression) data. Many systems employ either CNNs or RNNs in 
isolation. This restricts their ability to provide comprehensive emotion 
detection and learning personalization, particularly in a hybrid 
learning environment with constant emotional and academic variables.

Various approaches have been proposed for emotion detection, 
mainly using CNNs for facial expression recognition—for instance, 
Wang et  al. (2023) demonstrated that CNNs could accurately 
recognize emotional expressions. However, the performance of such 
systems is often constrained by input data quality and the algorithms’ 
ability to handle variations in facial expressions. Our study addressed 
these challenges by applying advanced preprocessing techniques, such 
as histogram equalization and noise reduction, which significantly 
improved the quality of facial images used for model training, 
resulting in an emotion detection accuracy of 89.3%.

One of the primary limitations in the current literature is the 
reliance on static datasets and predefined scenarios for emotion 
detection, which fails to account for the dynamic nature of emotional 
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states in real-world educational settings. This gap is particularly 
significant when attempting to personalize learning strategies, as 
current systems lack the flexibility to adjust in real time based on 
emotional feedback from students. This limitation demonstrates the 
need for more adaptive systems to continuously monitor and adjust 
teaching strategies to reflect students’ emotional and 
academic progress.

DRL methods have increasingly incorporated CNNs or RNNs to 
enhance their performance in various applications. CNNs are 
particularly effective in extracting spatial features from images, 
making them suitable for emotion detection from facial expressions. 
However, while efficiently handling spatial data, CNN-based methods 
face limitations when processing sequential information, such as 
emotional changes over time. On the other hand, RNNs, especially 
Long Short-Term Memory (LSTM) networks, are designed to handle 
temporal dependencies and are often employed for tasks requiring the 
analysis of time-series data. Despite their strengths in capturing 
temporal information, RNN-based methods struggle with spatial 
feature extraction and may suffer from vanishing gradient problems 
when processing long sequences.

However, the isolated use of CNNs or RNNs is insufficient to 
handle the complex emotional and academic inputs needed for 
effective real-time personalization of learning strategies. The literature 
lacks models that effectively combine spatial and temporal data 
processing with robust policy optimization, essential for adapting 
teaching strategies dynamically in response to students’ evolving 
emotional states.

Our approach combines the strengths of both CNNs and RNNs 
to manage spatial and temporal data more effectively. Our model can 
deliver a more comprehensive analysis by integrating CNNs for 
emotion recognition from facial features and RNNs for analyzing the 
temporal progression of these emotions. Furthermore, we employ 
Proximal Policy Optimization (PPO) to optimize this hybrid model 
in a dynamic educational environment. PPO has been shown to 
outperform traditional optimization methods by providing more 
stable and efficient learning, which is crucial when adapting teaching 
strategies based on students’ real-time emotional and 
academic feedback.

Research by Pervin et al. shows that the ability of a system to adapt 
in real-time to students’ needs is essential for personalized education—
research by Pervin et al. (2021) tutoring systems can adapt educational 
content based on student interactions and performance. While CNNs 
are effective for emotion detection, the ability of a system to adjust 
teaching strategies in real time based on detected emotions is essential 
for personalized education. Deep reinforcement learning (DRL) has 
emerged as a powerful approach for real-time adaptation in 
educational environments (Petch et  al., 2024) showed how DRL 
models could learn optimal policies for personalizing learning based 
on students’ emotional states and performance metrics. These models, 
however, face challenges in balancing exploration and exploitation in 
dynamic educational environments where emotional data is 
highly variable.

In DRL, two major categories of approaches exist: model-based 
and model-free. Model-based DRL methods, such as Dyna-Q, attempt 
to create a model of the environment, enabling simulations to predict 
future states and optimize decision-making (Lin et al., 2024). However, 
model-based methods may struggle to build accurate and timely 
representations of the environment in complex and unpredictable 

environments like education, where emotions fluctuate rapidly. On the 
other hand, model-free approaches, such as Q-learning and SARSA, 
directly optimize the agent’s actions without requiring an 
environmental model. Still, they are less effective in continuous or 
high-dimensional spaces, such as those needed for personalized 
learning based on emotions (Cloude et al., 2024).

PPO has gained recognition for its balance between stability and 
efficiency among the various DRL algorithms. PPO, a model-free 
method, has been particularly effective in tasks involving continuous 
action spaces, such as adjusting teaching strategies in real time to 
match students’ fluctuating emotional and academic states. Unlike 
algorithms like Deep Q-Network (DQN), which perform well in 
discrete action spaces but struggle with continuous outputs, PPO uses 
a clipped surrogate objective function that ensures stable learning 
without drastically altering the policy (Wang et al., 2023). This makes 
PPO a more suitable choice for our educational environment, where 
continuous adjustments to teaching strategies are needed based on 
subtle changes in student emotions.

While other algorithms like Advantage Actor-Critic (A3C) have 
been used in similar applications, PPO’s lower sensitivity to 
hyperparameters and better sample efficiency provided a more robust 
solution in our context. Previous studies employing Deep 
Deterministic Policy Gradient (DDPG) and A3C reported challenges 
with convergence in dynamic educational environments, where the 
state space continuously evolves due to students’ emotional and 
academic variability.

Our proposed method, which combines CNNs for spatial emotion 
recognition, RNNs for temporal analysis, and PPO for policy 
optimization, demonstrated superior adaptability and precision in 
real-time environments. This hybrid model significantly outperformed 
standalone CNN or RNN approaches, achieving an 88.0% precision 
rate compared to 85.6% for CNN-based and 83.2% for RNN-based 
methods. This improvement highlights the advantages of integrating 
spatial and temporal data processing with stable policy optimization, 
making our approach more effective for emotion-driven personalized 
learning in hybrid educational environments.

In this study, the PPO algorithm significantly improved real-time 
adaptability, increasing from 68.5 to 87.6%. This improvement can 
be attributed to the algorithm’s ability to maintain a stable learning 
process while effectively managing the variability of emotional data. 
Cross-validation techniques such as k-fold (k = 10) were applied to 
evaluate the model’s robustness, confirming consistently high scores 
in all performance metrics. Valuing intelligent educational systems is 
crucial to ensure their effectiveness and generalization. Studies such 
as those by Aldriwish (2024) have used cross-validation techniques to 
evaluate the robustness of these systems. K-fold cross-validation has 
effectively assessed the consistency of model performance across 
different partitions of the data set.

Some emerging reinforcement learning (RL) approaches have 
recently been proposed in model-based and model-free categories. 
These include Fujimoto et  al. (2024), which aims to improve the 
representation of the state-action space, improve sampling efficiency, 
and simplify model-free RL architectures. Furthermore, Shang et al. 
(2023) and Huang et al. (2024) presents innovative techniques for 
regulating continuous actions in reinforcement learning.

While promising and offering potential advances in stability, 
efficiency, and adaptability within complex action spaces, our choice 
of PPO is supported by its demonstrated robustness in managing high 
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variability and continuous adaptation, both essential in dynamic 
educational settings. Unlike Shang et  al. (2023) and Huang et  al. 
(2024), which is highly specialized for controlled environments, PPO 
has proven adaptable across fluctuating emotional and academic data 
in real-world applications. Future work may consider these 
approaches for specific scenarios once they have been validated 
through formal peer review. Still, for the current study, PPO aligns 
best with our goal of stable, continuous personalization in real-time 
educational contexts.

This study highlights the importance of selecting appropriate DRL 
algorithms for specific educational applications. It reinforces the 
suitability of PPO for real-time emotion detection and learning 
personalization in hybrid educational environments. The results 
provide a strong foundation for future research and 
further improvements.

3 Materials and methods

3.1 Description of the proposed system

This work proposes a system that uses DRL models to adapt real-
time teaching strategies based on students’ emotions. Educational 
systems’ ability to recognize and respond to students’ emotions is 
crucial to fostering a positive and effective learning environment. By 
integrating advanced emotion detection technologies and DRL 
algorithms, this system seeks to personalize the educational 
experience, optimizing students’ academic performance and 
emotional well-being.

3.1.1 General system architecture
The proposed system for emotional personalization in education 

using DRL comprises several integrated components that work 
together to detect students’ emotions and adapt teaching strategies in 
real-time. The system’s architecture is divided into three main 
modules: the emotional data capture module, the emotion processing 
and detection module, and the DRL-based educational adaptation and 
personalization module (Ducrocq and Farhi, 2023).

The emotional data capture module uses various devices to collect 
relevant information about the student’s emotional state. These devices 
include cameras to capture facial expressions, microphones for voice 
analysis, and biometric sensors to measure variables such as heart rate. 
The data captured by these devices is sent to the emotion processing 
and detection module, which is pre-processed and analyzed using 
AI techniques.

The emotion detection and processing module employs CNN and 
RNN to extract emotional features from facial images, voice signals, 
and biometric data. These characteristics classify the student’s 
emotional state in real time. The results of emotion detection are sent 
to the educational adaptation and personalization module. The 
educational adaptation and personalization module is based on a DRL 
model that dynamically uses the detected emotional information to 
adapt teaching strategies (Patel, 2023). This model comprises a 
learning agent that interacts with the educational environment, 
receiving inputs from the student’s emotional state and academic 
performance. DRL’s agent reward feature maximizes student 
engagement and performance by adjusting real-time educational 
activities and teaching methods.

The architecture is presented in the diagram in Figure 1, which 
shows the interaction between the different modules. The data flow 
begins with capturing emotional information, continues with 
emotion processing and detection, and culminates with the 
personalized adaptation of educational content using the 
DRL agent.

3.1.2 Tools and technologies used
Implementing this system requires specific software, hardware 

tools, and advanced AI libraries and frameworks. Regarding 
hardware, high-resolution cameras capture detailed facial 
expressions, quality microphones for precise voice analysis, and 
biometric sensors such as bracelets or smart watches measure heart 
rate and other physiological variables. Various software tools and 
technologies are used to process and analyze emotional data. Facial 
images are pre-processed using the OpenCV library, which provides 
advanced image-processing functions. Speech analysis is performed 
using the book library for audio signal processing (Emami and 
Suciu, 2012).

Artificial intelligence frameworks such as TensorFlow and 
PyTorch are used to develop and train emotion detection models. 
TensorFlow builds and trains CNNs for facial emotion detection, 
while PyTorch builds recurrent neural networks (RNNs) for voice and 
biometric data analysis (Mekruksavanich and Jitpattanakul, 2021).

While both frameworks are widely used in AI, their choice in this 
study was driven by their strengths in specific tasks. TensorFlow was 
chosen for building and training CNNs for facial emotion detection 
due to its robust support for high-performance distributed training 
and ability to quickly deploy models in production environments. 
TensorFlow also offers advanced support for hardware acceleration, 
such as using TPUs (Tensor Processing Units), which can significantly 
reduce training time for large-scale CNN models. This feature is 
critical when dealing with high-resolution facial images and large 
datasets, ensuring efficient training and deployment.

On the other hand, PyTorch was selected for developing RNNs to 
process voice and biometric data due to its dynamic computational 
graph and ease of debugging, making it particularly suitable for 
recurrent networks involving sequential data. PyTorch’s flexible 
architecture allows more intuitive experimentation and adjustment 
during training, especially when fine-tuning the RNNs to capture 
temporal dependencies in the biometric and audio signals. This 
flexibility is crucial in handling real-time data and ensuring the model 
adapts effectively to varying emotional states.

The DRL model is implemented using the OpenAI Gym library 
and TensorFlow. OpenAI Gym provides a simulated environment for 
DRL agent training, allowing teaching strategies to be  tested and 
adjusted in a controlled environment before being implemented in the 
real world (Yan, 2024). Combining these technologies will enable us 
to create an adaptive learning environment that considers academic 
performance and the student’s emotional state, thus promoting a more 
holistic and practical education.

3.2 Emotion detection

Emotion detection is a significant part of the proposed system as 
it provides the basis for personalized educational strategies using the 
DRL model.
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3.2.1 Tools and technologies used
Emotional data capture is performed in a controlled environment 

that emulates real classroom conditions. To collect facial expressions, 
high-resolution cameras are strategically placed in the classroom to 
ensure complete coverage of all students. These cameras capture 
images at a rate of 30 frames per second, ensuring that even subtle 
changes in facial expressions are accurately detected.

Voice analysis uses high-quality microphones evenly distributed 
in the classroom to capture student vocalizations. These microphones 
are calibrated to minimize background noise and synchronize with 
cameras to correlate facial expressions with audio signals (Leong, 
2020). Additionally, biometric sensors, such as smart bracelets, are 
used to monitor heart rate and other physiological variables that can 
provide additional indications about students’ emotional states. Data 
collection follows a strict protocol to ensure participants’ privacy and 
informed consent. The data collected includes facial images, voice 
recordings, and bio-metric readings, which are stored securely and 
used exclusively for research purposes (Ramirez et al., 2010).

3.2.2 Data processing
Data processing is crucial in preparing the captured raw data for 

analysis. The facial images are first preprocessed using the OpenCV 
library. This preprocessing includes face detection using Haar cascade 
algorithms and normalizing the images to a standard size of 224×224 
pixels. Additionally, an illumination correction is applied to ensure 
that variations in lighting conditions do not affect the analysis.

The captured audio signals are processed using the book library. 
Audio preprocessing includes noise removal using filtering techniques 
based on the frequency spectrum and normalization of amplitudes. 
Voice characteristics such as pitch and energy are extracted using 
short-time Fourier transform (STFT) and represented as spectrograms.

Heart rate readings and other physiological variables are 
smoothed for biometric data using median filters to remove 
spurious peaks and high-frequency noise. Heart rate variability 

(HRV) is calculated to provide a more stable measure of 
emotional state.

Mathematically, image preprocessing can be represented as a 
series of transformations T applied to the raw image I, as presented in 
Equation 1:

 
( ) ( )( )( )I T I resize normalize face _ detection I' = =

 (1)

For audio signals, the preprocessing process can be described by 
the spectral transformation and filtering Equation 2:

 
( ) ( )( )( )A t STFT filter A t' =

 (2)

A(t) represents the raw audio signal at time t, and A’(t) represents 
the filtered spectral representation.

3.2.3 Emotion detection models
The emotion detection models used in this system are based on 

CNN for facial image analysis and RNN for voice signals and biometric 
data. CNNs are particularly suitable for recognizing spatial patterns in 
images, while RNNs effectively handle sequential and temporal data 
such as audio and biometric readings (Alamatsaz et al., 2024).

The CNN model used for facial emotion detection is based on the 
ResNet-50 architecture, an effective deep network for image classification 
tasks. The model is trained using a labeled dataset of facial expressions, 
applying data augmentation techniques to improve generalization. The 
loss function used is the cross entropy, defined in Equation 3 as:

 
( ) ( )

1
ˆ,ˆ log

N
i i

i
y y y y

=
= −∑

 
(3)

FIGURE 1

System architecture using deep reinforcement learning models.
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A Long-Short-Term Memory (LSTM) network, a variant of RNN 
that can capture long-term dependencies in data sequences, is used to 
analyze speech signals. The LSTM model is trained with audio 
spectrograms labeled with corresponding emotions, and the loss 
function used is like that of CNN.

Biometric data is processed by a Gated Recurrent Unit (GRU) 
network, another RNN variant less complex than LSTM but equally 
compelling for specific applications. The GRU model takes the time 
series of HRV and other physiological variables as input and produces 
an emotion classification based on these features (Smagulova and 
James, 2019). These models are trained in a high-performance 
computing environment, using optimization techniques such as 
Adam to adjust the weights of the neural networks. The models are 
validated using an independent data set to ensure their generalization 
capacity. Performance metrics such as accuracy, sensitivity, and 
specificity are calculated to evaluate the effectiveness of the models 
in emotion detection.

3.3 Implementation of deep reinforcement 
learning

The implementation of the DRL constitutes the core of the 
proposed system, allowing the dynamic and adaptive personalization 
of teaching strategies based on the emotions and academic 
performance of the students.

3.3.1 DRL model structure
The DRL agent is based on a deep neural network designed to make 

decisions in an adaptive teaching environment. The neural network 
architecture used in the DRL agent combines a CNN and an LSTM, 
allowing the processing of visual inputs (facial emotions) and temporal 
sequences (academic performance and biometric data) (Wang et al., 
2023). The CNN network is responsible for extracting relevant features 
from facial images, while the LSTM handles the temporality of the data 
sequences. The network architecture can be described as follows:

 • Image Input: Preprocessed facial images are input to a CNN 
network with multiple convolutional and pooling layers. These 
layers extract key spatial features from facial expressions.

 • Temporal Sequence Input: Sequential data, such as academic 
performance and biometric data, are input to an LSTM network, 
which captures temporal dependencies.

 • Concatenation of Features: The CNN and the LSTM outputs are 
concatenated and entered into a fully connected network that 
generates the agent’s action policy.

If face images are represented as I and time sequences as S, the 
output of the CNN can be denoted as F(I) and the output of the LSTM 
as G(S). The concatenation of these outputs can be expressed by 
Equation 4:

 ( ) ( ) ( )( ), ,H I S concat F I G S=  (4)

Novelty in PPO Implementation: The main novelty in this 
work lies in integrating PPO with the CNN-LSTM architecture. 

PPO was selected due to its ability to efficiently handle continuous 
and variable action spaces, critical in educational settings where 
data such as emotions and academic performance change 
dynamically. PPO also provides stability in the learning process, 
avoiding abrupt policy changes using a trimmed objective 
function. This ensures the DRL agent can continuously adapt 
without losing strength or efficiency, essential in real-time 
learning personalization tasks.

Furthermore, the combination of CNN and LSTM allows the 
model to process spatial features (facial emotions) and temporal 
sequences (academic performance and biometric data). This hybrid 
approach leverages PPO’s ability to optimally and adaptively adjust 
policies based on visual and sequential inputs, allowing the DRL agent 
to continuously personalize teaching strategies, even in dynamic and 
high-dimensional environments.

The agent’s action policy, represented as π(a|s), is generated from 
H(I, S) through fully connected layers.

The reward function R is designed to optimize agent learning 
based on the student’s emotional state, E, and academic performance, 
A. The reward is defined by Equation 5:

 R E Aα β= +  (5)

Where α and β are coefficients that weigh the relative importance 
of emotions and academic performance, the agent aims to maximize 
the cumulative reward function over time by optimizing the action 
policy π.

The DRL model is based on an agent making decisions in a 
simulated educational environment. The agent architecture includes a 
deep neural network that acts as the value or policy approximation 
function. This neural network processes inputs from the environment 
and produces the actions that the agent must take.

The neural network comprises several hidden layers, each with 
a specific number of neurons. For example, one configuration 
includes a network with three hidden layers of 64, 128, and 64 
neurons, respectively. The choice of the specific architecture 
depends on the complexity of the environment and the tasks the 
agent must perform.

Input variables for the DRL model include the student’s emotional 
state, represented by features extracted from facial, voice, and 
biometric data. These features are normalized and processed to form 
a state vector ts  at time 𝑡.

The hyperparameters of the model are:

 • Learning rate (𝛼): Defines the speed at which the agent updates 
its knowledge. The value used is 0.001.

 • Discount factor (𝛾): Determines the importance of future 
rewards, typically set between 0.9 and 0.99.

 • Minibatch size: Number of samples used for each model update, 
for example, 32 or 64.

 • Number of episodes: Number of times the agent interacts with 
the environment during training, which can vary between 1000 
and 10000 episodes.

 • Exploration vs. Exploitation (𝜖): The parameter for the ϵ-greedy, 
the method controls the probability that the agent explores 
random actions rather than exploits known actions, generally 
decaying from 1 to 0.01.
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3.3.2 Training environment
DRL agent training occurs in a simulated environment that 

emulates actual classroom conditions. This environment includes 
virtual representations of students with varying emotional states and 
levels of academic performance. The training parameters are 
configured to provide a robust framework for learning the agent (Sun 
et al., 2024).

The environment is defined using OpenAI Gym, a popular tool 
for creating reinforcement learning environments. Critical parameters 
of the environment include the number of students, possible emotions 
detected, and academic performance metrics. The climate state ts  at 
time t is represented by Equation 6:

 ( ),t t ts E A=  (6)

tE  is the vector of detected emotions, and tA  is the vector of 
academic performance.

The DRL agent interacts with the environment by selecting actions 
ta  based on the policy ( )|a sπ . Actions may include adapting the 

educational content’s difficulty, modifying the material’s presentation, 
and implementing positive reinforcement techniques. The transition 
from state ts  to state 1ts +  is governed by the environment transition 
function, while the reward function provides feedback to the agent 
about the effectiveness of its actions.

One key innovation in the training process is using a continuous 
feedback loop, where the agent continuously updates its action policies 
based on real-time data input from students. The integration of CNN 
and LSTM allows the model to process visual and temporal data. At 
the same time, PPO ensures stable policy optimization, adjusting the 
pace and difficulty of teaching strategies in response to student 
emotions and performance changes.

Agent training is performed using the Proximal Policy 
Optimization (PPO) algorithm (Zhang et al., 2022), an efficient and 
robust optimization technique for deep reinforcement learning 
policies. The algorithm’s hyperparameters include the learning rate, 
the exploration-exploitation coefficient, and the number of 
update iterations.

The environment is configured with specific parameters to ensure 
adequate training of the DRL model:

 • Update Rate: The rate at which the state of the environment is 
updated, for example, every second.

 • Episode length: Each training episode can last the equivalent of 
a 50 min class.

 • Initialization scenario: The student’s average emotional and 
academic state may be the initial environmental condition at the 
beginning of each episode.

3.3.3 Adaptation in real time
Once trained, the DRL agent is deployed in a real educational 

environment, where it can adapt teaching strategies in real-time based 
on students’ emotions and academic performance. Real-time 
adaptation mechanisms include continuous evaluation of detected 
emotions and dynamic adjustment of teaching strategies.

The DRL model uses a closed-loop feedback system, where 
updated student data continually inform the agent’s decisions. 

Personalized teaching strategies may include adjusting the pace of 
teaching, varying the types of educational activities, and implementing 
emotional support techniques.

The real-time policy update can be represented by Equation 7:

 ( ) ( )1 | | |t ta s a s R sππ π η+ = + ∇ 
 (7)

Where η  is the learning rate, and |R sπ∇   is the gradient of the 
reward expectation concerning the policy.

Adapted teaching strategies are continually evaluated to ensure 
their effectiveness, and the data collected is used to refine and improve 
the DRL model. This ensures the system responds effectively to 
students’ emotional and academic needs, providing a personalized and 
optimized educational experience.

Real-time adaptation is critical to the success of the DRL model 
in an educational setting. Once trained, the DRL model should be able 
to receive real-time input about the student’s emotional state and 
adapt teaching strategies accordingly.

The system implements a continuous feedback loop in which 
student emotions and performance data are captured and processed 
in real time. This data is fed to the DRL agent, which calculates the 
optimal action to improve the student’s learning experience.

Real-time adaptation mechanisms include:

 • Neural network update: The model is continuously adjusted with 
new data received using an online update method.

 • Dynamic adjustments of hyperparameters: Based on the agent’s 
performance, some hyperparameters, such as learning rate and 
𝜖, can be dynamically adjusted to improve learning efficiency.

 • Continuous performance evaluation: Using evaluation metrics, 
the system monitors the student’s academic performance and 
emotional state to adjust teaching strategies immediately.

To evaluate the effectiveness of these adaptation mechanisms, 
metrics such as the accuracy and sensitivity of emotion detection and 
indicators of academic performance are used. This data is analyzed 
periodically to ensure the system meets its educational and 
emotional objectives.

3.4 System integration and evaluation

3.4.1 System integration
The system integration begins with unifying the emotion 

detection modules and the DRL model into a coherent educational 
platform. Emotion detection modules, which include cameras, 
microphones, and biometric sensors, connect to the central system 
using application programming interfaces (APIs) and standard 
communication protocols. These devices continuously capture 
student data and send it to the central server for processing.

The DRL model is integrated into the same platform, using a 
microservices architecture that allows optimal scalability and 
flexibility (Li et al., 2023). Each microservice handles a specific task, 
such as data capture, preprocessing, emotion detection, and DRL 
agent decision-making. This architecture ensures the system can 
adapt and scale as needed, maintaining high availability 
and performance.
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The educational platform for implementing the system is a cloud-
based virtual learning environment, such as Moodle or Blackboard, 
which provides a friendly interface for students and teachers. This 
platform is customized to allow the integration of emotion detection 
modules and the DRL model, facilitating real-time adaptation of 
teaching strategies (Zhang et al., 2023).

3.4.2 Experimental design
A controlled experiment involving several groups of students was 

designed to evaluate the effectiveness of the proposed system. The 
experimental design is divided into two main phases: the pre-test and 
the post-test. In the pre-test phase, a group of students is selected to 
participate in the experiment. These students are divided into two 
groups: the experimental group, which will use the system with DRL 
integration, and the control group, which will continue to use 
traditional teaching methods without emotion-based adaptation.

The experimental group participates in learning sessions in which the 
proposed system adapts teaching strategies in real-time according to the 
emotions detected and academic performance. The control group follows 
a standard curriculum without customization (Barrett and Westermayr, 
2024). The post-test phase involves collecting data on the academic 
performance and emotions of the students in both groups. The data 
collected is compared to evaluate the effectiveness of the DRL system in 
personalizing education.

3.4.3 Evaluation metrics
Evaluation metrics are essential to measure the accuracy of 

emotion detection and the effectiveness of the DRL model in 
personalizing learning. Several metrics are used to perform this 
evaluation comprehensively.

For the accuracy of emotion detection, the following metrics are used:
Accuracy: The proportion of correctly identified emotions among 

all detected emotions, represented by Equation 8.

 

    Accuracy
    

Number of emotions correctly detected
Total number of emotions detected

=
 

(8)

Accuracy: The proportion of detected emotions that are relevant 
and correct, where the proportion of true positives (correctly detected 
emotions) among all detected emotions (true positives + false 
positives) is represented mathematically with Equation 9.

 
  Precision

 
Correctly detected emotions TP

Emotions detected TP FP
= =

+  
(9)

Reminder: The proportion of relevant emotions detected, where, is 
the proportion of true positives (correctly detected emotions) among all 
relevant emotions (true positives + false negatives) represented in 
Equation 10.

 

  Recall
   

Correctly detected emotions TP
Total Emotions correctly detected TP FN

= =
+  

(10)

F1 Score: The harmonic mean of precision and sensitivity, 
balancing both, represented in Equation 11.

 
F1 2 Precision Recall

Precision Recall
×

= ×
+  

(11)

To evaluate the effectiveness of the DRL model in personalizing 
learning, the following performance indicators are considered:

 • Improvement in academic performance: This measure compares 
students’ grades and achievements before and after the 
implementation of the system represented in Equation 12, where 
A represents academic performance measured on a rating scale.

 
A post test pre testA A− −∆ = −

 (12)

 • Student Satisfaction: Students were administered Surveys and 
questionnaires to measure their satisfaction with the adapted 
teaching strategies.

 • System Response Time: The evaluation of the time it takes for the 
system to detect emotions and adapt teaching strategies in 
real-time.

 • Engagement and Participation: Measurement of the active 
participation of students in educational activities before and after 
the implementation of the system, using interaction and 
participation metrics.

The proposed system’s integration and evaluation are done 
through detailed technical procedures and a controlled experimental 
design. Specific metrics measure the accuracy of emotion detection 
and the effectiveness of the DRL model in personalizing learning. This 
ensures a rigorous and comprehensive evaluation of the system’s 
impact on students’ educational experience.

3.5 Ethical and privacy considerations

Implementing AI systems, especially those that detect and analyze 
emotions in educational settings, poses significant ethical and privacy 
challenges. Addressing these aspects appropriately is essential to 
protecting the rights and integrity of the participants.

3.5.1 Informed consent
To carry out this study, informed consent was obtained from all 

participating students. This consent was managed through detailed 
forms that clearly explained the study’s objectives, the procedures 
involved, the data that would be collected, and how it would be used. 
Students were informed of their right to withdraw from the study at 
any time without any negative repercussions.

Informed consent included the explanation that the emotional 
and academic data collected would be used exclusively for research 
purposes and that participants’ identities would always be protected. 
Participants were assured that their data would not be disclosed and 
that any publications resulting from the study would not include 
information allowing their identification.

3.5.2 Data protection
Several measures were implemented to ensure the privacy and 

security of students’ emotional and academic data. Data were stored 
on secure servers, with access restricted only to the study’s principal 
investigators. Additionally, anonymization techniques ensured that 
the data could not be traced back to individual participants.

Images and videos used for emotion detection were processed to 
remove identifiable information before analysis. All facial photos 

https://doi.org/10.3389/frai.2024.1458230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Govea et al. 10.3389/frai.2024.1458230

Frontiers in Artificial Intelligence 09 frontiersin.org

presented in the study documentation are those of the article’s authors 
and were used for illustrative purposes only. These images are included 
with the authors’ explicit consent.

3.5.3 Ethical impact
Implementing an emotional detection system in educational 

settings has significant ethical implications that must be  carefully 
considered. First, ensuring that the system does not infringe on 
students’ privacy or cause emotional or psychological harm is 
essential. Second, the collection and analysis of emotional data must 
respect the dignity and well-being of the participants.

The study is not considered invasive since it does not directly 
intervene in the student’s private lives or require procedures that 
could cause discomfort or risk. For this reason, it was not necessary 
to request formal approval from the university’s ethics commission. 
However, strict ethical guidelines have been followed to ensure 
participants are fully informed and their data is always protected.

The ethical impact analysis must also consider equity and justice. 
It is essential to ensure that the system does not introduce biases that 
could negatively affect certain groups of students. Furthermore, AI 
technologies must be transparent and understandable to end users, in 
this case, students and educators. The implementation of the system 
should include educational components that explain how it works and 
how the information collected is used, thus promoting an environment 
of trust and cooperation.

4 Results

The study involved 500 students from a university cohort, with 
60% participating in person and 40% in hybrid mode. The results are 
categorized in terms of the accuracy and sensitivity of the emotion 
detection models and an analysis of different model configurations 
and pre-processing techniques.

4.1 Management and processing

4.1.1 Data capture
Data capture is a step that allows us to ensure the quality and 

relevance of the information used in the analysis. The tools and devices 
used included cameras to capture facial expressions, microphones to 
record voices, and biometric sensors to measure physiological data 
such as heart rate. The data capture environment was designed to 
replicate real classroom conditions, ensuring that the data reflects 
authentic learning situations. The procedures ensured the data’s quality, 
with measures to minimize noise and interference during capture. The 
data collected was classified into four main categories: images, audio, 
biometric data, and academic records, as presented in Table 1.

4.1.2 Data preprocessing
Data preprocessing is essential to prepare images, audio, and 

biometric data before use in learning models. Various preprocessing 
techniques were applied to clean and normalize the data, including 
histogram equalization to improve the contrast of the facial images 
and noise reduction to improve the audio quality.

Cleaning techniques included removing duplicate and corrupt 
data, while normalization ensured that the data was in a format 

compatible with the deep learning models used. These techniques 
were critical to improving the accuracy and sensitivity of emotion 
detection models.

For images, histogram equalization was used to improve contrast 
and facilitate the detection of emotional features. Noise reduction 
filters were also applied to eliminate unwanted interference in the 
pictures. In the case of audio, volume normalization was performed 
to adjust levels and ensure consistency in quality. Additionally, 
filtering techniques were applied to reduce background noise and 
improve the clarity of voice recordings. Biometric data, such as heart 
rate measurements, were filtered to remove artifacts and noise and 
then normalized to ensure they were in a range suitable for analysis. 
Data normalization is essential for deep learning models to process 
information effectively. The original and preprocessed values are 
presented in Table 2.

The preprocessed data was evaluated to ensure its quality and 
relevance before being used in the learning models. Histogram 
equalization and noise reduction significantly improved the quality of 
facial images, making it easier to detect key emotional features. 
Volume normalization and noise filtering in the audio ensured the 
recordings were clear and consistent, allowing for a more precise 
analysis of the emotions expressed through the voice. After filtering 
and normalization, the biometric data was in a suitable format for 
analysis, allowing for a better interpretation of the students’ stress and 
concentration levels.

4.1.3 Data storage and management
Data capture and preprocessing generate much information that 

must be stored and managed efficiently and securely. This process 
ensures the integrity and availability of the data for future analysis and 
protects participants’ privacy.

Both relational and NoSQL databases were used to store the data, 
adapting to the different needs of the types of data captured. Relational 
databases, such as MySQL and PostgreSQL, were used to store 
academic records and structured metadata, given their robustness and 
ability to handle large volumes of structured data. On the other hand, 
NoSQL databases, such as MongoDB and Cassandra, were used to 
store unstructured data, such as images and audio files, due to their 
flexibility and efficiency in handling this type of data. Table 3 presents 
the storage organization.

Several data management strategies were implemented to ensure 
the integrity and security of the information. Daily and weekly 
backups were performed to prevent data loss. These copies were 
stored in cloud storage systems such as AWS S3 and Google Cloud 
Storage, ensuring availability and quick recovery in case of failures. 

TABLE 1 Types of data captured.

Type of data Description Used tools Purpose

Images Capturing facial 

expressions

High-

resolution 

cameras

Emotion 

analysis

Audio Voice recordings High fidelity 

microphones

Tone and 

emotion analysis

Biometric data Measurement of 

heart rate and 

other signals

Biometric 

sensors

Stress and 

concentration 

analysis

https://doi.org/10.3389/frai.2024.1458230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Govea et al. 10.3389/frai.2024.1458230

Frontiers in Artificial Intelligence 10 frontiersin.org

Role-based access control (RBAC) ensured that only authorized 
personnel could access sensitive data. Permissions were granted 
based on staff roles and responsibilities, minimizing the risk of 
unauthorized access. Additionally, encryption techniques were 
implemented for both transit data and at rest. The data was encrypted 
using advanced algorithms such as AES-256, ensuring the 
information remained protected against unauthorized access and 
security breaches.

Continuous monitoring and auditing systems for data access were 
established, allowing early detection of suspicious activities and 
guaranteeing that all operations on data were recorded and reviewable. 
Additionally, clear policies regarding data retention and deletion were 
defined. Data were maintained only as long as necessary for analysis 
and fulfillment of the study objectives and were then securely deleted 
by applicable regulations. These strategies were critical to maintaining 
data integrity and security, ensuring data was protected from loss, 
unauthorized access, and other security risks.

4.2 Management and processing

4.2.1 Precision and sensitivity of models
The emotion detection models were evaluated using images, video 

sequences, and audio signals collected from 500 students in a hybrid 
educational environment. Of this data, 70% was used for model 
training and 15% for validation. The remaining 15% was reserved for 
final tests. The data were split so that the training, validation, and test 
sets were mutually exclusive to ensure the integrity of the evaluation.

Figure 2 illustrates examples of the facial images used for emotion 
detection. Facial landmarks were used to identify specific 
characteristics in the students’ expressions, allowing for detailed and 
accurate analysis.

Three models were trained to obtain accuracy and sensitivity 
results: CNN, RNN, and a hybrid model that combines CNN and 
RNN. Each model was trained using data augmentation techniques to 
improve generalization and reduce the risk of overfitting. Model 
training was performed in a controlled environment, using a hardware 
configuration with high-performance GPUs to speed up the process.

The accuracy and sensitivity of the models were calculated 
according to standard metrics. Accuracy measures the proportion of 
emotions correctly detected among all emotions detected by the 
model, while sensitivity measures the proportion of real emotions that 
the model correctly identified.

The results, presented in Table 4, show the models’ performance 
in terms of accuracy and sensitivity. These values were obtained by 
applying the trained models to the test set and evaluating their 
performance in detecting emotions.

The CNN model achieved an accuracy of 85.6% and a sensitivity 
of 82.3%, showing its ability to correctly identify a large part of the 
emotions detected. On the other hand, the RNN model obtained an 
accuracy of 83.2% and a sensitivity of 80.1%, slightly lower than the 
CNN. The hybrid CNN-RNN model proved the most effective, with 
an accuracy of 87.5% and a sensitivity of 84.7%. These results indicate 
that combining CNN and RNN architectures significantly improves 
the accuracy and sensitivity of emotion detection, taking advantage of 
the strengths of both approaches.

The models were evaluated repeatedly to ensure the 
reproducibility and consistency of the results. Additionally, a cross-
validation technique was used to assess the performance of the 
models on different subsets of data, ensuring that the models were 
robust and able to generalize well to new data not seen during 
training. The evaluation process of the emotion detection models also 
involved a detailed analysis of the distribution of emotions detected 
in the test set. Using 15% of the data reserved for final testing, the 
model’s ability to correctly identify and classify predominant 
emotions among students in a hybrid educational environment 
was evaluated.

The same data capture and processing devices and techniques 
described above were used for this evaluation. Emotions were 
classified into six categories: happiness, sadness, anger, surprise, fear 
and disgust. Figure 3 shows the distribution of emotions detected in 
the test set.

The data analysis showed that the most detected emotion was 
happiness, with 150 detections. This may be  related to a positive 
educational environment, and focusing on social interaction can 
generate highly positive emotions among students. The second most 

TABLE 2 Accuracy and sensitivity of emotion detection models.

Type of data Preprocessing technique Original values Preprocessed values

Images Histogram equalization 60% with low contrast 95% with high contrast

Noise reduction 70% with noise 10% with noise

Audio Volume normalization Range: 30–80 dB Range: 50–70 dB

Noise filtering 40% with background noise 5% with background noise

Biometric data Signal filtering 15% with artifacts 2% with artifacts

Data normalization Variable range 50–150 bpm Range 60–100 bpm

TABLE 3 Description of data storage.

Database type Type of stored data Tool used Data volume

Relational Academic records, metadata MySQL, PostgreSQL 50GB

NoSQL Images, audios MongoDB, Cassandra 200GB

Cloud storage Backups, historical data AWS S3, Google Cloud Storage 300GB

Database type Type of stored data Tool used Data volume
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frequent emotion was surprise, with 70 detections, which could 
indicate the presence of unexpected or novel events during 
educational activities.

Negative emotions, such as sadness, anger, fear, and disgust, had 
lower detection amounts, with 50, 30, 20, and 30 detections, 
respectively. This distribution suggests that, although negative 
emotions are present, they are not predominant in the environment 
studied. This result could reflect a generally favorable and safe 
educational environment, although it could also indicate the need to 
improve detection techniques to identify negative emotions 
more effectively.

The variability in emotion detection suggests that the models are 
sensitive to different emotional expressions. However, they could 
benefit from additional tuning and optimization to improve accuracy 
in detecting less frequent or more subtle emotions.

The results indicate that the emotion detection models perform 
reasonably well in identifying various emotions in a hybrid educational 
environment. The high accuracy and sensitivity observed for emotions 
such as happiness and surprise are promising. However, the lower 
detection of emotions such as fear and disgust suggest areas 
for improvement.

4.2.2 Comparative analysis
Table  5 presents the precision and sensitivity results for each 

model configuration and preprocessing technique. The image 
preprocessing process was carried out using standard methods. 
Histogram equalization was applied to improve the contrast of facial 
images, thus facilitating the detection of emotional features. On the 

other hand, noise reduction was implemented to minimize the impact 
of interference on the quality of images and audio signals.

Additional baseline RL methods such as Deep Q-Network 
(DQN), A3C, and Deep Deterministic Policy Gradient (DDPG) were 
included in the experiment to further demonstrate the proposed 
method’s superiority. These models were trained under the same 
conditions as CNN, RNN, and CNN-RNN configurations. The results 
show that while DQN and A3C provided reasonable accuracy and 
sensitivity, they struggled with the continuous adaptation required in 
a dynamic educational environment. Specifically, the CNN-RNN with 
PPO outperformed DQN, A3C, and DDPG in accuracy and sensitivity.

The results demonstrate the superiority of the CNN-RNN model 
configuration over the CNN-only and RNN-only approaches. The 
CNN-RNN combination benefits from the CNN’s strong spatial 
feature extraction capabilities and the RNN’s ability to capture 
temporal dependencies in video and audio sequences. Furthermore, 
the PPO algorithm ensures stable learning and policy updates, 
essential for adapting to students’ fluctuating emotional states and 
academic performance. This hybrid approach provides a more 
comprehensive understanding of emotional dynamics, significantly 
enhancing the system’s accuracy and sensitivity. Including noise 
reduction further improves the model’s performance, ensuring higher-
quality signals and better detection of subtle emotional cues.

The results indicate that combining the CNN-RNN with PPO 
achieved the highest precision (88.0%) and sensitivity (85.2%), 
outperforming not only the CNN and RNN configurations but also 
DQN (82.9%), A3C (81.5%), and DDPG (83.4%) in accuracy. 
Similarly, CNN-RNN with PPO showed superior sensitivity compared 
to DQN (80.2%), A3C (79.8%), and DDPG (81.1%). These results 
highlight the importance of using an effective combination of robust 
preprocessing techniques, advanced neural network architectures, and 
reinforcement learning algorithms like PPO in hybrid 
educational environments.

In contrast, models that only employed CNN or RNN showed 
lower performance, emphasizing the limitations of each method when 
used individually. CNN models excel at processing static spatial 

FIGURE 2

Examples of facial images used in the emotion detection process. Facial landmarks are used to identify specific features in students’ expressions.

TABLE 4 Precision and sensitivity of emotion detection models.

Model Precision (%) Sensitivity (%)

CNN 85.6 82.3

RNN 83.2 80.1

CNN-RNN hybrid 87.5 84.7
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information but struggle with the temporal dynamics essential for 
detecting emotion over time. Similarly, while RNN models are well-
suited for temporal data, they cannot capture fine-grained spatial 
features critical for identifying emotions in facial expressions. This 
limitation is evident in the precision and sensitivity results, where the 
CNN-RNN hybrid consistently outperforms individual 
model configurations.

Figure 4 compares the performance of three model configurations 
(CNN, RNN, and CNN-RNN) using two preprocessing techniques 
(histogram equalization and noise reduction). Each bar represents the 
percentage of accuracy or sensitivity obtained for the specific 
combination of model and preprocessing technique, with error bars 
indicating the standard deviation based on multiple independent runs.

Histogram equalization improved the contrast of facial images, 
facilitating the detection of emotional features. Noise reduction 
minimized the impact of interference on the quality of images and 
audio signals. Each model configuration was trained and validated 

using the dataset described previously, split into 70% for training, 15% 
for validation, and 15% for testing. The results presented in the figure 
were obtained from the test set, ensuring the integrity and validity of 
the evaluation.

The results indicate that the noise reduction technique slightly 
improves accuracy and sensitivity compared to histogram 
equalization for all model configurations. Specifically, the CNN-RNN 
configuration with noise reduction achieved the highest accuracy 
(88.0%) and sensitivity (85.2%), standing out as the most effective for 
emotion detection. The error bars reflect the consistency of these 
results across multiple trials, demonstrating the stability of 
the performance.

In comparison, configurations using only CNN or RNN also show 
improvements in noise reduction but do not reach the performance 
levels of the CNN-RNN configuration. This highlights the importance 
of combining effective preprocessing techniques with robust model 
configurations to optimize emotion detection in hybrid 
educational settings.

4.3 Evaluation of the deep reinforcement 
learning model

For this evaluation, a DRL agent was implemented using the DQN 
(Deep Q-Network) architecture. The controlled environment 
replicated a hybrid educational environment in which emotional and 
academic factors were considered. The DRL agent was designed to 
optimize learning personalization strategies based on these factors.

However, PPO was selected as the most suitable algorithm to 
improve stability and efficiency in the learning process, especially in 
an educational environment where emotions and academic 
performance vary continuously. PPO is recognized for handling 
continuous action spaces more efficiently than DQN or A3C. Unlike 
these approaches, PPO maintains policy stability through a trimmed 

FIGURE 3

Distribution of emotions detected in the test set.

TABLE 5 Comparative analysis of model configurations and 
preprocessing techniques.

Setting Precision 
(%)

Sensitivity 
(%)

CNN + Histogram equalization 85.6 82.3

CNN + Noise reduction 86.1 82.8

RNN + Histogram equalization 83.2 80.1

RNN + Noise reduction 84.0 80.7

CNN-RNN + Histogram equalization 87.5 84.7

CNN-RNN + Noise reduction 88.0 85.2

DQN + Noise reduction 82.9 80.2

A3C + Noise reduction 81.5 79.8

DDPG + Noise reduction 83.4 81.1
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objective function that limits abrupt changes, ensuring more stable 
learning in dynamic environmental conditions, such as in hybrid 
educational environments.

Combining PPO with CNN and RNN allowed for optimizing 
real-time learning personalization, improving the agent’s ability to 
adapt to students’ emotional and academic needs. This resulted in a 
significant improvement in model accuracy and sensitivity compared 
to other approaches.

4.3.1 DRL agent performance
To evaluate the DRL agent’s performance, an experiment was 

designed in a simulated environment replicating a hybrid educational 
classroom. In this environment, the agent optimizes personalized 
teaching strategies based on students’ emotions and academic 
performance. The DRL agent trained for 200 episodes.

The experiment was structured in episodes where the DRL agent 
interacted with the educational environment, making decisions about 
personalizing learning to optimize academic performance and student 

satisfaction, as presented in Table 6. During these episodes, the reward 
was measured cumulative, which reached a value of 85.2, indicating 
that the agent could effectively maximize rewards over time. The 
78.5% success rate reflects that the agent met the most established 
personalization objectives.

The convergence time of 150 episodes shows that the DRL agent 
required a moderate number of episodes to stabilize its performance, 
reaching a state where rewards no longer improved significantly. This 
suggests that the agent could learn the optimal personalization policies 
in a reasonable time.

Using PPO allowed the DRL agent to achieve more excellent 
learning stability and reduce variability in results during training 
episodes. Unlike DQN or A3C, which showed instabilities during 
policy optimization, PPO improved the agent’s success rate by up to 
78.5%, reflecting increased efficiency in personalizing learning. This 
improvement is due to PPO’s ability to continuously and efficiently 
adjust policies in an environment where students’ emotions and 
academic performance constantly fluctuate.

FIGURE 4

Impact of preprocessing techniques on model performance.

TABLE 6 Performance metrics of the deep reinforcement learning model.

Metrics Value Description Comments

Accumulated reward 85.2 Total rewards earned Indicates the effectiveness of learning

Success rate (%) 78.5 Percentage of objectives met Reflects the efficiency of the agent

Convergence time 150 Number of episodes Measure the speed of learning

Training episodes 200 Total training episodes Process duration indicator

Average reward per episode 0.43 Average rewards per episode Reflects consistency of performance

Error rate (%) 21.5 Percentage of incorrect decisions Indicates areas of improvement
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FIGURE 5

Deep reinforcement learning agent performance across episodes.

Two hundred training episodes were performed, which provides 
a reasonable basis for evaluating the agent’s stability and consistency. 
The average reward per episode was 0.43, indicating reasonable 
consistency in reward attainment across episodes. The 21.5% error 
rate indicates room for improvement in incorrect decisions, suggesting 
possible areas for optimization in the agent design or personalization 
techniques employed.

The results show that the DRL agent performs well in personalizing 
learning in a simulated educational environment. The high cumulative 
reward and success rate indicate that the agent effectively adapted the 
teaching strategies to the student’s needs. The reasonable convergence 
time suggests the agent can learn and stabilize its performance in 
relatively few episodes.

The consistency of performance, reflected in the average reward 
per episode and the moderate error rate, indicate that although the 
agent is effective, there are still opportunities to improve the accuracy 
of its decisions. This could be  achieved through additional 
adjustments to the learning algorithms, including more training data 
or the refinement of emotion analysis and preprocessing techniques.

Figure 5 presents the DRL agent’s performance over 200 training 
episodes. Three key metrics, cumulative reward, success rate, and 
error rate, provide a more complete evaluation of the agent.

 • Cumulative Reward (in blue): The cumulative reward curve 
constantly increases throughout the episodes, reaching 
approximately 85.2. This increase reflects that the DRL agent is 
effectively learning and improving performance.

 • Success Rate (in green): The success rate, represented as a 
percentage, shows the proportion of objectives met by the agent in 
each episode. The success rate increases progressively from an initial 
50% to stabilize around 75%, indicating that the agent becomes 
more efficient in personalizing learning as training progresses.

 • Error Rate (in red): The error rate, also represented as a 
percentage, shows the proportion of incorrect decisions made by 
the agent. The error rate decreases from an initial 50% to 
approximately 25%, indicating that the agent improves its 
decision-making accuracy over time.

The figure highlights the DRL agent’s effective learning, evidenced 
by the increase in cumulative reward and success rate and the decrease 
in error rate. These results demonstrate that the agent is learning to 
maximize rewards, is getting better at personalizing learning, and is 
reducing errors in its decisions. These metrics provide a comprehensive 
view of the DRL agent’s performance, highlighting its ability to adapt 
and improve in a simulated educational environment.

4.3.2 Impact of personalization on academic 
performance

Students’ academic results were compared before and after the 
system’s implementation to evaluate the impact of learning 
personalization based on the DRL model. Metrics included grade 
point average, passing rate, student satisfaction, class participation, 
attendance, and tardiness reduction.

Academic data was collected from students before and after the 
implementation of the DRL system to conduct this evaluation. 
Pre-implementation data reflects a grade point average of 70.5, a pass 
rate of 68.2%, and student satisfaction of 75.0%. Class participation 
was 65.0%, attendance was 88.0%, and the late rate was 10.5%. After 
implementing the DRL system, a significant improvement was 
observed in all evaluated metrics. The grade point average increased 
to 78.3, indicating notable improvement in students’ academic 
performance. The pass rate also showed a significant increase, 
reaching 82.7%, reflecting greater effectiveness in teaching 
and learning.
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Student satisfaction improved considerably, reaching 89.1%, 
suggesting that students positively perceive the personalization of 
learning provided by the DRL system. Class participation increased 
from 65.0 to 80.5%, indicating greater student involvement in 
academic activities. Class attendance also showed improvement, 
rising from 88.0 to 93.0%, suggesting greater motivation and 
commitment for students. Furthermore, the reduction in lateness was 
notable, going from 10.5 to 5.2%, which indicates an improvement in 
the punctuality and discipline of the students. These results are 
presented in Table 7.

The results demonstrate the positive impact of DRL-based 
learning personalization on multiple aspects of students’ academic 
performance. The grade point average and passing rate improvement 
indicate that the DRL system is efficacious in improving learning and 
academic performance. Increased student satisfaction reflects a 
positive perception of the personalization of learning, which is 
crucial to the system’s long-term success.

The increase in class participation and attendance suggests that 
the DRL system motivates students to become more actively involved 
in their education, which is essential for effective learning. The 
reduction in the rate of lateness shows an improvement in punctuality 
and discipline, which can contribute to a more structured and 
effective learning environment.

Implementing a DRL-based personalization system optimizes 
personalized teaching strategies and significantly improves 
students’ academic performance and behavior. These findings 
underline the feasibility and effectiveness of using DRL models to 
personalize learning in educational settings, providing a solid 
foundation for future implementations and improvements in real-
world contexts.

To evaluate the impact of learning personalization based on the 
DRL model, students’ academic results were compared before and 
after the implementation of the DRL system. Figure 6 presents the 
following metrics before and after the implementation of the DRL 
system. The grade point average increased from 70.5 to 78.3, 
indicating notable student academic performance improvement. The 
pass rate increased from 68.2 to 82.7%, reflecting greater effectiveness 
in teaching and learning. Student satisfaction improved considerably, 
reaching 89.1%, suggesting a positive perception of the 
personalization of education provided by the DRL system.

Class participation increased from 65.0 to 80.5%, indicating 
greater student involvement in academic activities. Class attendance 
improved from 88.0 to 93.0%, suggesting greater student motivation 
and commitment. Finally, the lateness rate decreased from 10.5 to 
5.2%, indicating improved student punctuality and discipline.

The graph clearly shows the significant improvements in all 
metrics after implementing the DRL system. The increase in grade 
point average and passing rate indicates that the DRL system is 
efficacious in improving learning and academic performance. 
Increased student satisfaction reflects a positive perception of the 
personalization of learning, which is crucial to the system’s long-
term success.

The increase in class participation and attendance suggests that 
the DRL system motivates students to become more actively involved 
in their education, which is essential for effective learning. The 
reduction in the rate of lateness shows an improvement in punctuality 
and discipline, which can contribute to a more structured and 
effective learning environment.

Implementing a DRL-based personalization system optimizes 
personalized teaching strategies and significantly and positively 
impacts multiple aspects of students’ academic performance and 
behavior. These findings underline the feasibility and effectiveness of 
using DRL models to personalize learning in educational settings, 
providing a solid foundation for future implementations and 
improvements in real-world contexts.

4.3.3 Ablation study on input modalities
An ablation study was conducted to understand further the 

contribution of each input modality (camera, audio, and biometric 
data from smartwatches) to the system’s overall performance. This 
study progressively removed input types and observed the effect on 
key performance metrics such as precision, success, and error. The 
following configurations were tested:

 • Camera only: In this configuration, only the camera data (facial 
expressions) were used as input, with audio and biometric 
data excluded.

 • Audio only: In this configuration, only the audio data (voice 
signals) were input, excluding camera and biometric data.

 • Biometrics only: In this configuration, only the biometric data 
(heart rate and physiological signals) were used, with camera 
and audio data excluded.

 • All inputs: The system with all input modalities (camera, audio, 
and biometrics) was also evaluated as a baseline.

The results of this ablation study are presented in Table 8.
The results demonstrate that the camera-only configuration 

provides the highest precision among the individual modalities, 
likely due to the rich spatial information from facial expressions. 
However, when combined with audio and biometric data, the 

TABLE 7 Comparison of academic results before and after the implementation of the DRL system.

Metrics Before 
implementation

After 
implementation

Description Comments

Qualification’s average 70.5 78.3 Average evaluation score Notable improvement in academic 

performance

Pass rate (%) 68.2 82.7 Percentage of students approved. Significant increase in approvals

Student satisfaction (%) 75.0 89.1 Student satisfaction level Improved perception of teaching

Class participation (%) 65.0 80.5 Active participation in activities Increase in participation

Attendance (%) 88.0 93.0 Class attendance rate Increase in attendance

Delay reduction (%) 10.5 5.2 Decreased delay rate Improvement in punctuality
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system’s overall precision and success rate improve significantly, and 
the error rate is notably reduced. The audio-only configuration 
showed slightly lower performance, suggesting that while voice 
signals provide valuable information, they are less effective than 
facial expressions in detecting emotions. Biometrics alone yielded 
the lowest precision and success rate, indicating that while 
physiological signals can support emotion detection, they are less 
reliable. By integrating facial expressions, voice signals, and 
biometric data, the system benefits from a more comprehensive 
analysis of the student’s emotional and physiological state, allowing 
for more effective personalization of learning strategies.

4.4 Full system integration and evaluation

4.4.1 System performance in a real environment
The system’s implementation in a real educational environment 

allowed for the evaluation of its effectiveness in terms of real-time 

adaptation and personalization of learning. The results of this 
implementation are presented below, highlighting key metrics such as 
emotion detection accuracy, real-time adaptation, and personalization 
of educational content.

Table  9 presents a comparative summary of the system’s 
performance before and after its implementation. The critical metrics 
were emotion detection accuracy, real-time adaptation, and 
learning personalization.

Before implementing the system, the accuracy of emotion 
detection stood at 72.4%. This metric reflects the system’s ability to 
correctly identify the emotions expressed by students through their 
facial expressions and voices. After implementation, this accuracy 
increased significantly, reaching 89.3%. This increase is due to 
improvements in emotion detection algorithms and the effective use 
of data preprocessing techniques that improve the quality of the 
inputs. The real-time adaptive capacity, which measures how quickly 
and effectively the system adjusts teaching strategies based on detected 
emotions and student interactions, improved from 68.5% before 
implementation to 87.6% after. This significant advance indicates that 
the system has become more efficient in interpreting emotional and 
academic data, allowing immediate and precise adjustments to 
teaching strategies.

Personalization of learning, which refers to the system’s ability to 
adapt educational content to the individual needs of each student, also 
showed notable improvement. Before implementation, learning 
personalization stood at 70.2%. Upon implementation, this metric 
increased to 90.1%. This improvement reflects the system’s ability to 
provide a more personalized and practical learning experience, 

FIGURE 6

Comparison of academic results before and after the implementation of the DRL system.

TABLE 8 Ablation Study Results on Input Modalities.

Input 
modality

Precision (%) Success 
rate (%)

Error rate 
(%)

Camera only 83.2 76.0 23.5

Audio only 81.0 73.8 26.2

Biometrics only 79.5 71.5 28.0

All inputs 88.0 85.2 14.8
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dynamically adjusting to the needs and emotions of students. These 
results were obtained through a detailed analysis of the data collected 
during the academic semester using statistical analysis tools and 
machine learning techniques. The implementation of the system was 
continuously monitored to evaluate its performance and make 
necessary adjustments, thus ensuring the optimization of teaching and 
learning processes in the hybrid classroom.

Figure  7 illustrates the evolution of system accuracy and 
customization over the weeks of the academic semester. The accuracy 
of emotion detection before implementation stood at an average of 
72.4%, while after implementation, it increased significantly to 89.3%. 
This improvement can be attributed to improvements in detection 
algorithms and advanced data preprocessing techniques, which have 
improved the quality of data inputs.

These improvements were monitored throughout the academic 
semester, with continuous adjustments to optimize system 
performance. The detailed analysis of the data collected allowed us to 
identify areas for improvement and adjust teaching strategies based 
on the students’ emotional and academic needs. In summary, the 
results demonstrate the system’s effectiveness in improving the 
teaching and learning process in an educational environment, 
providing a solid foundation for future implementations 
and improvements.

4.4.2 User satisfaction and feedback
Implementing the system in a real educational environment made 

it possible to evaluate its effectiveness in terms of real-time adaptation 
and personalization of learning. The results, presented in Table 10, 
show significant improvements in the accuracy of emotion detection, 
real-time adaptation, and personalization of educational content. The 
accuracy of emotion detection increased from 72.4 to 89.3%, while 
real-time adaptation and personalization of learning improved from 
68.5 to 87.6% and from 70.2 to 90.1%, respectively. These results 
highlight the system’s ability to dynamically adjust teaching strategies 
based on students’ emotional and academic needs.

The results indicate that both students and educators positively 
perceived the implemented system. General satisfaction reached 
85.0% among students and 80.0% among educators, reflecting a 
majority and positive acceptance of the system. Regarding the 
perception of personalization of learning, 88.5% of students and 82.3% 
of educators recognized that the system could effectively adapt 
educational content to students’ individual needs. This underlines the 
system’s effectiveness in providing a personalized learning experience 
tailored to each student’s emotions and needs.

Ease of use was another highly valued aspect, with 90.2% of 
students and 85.7% of educators considering the system easy to use. 
This result is crucial, as an intuitive and easy-to-use interface facilitates 
all users’ adoption and continued use of the system. The effectiveness 
of the system, measured by its ability to improve the teaching and 
learning process, was appreciated by 87.0% of students and 84.5% of 

educators. This high percentage indicates that the system is perceived 
as valuable and an effective tool to improve educational results.

Additionally, willingness to recommend the system was 
remarkably high, with 92.1% of students and 88.0% of educators 
willing to recommend the system to others. This indicator is significant 
since it reflects users’ confidence in the system and satisfaction with 
the results obtained. These results were obtained through anonymous 
surveys and structured interviews to ensure honesty and accuracy in 
responses. The high response rate and consistency of results between 
students and educators suggest that the implemented system is 
effective, well-received, and valued by its users.

4.5 Statistical analysis and validation of 
results

4.5.1 Statistical tests
Several statistical tests were performed to validate the significance 

of the study’s results. We used independent samples t-tests to compare 
metrics before and after system implementation. Additionally, 
variance analysis (ANOVA) was performed to evaluate differences 
between multiple groups, and chi-square tests were used to explore 
the relationship between categorical variables.

Table  11 summarizes the results of these statistical tests. The 
p-values obtained for the accuracy of emotion detection, real-time 
adaptation, and personalization of learning were all less than 0.001. 
This level of statistical significance indicates that the observed 
improvements are highly unlikely to have occurred by chance. The 
95% confidence intervals provide a range within which the actual 
values of the observed improvements are expected to lie, confirming 
the robustness of the results.

4.5.2 Cross validation
Cross-validation is a fundamental technique in machine learning 

to evaluate a model’s generalization ability. This study implemented 
k-fold cross-validation with k = 10 to ensure that model performance 
did not depend on a specific partition of the data set and that the 
results were robust and generalizable.

The data set was divided into ten equal parts (folds) for cross-
validation. Each iteration used one-fold as a test set, while the other 
nine folds were used to train the model. This process was repeated ten 
times, changing the fold used for the test in each iteration. In the end, 
the average metrics of all iterations were calculated to obtain a more 
accurate estimate of the model performance.

Three key metrics were measured during each iteration: emotion 
detection accuracy, real-time adaptation, and learning personalization. 
Emotion detection accuracy assessed the model’s ability to identify 
students’ emotions correctly. Real-time adaptation measured the 
system’s effectiveness in adjusting teaching strategies based on the 
emotional and academic data received. Learning personalization 
assessed how the system tailored educational content to each 
student’s needs.

Figure 8 shows the cross-validation results for these metrics across 
ten folds. The lines represent the scores obtained in each iteration for 
the emotion detection accuracy metrics, real-time adaptation, and 
learning personalization. The markers (“o” for precision, “s” for 
adaptation, and “D” for customization) indicate the values obtained 
in each fold.

TABLE 9 System performance in real environment.

Metrics Before 
implementation

After 
implementation

Emotion detection accuracy 72.4% 89.3%

Adaptation in real time 68.5% 87.6%

Learning personalization 70.2% 90.1%
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The cross-validation results demonstrate the system’s consistency 
and robustness in different data set partitions. The scores obtained in 
each fold for emotion detection accuracy, real-time adaptation, and 
learning personalization metrics were consistently high, with minimal 
variations between the folds.

The emotion detection accuracy showed stable performance, with 
a mean of around 88.0%, indicating that the system can reliably 
identify students’ emotions. The slight variation in scores suggests that 
the model maintains consistent performance even when faced with 
different subsets of data.

Real-time adaptation had an average score of approximately 
86.5%, reflecting the system’s effectiveness in adjusting teaching 
strategies based on detected emotions and student interactions. Slight 
fluctuations in adaptation scores indicate the model’s ability to 
effectively handle various conditions and input data.

The personalization of learning, with an average of around 
89.5%, highlighted the system’s ability to adapt educational content 
to students’ needs. This high level of personalization suggests that 
the system can provide more focused and relevant learning 
experiences, thereby improving student satisfaction and 
academic performance.

5 Discussion

The literature review has identified the importance and growing 
relevance of emotion detection and personalization of learning in 
educational environments through artificial intelligence. Previous 
studies, such as those by Villegas-Ch et al. (2023) and Wang et al. 
(2023), have shown that the integration of intelligent systems can 
significantly improve students’ motivation, attention, and academic 
performance. Our study aligns with these findings and expands 
understanding by implementing a DRL model in a real educational 
setting, evaluating its effectiveness in detecting emotions and 
personalizing learning.

This study collected and preprocessed emotional and academic 
data from 500 students in a hybrid educational environment. Cameras, 
microphones, and biometric sensors captured facial expressions, 
voices, and physiological data (Oh et al., 2014). The data was divided 
into 70% for training, 15% for validation, and 15% for testing. 
Preprocessing included histogram equalization and noise reduction 
techniques to improve the quality of the images and audio used.

FIGURE 7

Evolution of precision and customization of the system over the weeks.

TABLE 10 Results of satisfaction and feedback surveys.

Evaluated aspect Students (%) Educators (%)

Overall Satisfaction 85.0 80.0

Perception of personalization 88.5 82.3

Easy to use 90.2 85.7

System effectiveness 87.0 84.5

System recommendation 92.1 88.0

TABLE 11 Results of statistical tests.

Metrics p-
value

Confidence 
interval (95%)

Interpretation

Emotion detection 

accuracy

<0.001 [0.14, 0.20] Significant

Adaptation in real 

time

<0.001 [0.15, 0.21] Significant

Learning 

personalization

<0.001 [0.17, 0.23] Significant
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The DRL model implemented in this study showed significant 
improvement in emotion detection accuracy, real-time adaptation, 
and learning personalization. The results indicated that the accuracy 
of emotion detection increased from 72.4 to 89.3% after 
implementing the system. Real-time adaptive capacity improved 
from 68.5 to 87.6%, and learning personalization rose from 70.2 to 
90.1%. These results were obtained by continuously monitoring the 
system’s performance throughout the academic semester, using 
k-fold cross-validation techniques to ensure the robustness and 
consistency of the model.

The k-fold cross-validation with k = 10 consistently showed high 
scores on all metrics tested, suggesting the model is stable and 
generalizable to different data set partitions. This approach ensures 
that the results are not the product of a specific partition but instead 
reflect the model’s ability to adapt and personalize learning based on 
student’s emotions and needs.

The method of using a DRL model for personalizing learning 
based on emotion detection is innovative and significant for several 
reasons (Chen et al., 2023). First, it provides a dynamic solution that 
can adjust to students’ emotional fluctuations in real-time, thereby 
improving their academic engagement and performance. Second, 
combining advanced data preprocessing techniques and deep learning 
algorithms enables more accurate emotion detection and more 
effective learning personalization (Baek et al., 2023).

However, the study also has some limitations. A possible 
limitation is the dependence on the quality of the data captured. 
Although advanced preprocessing techniques were implemented, 
variations in capture conditions, such as lighting and background 
noise, could have affected the accuracy of emotion detection (Zhang 

et al., 2023). Additionally, the DRL model requires a large amount of 
data for training, which can be  challenging in resource-limited 
educational settings.

Another limitation is the generalization of the results to different 
educational contexts. Although cross-validation ensures the 
robustness of the model within the data set used, the variability of 
academic contexts and cultural differences could influence the system’s 
effectiveness in other environments (Ohashi et al., 2023). Additional 
studies are needed to evaluate the model’s applicability in various 
educational settings and student populations.

These limitations significantly impact the interpretation and 
applicability of the findings. The dependency on data quality and the 
need for large volumes of data for model training may limit the 
implementation of the system in some educational settings (Israilov 
et al., 2023). Furthermore, the variability between educational contexts 
suggests that the results obtained in this study should be interpreted 
with caution and not generalized without making additional 
adaptations and evaluations in the new environments.

This study contributes to innovation in personalized education 
by integrating DRL models for emotion detection and learning 
adaptation. The results demonstrate the system’s effectiveness in 
improving the accuracy of emotion detection, the ability to adapt in 
real-time, and the personalization of learning. However, the identified 
limitations highlight the need for future research to address data 
quality challenges and the results’ generalizability to different 
educational contexts. This innovative approach can transform the 
educational experience by providing a more personalized and 
adaptive education, improving student engagement and 
academic performance.

FIGURE 8

Cross validation results for different metrics.
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6 Conclusion

Implementing a DRL system for emotion detection and learning 
personalization in hybrid educational environments has proven to 
be an effective and promising solution. This study has validated the 
hypothesis that an AI-based adaptive system can significantly 
improve both the accuracy of emotion detection and the 
personalization of learning, positively impacting academic 
performance and student engagement.

First, the accuracy of emotion detection saw a notable 
improvement. The results showed an increase from 72.4% before 
system implementation to 89.3% after implementation. This increase 
is attributable to advanced data preprocessing techniques, such as 
histogram equalization and noise reduction, which improved the 
quality of the data inputs, allowing the DRL model to make more 
accurate detections. High emotion detection accuracy is essential to 
provide adequate and timely feedback, adjusting teaching strategies 
based on the emotional state of the students.

Second, the system’s real-time adaptation capability also showed 
significant improvement. Real-time adaptation went from 68.5 to 
87.6%, indicating that the system can dynamically interpret and 
respond to students’ emotions and academic needs. This ability to 
immediately adjust is crucial in an educational environment, as it 
allows teaching strategies to be modified based on students’ emotional 
and academic fluctuations, thus improving their learning experience 
and maintaining their engagement.

Learning personalization, one of the critical metrics evaluated in this 
study increased from 70.2% before system implementation to 90.1% after 
implementation. This improvement underscores the system’s ability to 
tailor educational content to individual student needs, providing a more 
focused and practical learning experience. The personalization of 
learning improves academic performance and increases student 
satisfaction, as reflected in the satisfaction and feedback surveys.

The robustness and generalization of the model were evaluated 
using k-fold cross-validation with k = 10. The results indicated 
consistently high scores on all assessed metrics, suggesting the model 
is stable and generalizable to different data set partitions. This 
robustness is essential to ensure that the system can be implemented 
effectively in various educational contexts, maintaining its 
performance and effectiveness.

However, it is essential to recognize some limitations of the study. 
The quality of the data captured may have influenced the accuracy of 
emotion detection. Despite advanced preprocessing techniques, 
variations in shooting conditions, such as lighting and background 
noise, could have affected the results. Additionally, the DRL model 
requires a large amount of data for training, which can be challenging 
in resource-limited educational settings.

Another limitation is the generalization of the results to different 
educational contexts. Although cross-validation ensures the 
robustness of the model within the data set used, the variability of 
educational contexts and cultural differences could influence the 
system’s effectiveness in other environments. Additional studies are 
needed to evaluate the model’s applicability in various academic 
settings and student populations.

For future research, it is recommended that other sources of 
emotional data, such as social media data and digital interaction 

patterns, be integrated further to improve the system’s accuracy and 
adaptability. Furthermore, it would be valuable to investigate the 
system’s implementation in various educational and cultural contexts 
to evaluate its generalizability and effectiveness in broader 
academic settings.

Another promising direction for future research is the 
development of deep reinforcement learning models that require less 
data for training, which would allow for broader and more practical 
implementation in resource-limited settings. Likewise, incorporating 
explainable AI (XAI) techniques could improve the transparency and 
understanding of the model’s decisions, thus increasing educators’ 
acceptance and trust in the system.

Data availability statement

The data analyzed in this study is subject to the following 
licenses/restrictions: 1. Privacy and Anonymity: the data has been 
anonymized to protect the identity of the participants. No 
identifiable personal data was included, and all facial images and 
biometric data used correspond exclusively to the study authors. 2. 
Restricted Access: the data set is restricted and can only be used by 
the research team directly involved in this study. Distribution and 
use of the dataset by third parties are not permitted without prior 
permission from the authors. 3. Exclusive Use for Academic 
Research: the data can be  used only for academic research 
purposes, not for commercial or other purposes. 4. Informed 
Consent: although specific written informed consent was not 
obtained for publication, verbal consent was obtained from 
participants to collect and use data for research purposes. 
Participants were informed about the purpose of the study and the 
anonymity measures implemented. 5. Geographical and Contextual 
Limitations: the data set was collected in a specific educational 
setting and may not be representative of other contexts or regions. 
The results obtained using this data set must be interpreted within 
the limitations of the academic environment in which the study 
was conducted. These restrictions are necessary to protect 
participants and the ethical use of data in research. Requests to 
access these datasets should be  directed to william.villegas@
udla.edu.ec.

Ethics statement

Ethical review and approval was not required for the study on 
human participants in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study. Written informed 
consent was obtained from the authors to publish any potentially 
identifiable images or data included in this article.

Author contributions

JG: Conceptualization, Data curation, Investigation, Software, 
Validation, Visualization, Writing – original draft. AN: 

https://doi.org/10.3389/frai.2024.1458230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
mailto:william.villegas@udla.edu.ec
mailto:william.villegas@udla.edu.ec


Govea et al. 10.3389/frai.2024.1458230

Frontiers in Artificial Intelligence 21 frontiersin.org

Conceptualization, Formal analysis, Investigation, Methodology, 
Visualization, Writing – original draft. SS-V: Conceptualization, Data 
curation, Methodology, Software, Validation, Visualization, Writing 
– original draft. WV-C: Conceptualization, Data curation, Formal 
analysis, Investigation, Methodology, Project administration, 
Software, Supervision, Validation, Visualization, Writing – original 
draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was 
received for the research, authorship, and/or publication of this  
article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Alamatsaz, N., Tabatabaei, L., Yazdchi, M., Payan, H., Alamatsaz, N., and Nasimi, F. 

(2024). A lightweight hybrid CNN-LSTM explainable model for ECG-based arrhythmia 
detection. Biomed. Signal Process. Control 90:105884. doi: 10.1016/j.bspc.2023.105884

Aldriwish, K. A. (2024). Empowering learning through intelligent data-driven 
systems. Eng. Technol. Appl. Sci. Res. 14, 12844–12849. doi: 10.48084/etasr.6675

Baek, S., Kim, J., Yu, H., Yang, G., Sohn, I., Cho, Y., et al. (2023). Intelligent feature 
selection for ECG-based personal authentication using deep reinforcement learning. 
Sensors 23:1230. doi: 10.3390/s23031230

Barrett, R., and Westermayr, J. (2024). Reinforcement learning for traversing chemical 
structure space: optimizing transition states and minimum energy paths of molecules. 
J. Phys. Chem. Lett. 15, 349–356. doi: 10.1021/acs.jpclett.3c02771

Chen, D., Huang, Y. R., Peng, P. X., Huang, T. J., and Tian, Y. H. (2023). Research on 
spiking reinforcement learning algorithms: a survey. Chin. J. Comput. 46, 237–285. doi: 
10.48550/arXiv.cs/9605103

Cloude, E. B., Munshi, A., Andres, J. M. A., Ocumpaugh, J., Baker, R. S., and Biswas, G. 
(2024). “Exploring confusion and frustration as non-linear dynamical systems” in ACM 
international conference proceeding series. Eds. H. Daumé III and A. Singh.

Coraci, D., Brandi, S., Hong, T., and Capozzoli, A. (2023). Online transfer learning 
strategy for enhancing the scalability and deployment of deep reinforcement learning 
control in smart buildings. Appl. Energy 333:120598. doi: 10.1016/j.apenergy.2022.120598

Croll, H. C., Ikuma, K., Ong, S. K., and Sarkar, S. (2023). Systematic performance 
evaluation of reinforcement learning algorithms applied to wastewater treatment control 
optimization. Environ. Sci. Technol. 57, 18382–18390. doi: 10.1021/acs.est.3c00353

Ducrocq, R., and Farhi, N. (2023). Deep reinforcement Q-learning for intelligent 
traffic signal control with partial detection. Int. J. Intell. Transp. Syst. Res. 21, 192–206. 
doi: 10.1007/s13177-023-00346-4

Emami, S., and Suciu, V. P. (2012). Facial recognition using OpenCV. J. Mobile Embed. 
Distrib. Syst. 4, 38–43.

Fujimoto, S., Chang, W. D., Smith, E. J., Gu, S. S., Precup, D., and Meger, D. (2024). 
“For SALE: state-action representation learning for deep reinforcement learning” in 
Proceedings of the 37th international conference on neural information processing 
systems (Red Hook, NY, USA: Curran Associates Inc.).

Huang, W., Cui, Y., Li, H., and Wu, X. (2024). Practical probabilistic model-based 
reinforcement learning by integrating dropout uncertainty and trajectory sampling. 
IEEE Trans. Neural. Netw. Learn. Syst., 1–15. doi: 10.1109/TNNLS.2024.3474169

Israilov, S., Fu, L., Sánchez-Rodríguez, J., Fusco, F., Allibert, G., Raufaste, C., et al. (2023). 
Reinforcement learning approach to control an inverted pendulum: a general framework for 
educational purposes. PLoS One 18:e0280071. doi: 10.1371/journal.pone.0280071

Kotwal, K., Bhattacharjee, S., Abbet, P., Mostaani, Z., Wei, H., Wenkang, X., et al. (2022). 
Domain-specific adaptation of CNN for detecting face presentation attacks in NIR. IEEE 
Trans. Biom. Behav. Identity Sci. 4, 135–147. doi: 10.1109/TBIOM.2022.3143569

Kumar, Y., and Mahajan, M. (2019). Machine learning based speech emotions 
recognition system. Int. J. Sci. Technol. Res. 8, 722–729.

Leong, F. H. (2020). “Deep learning of facial embeddings and facial landmark points for the 
detection of academic emotions” in ACM international conference proceeding series. Eds. 
B. B. Klebanov, E. Shutova, P. Lichtenstein, S. Muresan, C. Wee, A. Feldman, et al.

Li, Y., Liu, H., Wei, J., Ma, X., Zheng, G., and Xi, L. (2023). Research on winter wheat 
growth stages recognition based on Mobile edge computing. Agriculture (Switzerland) 
13:534. doi: 10.3390/agriculture13030534

Lin, Z., Wang, H., Chen, T., Jiang, Y., Jiang, J., and Chen, Y. (2024). A reverse path 
planning approach for enhanced performance of multi-degree-of-freedom industrial 
manipulators. Comput. Model. Eng. Sci. 139, 1–10.

Mekruksavanich, S., and Jitpattanakul, A. (2021). Deep convolutional neural network 
with rnns for complex activity recognition using wrist-worn wearable sensor data. 
Electronics (Switzerland) 10:1685. doi: 10.3390/electronics10141685

Oh, J. Y., Choi, H. S., Jung, S. H., Kim, H. S., and Shin, H. Y. (2014). Development of 
pallet recognition system using kinect camera. Int. J. Multimed. Ubiquitous Eng. 9, 
227–232. doi: 10.14257/ijmue.2014.9.4.24

Ohashi, K., Nakanishi, K., Yasui, Y., and Ishii, S. (2023). Deep adversarial 
reinforcement learning method to generate control policies robust against worst-case 
value predictions. IEEE Access 11, 100798–100809. doi: 10.1109/ACCESS.2023.3314750

Ouyang, F., and Jiao, P. (2021). Artificial intelligence in education: the three paradigms. 
Computers and education. Artif. Intell. 2:100020. doi: 10.1016/j.caeai.2021.100020

Patel, K. M. (2023). A practical reinforcement learning implementation approach for 
continuous process control. Comput. Chem. Eng. 174:108232. doi: 10.1016/j.
compchemeng.2023.108232

Pervin, M. M., Ferdowsh, N., and Munni, I. J. (2021). Teacher-student interactions 
and academic performance of students. Dhaka university. J. Biol. Sci. 30, 87–93. doi: 
10.3329/dujbs.v30i1.51812

Petch, J., Nelson, W., Wu, M., Ghassemi, M., Benz, A., Fatemi, M., et al. (2024). 
Optimizing warfarin dosing for patients with atrial fibrillation using machine learning. 
Sci. Rep. 14:4516. doi: 10.1038/s41598-024-55110-9

Ramirez, C., Concha, C., and Valdes, B. (2010). Non-invasive technology on a 
classroom chair for detection of emotions used for the personalization of learning 
resources. World Acad. Sci. Eng. Technol. 66.

Shang, Z., Li, R., Zheng, C., Li, H., and Cui, Y. (2023). Relative entropy regularized 
sample-efficient reinforcement learning with continuous actions. IEEE Trans. Neural. 
Netw. Learn. Syst., 1–11. doi: 10.1109/TNNLS.2023.3329513

Smagulova, K., and James, A. P. (2019). A survey on LSTM memristive neural network 
architectures and applications. Eur. Phys. J. Spec. Top. 228, 2313–2324. doi: 10.1140/epjst/
e2019-900046-x

Sun, S., Wang, H., Zhang, H., Li, M., Xiang, M., Luo, C., et al. (2024). Underwater 
image enhancement with reinforcement learning. IEEE J. Ocean. Eng. 49, 249–261. doi: 
10.1109/JOE.2022.3152519

Trigueros, R., Aguilar-Parra, J. M., Cangas, A. J., Bermejo, R., Ferrandiz, C., and 
López-Liria, R. (2019). Influence of emotional intelligence, motivation and resilience on 
academic performance and the adoption of healthy lifestyle habits among adolescents. 
Int. J. Environ. Res. Public Health 16:2810. doi: 10.3390/ijerph16162810

Villegas-Ch, W. E., Garc’ia-Ortiz, J., and Sánchez-Viteri, S. (2023). Identification of 
emotions from facial gestures in a teaching environment with the use of machine 
learning techniques. IEEE Access 11, 38010–38022. doi: 10.1109/ACCESS.2023.3267007

Wang, S., Qu, J., Zhang, Y., and Zhang, Y. (2023). Multimodal emotion recognition 
from EEG signals and facial expressions. IEEE Access 11, 33061–33068. doi: 10.1109/
ACCESS.2023.3263670

Wang, D., Wang, J., Zhao, M., Xin, P., and Qiao, J. (2023). Adaptive multi-step 
evaluation design with stability guarantee for discrete-time optimal learning control. 
IEEE/CAA J. Autom. Sin. 10, 1797–1809. doi: 10.1109/JAS.2023.123684

Wang, D., Zheng, W., Wang, Z., Wang, Y., Pang, X., and Wang, W. (2023). 
Comparison of reinforcement learning and model predictive control for building 
energy system optimization. Appl. Therm. Eng. 228:120430. doi: 10.1016/j.
applthermaleng.2023.120430

Yan, J. (2024). Research on data-driven college English teaching model based on 
reinforcement learning and virtual reality through online gaming. Comput. Aided Des. 
Appl. 21, 197–210. doi: 10.14733/cadaps.2024.S5.197-210

https://doi.org/10.3389/frai.2024.1458230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.bspc.2023.105884
https://doi.org/10.48084/etasr.6675
https://doi.org/10.3390/s23031230
https://doi.org/10.1021/acs.jpclett.3c02771
https://doi.org/10.48550/arXiv.cs/9605103
https://doi.org/10.1016/j.apenergy.2022.120598
https://doi.org/10.1021/acs.est.3c00353
https://doi.org/10.1007/s13177-023-00346-4
https://doi.org/10.1109/TNNLS.2024.3474169
https://doi.org/10.1371/journal.pone.0280071
https://doi.org/10.1109/TBIOM.2022.3143569
https://doi.org/10.3390/agriculture13030534
https://doi.org/10.3390/electronics10141685
https://doi.org/10.14257/ijmue.2014.9.4.24
https://doi.org/10.1109/ACCESS.2023.3314750
https://doi.org/10.1016/j.caeai.2021.100020
https://doi.org/10.1016/j.compchemeng.2023.108232
https://doi.org/10.1016/j.compchemeng.2023.108232
https://doi.org/10.3329/dujbs.v30i1.51812
https://doi.org/10.1038/s41598-024-55110-9
https://doi.org/10.1109/TNNLS.2023.3329513
https://doi.org/10.1140/epjst/e2019-900046-x
https://doi.org/10.1140/epjst/e2019-900046-x
https://doi.org/10.1109/JOE.2022.3152519
https://doi.org/10.3390/ijerph16162810
https://doi.org/10.1109/ACCESS.2023.3267007
https://doi.org/10.1109/ACCESS.2023.3263670
https://doi.org/10.1109/ACCESS.2023.3263670
https://doi.org/10.1109/JAS.2023.123684
https://doi.org/10.1016/j.applthermaleng.2023.120430
https://doi.org/10.1016/j.applthermaleng.2023.120430
https://doi.org/10.14733/cadaps.2024.S5.197-210


Govea et al. 10.3389/frai.2024.1458230

Frontiers in Artificial Intelligence 22 frontiersin.org

Zhang, Z., Shi, J., Yang, W., Song, Z., Chen, Z., and Lin, D. (2023). Deep reinforcement 
learning based bi-layer optimal scheduling for microgrids considering flexible load 
control. CSEE J. Power Energy Syst. 9, 949–962.

Zhang, Q., Zeng, W., Lin, Q., Chng, C. B., Chui, C. K., and Lee, P. S. (2023). Deep 
reinforcement learning towards real-world dynamic thermal management of data 
centers. Appl. Energy 333:120561. doi: 10.1016/j.apenergy.2022.120561

Zhang, R., Zhang, C., Cao, Z., Song, W., Tan, P. S., Zhang, J., et al. (2023). Learning to 
solve multiple-TSP with time window and rejections via deep reinforcement learning. 
IEEE Trans. Intell. Transp. Syst. 24, 1325–1336. doi: 10.1109/TITS.2022.3207011

Zhang, J., Zhang, Z., Han, S., and Lü, S. (2022). Proximal policy optimization via 
enhanced exploration efficiency. Inf. Sci. 609, 750–765. doi: 10.1016/j.
ins.2022.07.111

https://doi.org/10.3389/frai.2024.1458230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.apenergy.2022.120561
https://doi.org/10.1109/TITS.2022.3207011
https://doi.org/10.1016/j.ins.2022.07.111
https://doi.org/10.1016/j.ins.2022.07.111

	Implementation of deep reinforcement learning models for emotion detection and personalization of learning in hybrid educational environments
	1 Introduction
	2 Literature review
	3 Materials and methods
	3.1 Description of the proposed system
	3.1.1 General system architecture
	3.1.2 Tools and technologies used
	3.2 Emotion detection
	3.2.1 Tools and technologies used
	3.2.2 Data processing
	3.2.3 Emotion detection models
	3.3 Implementation of deep reinforcement learning
	3.3.1 DRL model structure
	3.3.2 Training environment
	3.3.3 Adaptation in real time
	3.4 System integration and evaluation
	3.4.1 System integration
	3.4.2 Experimental design
	3.4.3 Evaluation metrics
	3.5 Ethical and privacy considerations
	3.5.1 Informed consent
	3.5.2 Data protection
	3.5.3 Ethical impact

	4 Results
	4.1 Management and processing
	4.1.1 Data capture
	4.1.2 Data preprocessing
	4.1.3 Data storage and management
	4.2 Management and processing
	4.2.1 Precision and sensitivity of models
	4.2.2 Comparative analysis
	4.3 Evaluation of the deep reinforcement learning model
	4.3.1 DRL agent performance
	4.3.2 Impact of personalization on academic performance
	4.3.3 Ablation study on input modalities
	4.4 Full system integration and evaluation
	4.4.1 System performance in a real environment
	4.4.2 User satisfaction and feedback
	4.5 Statistical analysis and validation of results
	4.5.1 Statistical tests
	4.5.2 Cross validation

	5 Discussion
	6 Conclusion

	References

